Skip to content
Snippets Groups Projects
pdt_functions.py 19.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    # ***** BEGIN GPL LICENSE BLOCK *****
    #
    #
    # This program is free software; you can redistribute it and/or
    # modify it under the terms of the GNU General Public License
    # as published by the Free Software Foundation; either version 2
    # of the License, or (at your option) any later version.
    #
    # This program is distributed in the hope that it will be useful,
    # but WITHOUT ANY WARRANTY; without even the implied warranty of
    # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	See the
    # GNU General Public License for more details.
    #
    # You should have received a copy of the GNU General Public License
    # along with this program; if not, write to the Free Software Foundation,
    # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    #
    # ***** END GPL LICENCE BLOCK *****
    
    # -----------------------------------------------------------------------
    # Author: Alan Odom (Clockmender), Rune Morling (ermo) Copyright (c) 2019
    # -----------------------------------------------------------------------
    #
    # Common Functions used in more than one place in PDT Operations
    
    import bpy
    import bmesh
    import bgl
    import gpu
    import numpy as np
    from mathutils import Vector, Quaternion
    from gpu_extras.batch import batch_for_shader
    from math import cos, sin, pi
    from .pdt_msg_strings import (
        PDT_ERR_VERT_MODE,
        PDT_ERR_SEL_2_V_1_E,
        PDT_ERR_SEL_2_OBJS,
        PDT_ERR_NO_ACT_OBJ,
        PDT_ERR_SEL_1_EDGEM
    )
    
    
    def debug(msg, prefix=""):
        """Print a debug message to the console if PDT's or Blender's debug flags are set.
    
        The printed message will be of the form:
    
        {prefix}{caller file name:line number}| {msg}
        """
    
        pdt_debug = bpy.context.preferences.addons[__package__].preferences.debug
        if  bpy.app.debug or bpy.app.debug_python or pdt_debug:
            import traceback
    
            def extract_filename(fullpath):
                """Return only the filename part of fullpath (excluding its path)."""
                # Expected to end up being a string containing only the filename
                # (i.e. excluding its preceding '/' separated path)
                filename = fullpath.split('/')[-1]
                #print(filename)
                # something went wrong
                if len(filename) < 1:
                    return fullpath
                # since this is a string, just return it
                return filename
    
            # stack frame corresponding to the line where debug(msg) was called
            #print(traceback.extract_stack()[-2])
            laststack = traceback.extract_stack()[-2]
            #print(laststack[0])
            # laststack[0] is the caller's full file name, laststack[1] is the line number
            print(f"{prefix}{extract_filename(laststack[0])}:{laststack[1]}| {msg}")
    
    def oops(self, context):
        """Error Routine.
    
        Displays error message in a popup.
    
        Args:
            context: Blender bpy.context instance.
    
        Note:
            Uses pg.error scene variable
        """
    
        scene = context.scene
        pg = scene.pdt_pg
        self.layout.label(text=pg.error)
    
    
    def setMode(mode_pl):
        """Sets Active Axes for View Orientation.
    
        Sets indices of axes for locational vectors
    
        Args:
            mode_pl: Plane Selector variable as input
    
        Returns:
            3 Integer indices.
        """
    
        if mode_pl == "XY":
            # a1 = x a2 = y a3 = z
            return 0, 1, 2
        if mode_pl == "XZ":
            # a1 = x a2 = z a3 = y
            return 0, 2, 1
        if mode_pl == "YZ":
            # a1 = y a2 = z a3 = x
            return 1, 2, 0
        #FIXME: This needs a proper specification and a default
    
    
    def setAxis(mode_pl):
        """Sets Active Axes for View Orientation.
    
        Sets indices for axes from taper vectors
    
        Args:
            mode_pl: Taper Axis Selector variable as input
    
        Note:
            Axis order: Rotate Axis, Move Axis, Height Axis
    
        Returns:
            3 Integer Indicies.
        """
    
        if mode_pl == "RX-MY":
            return 0, 1, 2
        if mode_pl == "RX-MZ":
            return 0, 2, 1
        if mode_pl == "RY-MX":
            return 1, 0, 2
        if mode_pl == "RY-MZ":
            return 1, 2, 0
        if mode_pl == "RZ-MX":
            return 2, 0, 1
        if mode_pl == "RZ-MY":
            return 2, 1, 0
        #FIXME: This needs a proper specification and a default
    
    
    def checkSelection(num, bm, obj):
        """Check that the Object's select_history has sufficient entries.
    
