Skip to content
Snippets Groups Projects
render.py 27.4 KiB
Newer Older
Luca Bonavita's avatar
Luca Bonavita committed
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

import bpy
import subprocess
import os
import sys
import time
import math
Luca Bonavita's avatar
Luca Bonavita committed

import platform as pltfrm
if pltfrm.architecture()[0] == '64bit':
    bitness = 64
else:
    bitness = 32


def write_pov(filename, scene=None, info_callback=None):
    file = open(filename, 'w')

    # Only for testing
    if not scene:
        scene = bpy.data.scenes[0]

    render = scene.render
    world = scene.world

    def uniqueName(name, nameSeq):

        if name not in nameSeq:
            return name

        name_orig = name
        i = 1
        while name in nameSeq:
            name = '%s_%.3d' % (name_orig, i)
            i += 1

        return name

    def writeMatrix(matrix):
        file.write('\tmatrix <%.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f>\n' %\
        (matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2]))

    def writeObjectMaterial(material):
        if material and material.transparency_method == 'RAYTRACE':
            file.write('\tinterior { ior %.6f }\n' % material.raytrace_transparency.ior)

            # Other interior args
            # fade_distance 2
            # fade_power [Value]
            # fade_color

            # dispersion
            # dispersion_samples

    materialNames = {}
    DEF_MAT_NAME = 'Default'

    def writeMaterial(material):
        # Assumes only called once on each material

        if material:
            name_orig = material.name
        else:
            name_orig = DEF_MAT_NAME

        name = materialNames[name_orig] = uniqueName(bpy.utils.clean_name(name_orig), materialNames)

        file.write('#declare %s = finish {\n' % name)

        if material:
            file.write('\tdiffuse %.3g\n' % material.diffuse_intensity)
            file.write('\tspecular %.3g\n' % material.specular_intensity)

            file.write('\tambient %.3g\n' % material.ambient)
            #file.write('\tambient rgb <%.3g, %.3g, %.3g>\n' % tuple([c*material.ambient for c in world.ambient_color])) # povray blends the global value

            # map hardness between 0.0 and 1.0
            roughness = ((1.0 - ((material.specular_hardness - 1.0) / 510.0)))
            # scale from 0.0 to 0.1
            roughness *= 0.1
            # add a small value because 0.0 is invalid
            roughness += (1 / 511.0)

            file.write('\troughness %.3g\n' % roughness)

            # 'phong 70.0 '

            if material.raytrace_mirror.enabled:
                raytrace_mirror = material.raytrace_mirror
                if raytrace_mirror.reflect_factor:
                    file.write('\treflection {\n')
                    file.write('\t\trgb <%.3g, %.3g, %.3g>' % tuple(material.mirror_color))
                    file.write('\t\tfresnel 1 falloff %.3g exponent %.3g metallic %.3g} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_factor, raytrace_mirror.reflect_factor))

        else:
            file.write('\tdiffuse 0.8\n')
            file.write('\tspecular 0.2\n')


        # This is written into the object
        '''
        if material and material.transparency_method=='RAYTRACE':
            'interior { ior %.3g} ' % material.raytrace_transparency.ior
        '''

        #file.write('\t\t\tcrand 1.0\n') # Sand granyness
        #file.write('\t\t\tmetallic %.6f\n' % material.spec)
        #file.write('\t\t\tphong %.6f\n' % material.spec)
        #file.write('\t\t\tphong_size %.6f\n' % material.spec)
        #file.write('\t\t\tbrilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness

        file.write('}\n')

    def exportCamera():
        camera = scene.camera
        matrix = camera.matrix_world

        # compute resolution
        Qsize = float(render.resolution_x) / float(render.resolution_y)

        file.write('camera {\n')
        file.write('\tlocation  <0, 0, 0>\n')
        file.write('\tlook_at  <0, 0, -1>\n')
        file.write('\tright <%s, 0, 0>\n' % - Qsize)
        file.write('\tup <0, 1, 0>\n')
        file.write('\tangle  %f \n' % (360.0 * math.atan(16.0 / camera.data.lens) / math.pi))
Luca Bonavita's avatar
Luca Bonavita committed

        file.write('\trotate  <%.6f, %.6f, %.6f>\n' % tuple([math.degrees(e) for e in matrix.rotation_part().to_euler()]))
Luca Bonavita's avatar
Luca Bonavita committed
        file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2]))
        file.write('}\n')

    def exportLamps(lamps):
        # Get all lamps
        for ob in lamps:
            lamp = ob.data

            matrix = ob.matrix_world