        If selection history is not Verts, clears selection and history.
    
        Args:
            num: The number of entries required for each operation
            bm: The Bmesh from the Object
            obj: The Object
    
        Returns:
            list of 3D points as Vectors.
        """
    
        if len(bm.select_history) < num:
            return None
        else:
            actE = bm.select_history[-1]
        if isinstance(actE, bmesh.types.BMVert):
            actV = actE.co
            if num == 1:
                return actV
            elif num == 2:
                othV = bm.select_history[-2].co
                return actV, othV
            elif num == 3:
                othV = bm.select_history[-2].co
                lstV = bm.select_history[-3].co
                return actV, othV, lstV
            elif num == 4:
                othV = bm.select_history[-2].co
                lstV = bm.select_history[-3].co
                fstV = bm.select_history[-4].co
                return actV, othV, lstV, fstV
        else:
            for f in bm.faces:
                f.select_set(False)
            for e in bm.edges:
                e.select_set(False)
            for v in bm.verts:
                v.select_set(False)
            bmesh.update_edit_mesh(obj.data)
            bm.select_history.clear()
        return None
    
    
    def updateSel(bm, verts, edges, faces):
        """Updates Vertex, Edge and Face Selections following a function.
    
        Args:
            bm: Object Bmesh
            verts: New Selection for Vertices
            edges: The Edges on which to operate
            faces: The Faces on which to operate
    
        Returns:
            Nothing.
        """
        for f in bm.faces:
            f.select_set(False)
        for e in bm.edges:
            e.select_set(False)
        for v in bm.verts:
            v.select_set(False)
        for v in verts:
            v.select_set(True)
        for e in edges:
            e.select_set(True)
        for f in faces:
            f.select_set(True)
    
    
    def viewCoords(x_loc, y_loc, z_loc):
        """Converts input Vector values to new Screen Oriented Vector.
    
        Args:
            x_loc: X coordinate from vector
            y_loc: Y coordinate from vector
            z_loc: Z coordinate from vector
    
        Returns:
            Vector adjusted to View's Inverted Tranformation Matrix.
        """
    
        areas = [a for a in bpy.context.screen.areas if a.type == "VIEW_3D"]
        if len(areas) > 0:
            vm = areas[0].spaces.active.region_3d.view_matrix
            vm = vm.to_3x3().normalized().inverted()
            vl = Vector((x_loc, y_loc, z_loc))
            vw = vm @ vl
            return vw
        else:
            return Vector((0, 0, 0))
    
    
    def viewCoordsI(x_loc, y_loc, z_loc):
        """Converts Screen Oriented input Vector values to new World Vector.
    
        Converts View tranformation Matrix to Rotational Matrix
    
        Args:
            x_loc: X coordinate from vector
            y_loc: Y coordinate from vector
            z_loc: Z coordinate from vector
    
        Returns:
            Vector adjusted to View's Transformation Matrix.
        """
    
        areas = [a for a in bpy.context.screen.areas if a.type == "VIEW_3D"]
        if len(areas) > 0:
            vm = areas[0].spaces.active.region_3d.view_matrix
            vm = vm.to_3x3().normalized()
            vl = Vector((x_loc, y_loc, z_loc))
            vw = vm @ vl
            return vw
        else:
            return Vector((0, 0, 0))
    
    
    def viewDir(dis_v, ang_v):
        """Converts Distance and Angle to View Oriented Vector.
    
        Converts View Transformation Matrix to Rotational Matrix (3x3)
        Angles are converted to Radians from degrees.
    
        Args:
            dis_v: Scene distance
            ang_v: Scene angle
    
        Returns:
            World Vector.
        """
    
        areas = [a for a in bpy.context.screen.areas if a.type == "VIEW_3D"]
        if len(areas) > 0:
            vm = areas[0].spaces.active.region_3d.view_matrix
            vm = vm.to_3x3().normalized().inverted()
            vl = Vector((0, 0, 0))
            vl.x = dis_v * cos(ang_v * pi / 180)
            vl.y = dis_v * sin(ang_v * pi / 180)
            vw = vm @ vl
            return vw
        else:
            return Vector((0, 0, 0))
    
    
    def euler_to_quaternion(roll, pitch, yaw):
        """Converts Euler Rotation to Quaternion Rotation.
    
        Args:
            roll: Roll in Euler rotation
            pitch: Pitch in Euler rotation
            yaw: Yaw in Euler rotation
    
        Returns:
            Quaternion Rotation.
        """
    
        # fmt: off
        qx = (np.sin(roll/2) * np.cos(pitch/2) * np.cos(yaw/2)
              - np.cos(roll/2) * np.sin(pitch/2) * np.sin(yaw/2))
        qy = (np.cos(roll/2) * np.sin(pitch/2) * np.cos(yaw/2)
              + np.sin(roll/2) * np.cos(pitch/2) * np.sin(yaw/2))
        qz = (np.cos(roll/2) * np.cos(pitch/2) * np.sin(yaw/2)
              - np.sin(roll/2) * np.sin(pitch/2) * np.cos(yaw/2))
        qw = (np.cos(roll/2) * np.cos(pitch/2) * np.cos(yaw/2)
              + np.sin(roll/2) * np.sin(pitch/2) * np.sin(yaw/2))
        # fmt: on
        return Quaternion((qw, qx, qy, qz))
    
    
    def arcCentre(actV, othV, lstV):
        """Calculates Centre of Arc from 3 Vector Locations using standard Numpy routine
    
        Args:
            actV: Active vector location
            othV: Other vector location
            lstV: Last vector location
    
        Returns:
            Vector representing Arc Centre and Float representing Arc Radius.
        """
    
        A = np.array([actV.x, actV.y, actV.z])
        B = np.array([othV.x, othV.y, othV.z])
        C = np.array([lstV.x, lstV.y, lstV.z])
        a = np.linalg.norm(C - B)
        b = np.linalg.norm(C - A)
        c = np.linalg.norm(B - A)
        # fmt: off
        s = (a+b+c) / 2
        R = a*b*c/4 / np.sqrt(s * (s-a) * (s-b) * (s-c))
        b1 = a*a * (b*b + c*c - a*a)
        b2 = b*b * (a*a + c*c - b*b)
        b3 = c*c * (a*a + b*b - c*c)
        # fmt: on
        P = np.column_stack((A, B, C)).dot(np.hstack((b1, b2, b3)))
        P /= b1 + b2 + b3
        return Vector((P[0], P[1], P[2])), R
    
    
    def intersection(actV, othV, lstV, fstV, plane):
        """Calculates Intersection Point of 2 Imagined Lines from 4 Vectors.
    
        Calculates Converging Intersect Location and indication of
        whether the lines are convergent using standard Numpy Routines
    
        Args:
            actV: Active vector location of first line
            othV: Other vector location of first line
            lstV: Last vector location of 2nd line
            fstV: First vector location of 2nd line
            plane: Working Plane 4 Vector Locations representing 2 lines and Working Plane
    
        Returns:
            Intersection Vector and Boolean for convergent state.
        """
    
        if plane == "LO":
            disV = othV - actV
            othV = viewCoordsI(disV.x, disV.y, disV.z)
            disV = lstV - actV
            lstV = viewCoordsI(disV.x, disV.y, disV.z)
            disV = fstV - actV
            fstV = viewCoordsI(disV.x, disV.y, disV.z)
            refV = Vector((0, 0, 0))
            ap1 = (fstV.x, fstV.y)
            ap2 = (lstV.x, lstV.y)
            bp1 = (othV.x, othV.y)
            bp2 = (refV.x, refV.y)
        else:
            a1, a2, a3 = setMode(plane)
            ap1 = (fstV[a1], fstV[a2])
            ap2 = (lstV[a1], lstV[a2])
            bp1 = (othV[a1], othV[a2])
            bp2 = (actV[a1], actV[a2])
        s = np.vstack([ap1, ap2, bp1, bp2])
        h = np.hstack((s, np.ones((4, 1))))
        l1 = np.cross(h[0], h[1])
        l2 = np.cross(h[2], h[3])
        x, y, z = np.cross(l1, l2)
        if z == 0:
            return Vector((0, 0, 0)), False
        nx = x / z
        nz = y / z
        if plane == "LO":
            ly = 0
        else:
            ly = actV[a3]
        # Order Vector Delta
        if plane == "XZ":
            vector_delta = Vector((nx, ly, nz))
        elif plane == "XY":
            vector_delta = Vector((nx, nz, ly))
        elif plane == "YZ":
            vector_delta = Vector((ly, nx, nz))
        elif plane == "LO":
            vector_delta = viewCoords(nx, nz, ly) + actV
        return vector_delta, True
    
    
    def getPercent(obj, flip_p, per_v, data, scene):
        """Calculates a Percentage Distance between 2 Vectors.
    
        Calculates a point that lies a set percentage between two given points
        using standard Numpy Routines.
    
        Works for either 2 vertices for an object in Edit mode
        or 2 selected objects in Object mode.
    
        Args:
            obj: The Object under consideration
            flip_p: Setting this to True measures the percentage starting from the second vector
            per_v: Percentage Input Value
            data: pg.flip, pg.percent scene variables & Operational Mode
            scene: Context Scene
    
        Returns:
            World Vector.
        """
    
        pg = scene.pdt_pg
    
        if obj.mode == "EDIT":
            bm = bmesh.from_edit_mesh(obj.data)
            verts = [v for v in bm.verts if v.select]
            if len(verts) == 2:
                actV = verts[0].co
                othV = verts[1].co
                if actV is None:
                    pg.error = PDT_ERR_VERT_MODE
                    bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
                    return None
            else:
                pg.error = PDT_ERR_SEL_2_V_1_E + str(len(verts)) + " Vertices"
                bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
                return None
            p1 = np.array([actV.x, actV.y, actV.z])
            p2 = np.array([othV.x, othV.y, othV.z])
        if obj.mode == "OBJECT":
            objs = bpy.context.view_layer.objects.selected
            if len(objs) != 2:
                pg.error = PDT_ERR_SEL_2_OBJS + str(len(objs)) + ")"
                bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
                return None
            p1 = np.array(
                [
                    objs[-1].matrix_world.decompose()[0].x,
                    objs[-1].matrix_world.decompose()[0].y,
                    objs[-1].matrix_world.decompose()[0].z,
                ]
            )
            p2 = np.array(
                [
                    objs[-2].matrix_world.decompose()[0].x,
                    objs[-2].matrix_world.decompose()[0].y,
                    objs[-2].matrix_world.decompose()[0].z,
                ]
            )
        p4 = np.array([0, 0, 0])
        p3 = p2 - p1
        _per_v = per_v
        if (flip_p and data != "MV") or data == "MV":
            _per_v = 100 - per_v
        V = (p4+p3) * (_per_v / 100) + p1
        return Vector((V[0], V[1], V[2]))
    
    
    def objCheck(obj, scene, oper):
        """Check Object & Selection Validity.
    
        Args:
            obj: Active Object
            scene: Active Scene
            oper: Operation to check
    
        Returns:
            Object Bmesh and Validity Boolean.
        """
    
        pg = scene.pdt_pg
        _oper = oper.upper()
    
        if obj is None:
            pg.error = PDT_ERR_NO_ACT_OBJ
            bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
            return None, False
        if obj.mode == "EDIT":
            bm = bmesh.from_edit_mesh(obj.data)
            if _oper == "S":
                if len(bm.edges) < 1:
                    pg.error = f"{PDT_ERR_SEL_1_EDGEM} {len(bm.edges)})"
                    bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
                    return None, False
                else:
                    return bm, True
            if len(bm.select_history) >= 1:
                if _oper not in {"D", "E", "G", "N", "S"}:
                    actV = checkSelection(1, bm, obj)
                else:
                    verts = [v for v in bm.verts if v.select]
                    if len(verts) > 0:
                        actV = verts[0]
                    else:
                        actV = None
                if actV is None:
                    pg.error = PDT_ERR_VERT_MODE
                    bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
                    return None, False
            return bm, True
        elif obj.mode == "OBJECT":
            return None, True
    
    
    def disAng(vals, flip_a, plane, scene):
        """Set Working Axes when using Direction command.
    
        Args:
            vals: Input Arguments (Values)
            flip_a: Whether to flip the angle
            plane: Working Plane
            scene: Current Scene
    
        Returns:
            Directional Offset as a Vector.
        """
    
        pg = scene.pdt_pg
        dis_v = float(vals[0])
        ang_v = float(vals[1])
        if flip_a:
            if ang_v > 0:
                ang_v = ang_v - 180
            else:
                ang_v = ang_v + 180
            pg.angle = ang_v
        if plane == "LO":
            vector_delta = viewDir(dis_v, ang_v)
        else:
            a1, a2, _ = setMode(plane)
            vector_delta = Vector((0, 0, 0))
            # fmt: off
            vector_delta[a1] = vector_delta[a1] + (dis_v * cos(ang_v * pi/180))
            vector_delta[a2] = vector_delta[a2] + (dis_v * sin(ang_v * pi/180))
            # FIXME: Is a3 just ignored?
            # fmt: on
        return vector_delta
    
    
    # Shader for displaying the Pivot Point as Graphics.
    #
    shader = gpu.shader.from_builtin("3D_UNIFORM_COLOR") if not bpy.app.background else None
    
    
    def draw3D(coords, gtype, rgba, context):
        """Draw Pivot Point Graphics.
    
        Draws either Lines Points, or Tris using defined shader
    
        Args:
            coords: Input Coordinates List
            gtype: Graphic Type
            rgba: Colour in RGBA format
            context: Blender bpy.context instance.
    
        Returns:
            Nothing.
        """
    
        batch = batch_for_shader(shader, gtype, {"pos": coords})
    
        try:
            if coords is not None:
                bgl.glEnable(bgl.GL_BLEND)
                shader.bind()
                shader.uniform_float("color", rgba)
                batch.draw(shader)
        except:
            pass
    
    
    def drawCallback3D(self, context):
        """Create Coordinate List for Pivot Point Graphic.
    
        Creates coordinates for Pivot Point Graphic consisting of 6 Tris
        and one Point colour coded Red; X axis, Green; Y axis, Blue; Z axis
        and a yellow point based upon screen scale
    
        Args:
            context: Blender bpy.context instance.
    
        Returns:
            Nothing.
        """
    
        scene = context.scene
        pg = scene.pdt_pg
        w = context.region.width
        x = pg.pivot_loc.x
        y = pg.pivot_loc.y
        z = pg.pivot_loc.z
        # Scale it from view
        areas = [a for a in context.screen.areas if a.type == "VIEW_3D"]
        if len(areas) > 0:
            sf = abs(areas[0].spaces.active.region_3d.window_matrix.decompose()[2][1])
        a = w / sf / 10000 * pg.pivot_size
        b = a * 0.65
        c = a * 0.05 + (pg.pivot_width * a * 0.02)
        o = c / 3
    
        # fmt: off
        # X Axis
        coords = [
            (x, y, z),
            (x+b, y-o, z),
            (x+b, y+o, z),
            (x+a, y, z),
            (x+b, y+c, z),
            (x+b, y-c, z),
        ]
        # fmt: on
        colour = (1.0, 0.0, 0.0, pg.pivot_alpha)
        draw3D(coords, "TRIS", colour, context)
        coords = [(x, y, z), (x+a, y, z)]
        draw3D(coords, "LINES", colour, context)
        # fmt: off
        # Y Axis
        coords = [
            (x, y, z),
            (x-o, y+b, z),
            (x+o, y+b, z),
            (x, y+a, z),
            (x+c, y+b, z),
            (x-c, y+b, z),
        ]
        # fmt: on
        colour = (0.0, 1.0, 0.0, pg.pivot_alpha)
        draw3D(coords, "TRIS", colour, context)
        coords = [(x, y, z), (x, y + a, z)]
        draw3D(coords, "LINES", colour, context)
        # fmt: off
        # Z Axis
        coords = [
            (x, y, z),
            (x-o, y, z+b),
            (x+o, y, z+b),
            (x, y, z+a),
            (x+c, y, z+b),
            (x-c, y, z+b),
        ]
        # fmt: on
        colour = (0.2, 0.5, 1.0, pg.pivot_alpha)
        draw3D(coords, "TRIS", colour, context)
        coords = [(x, y, z), (x, y, z + a)]
        draw3D(coords, "LINES", colour, context)
        # Centre
        coords = [(x, y, z)]
        colour = (1.0, 1.0, 0.0, pg.pivot_alpha)
        draw3D(coords, "POINTS", colour, context)
    
    
    def scale_set(self, context):
        """Sets Scale by dividing Pivot Distance by System Distance.
    
        Sets Pivot Point Scale Factors by Measurement
    
        Args:
            context: Blender bpy.context instance.
    
        Note:
            Uses pg.pivotdis & pg.distance scene variables
    
        Returns:
            Status Set.
        """
    
        scene = context.scene
        pg = scene.pdt_pg
        sys_dis = pg.distance
        scale_dis = pg.pivot_dis
        if scale_dis > 0:
            scale_fac = scale_dis / sys_dis
            pg.pivot_scale = Vector((scale_fac, scale_fac, scale_fac))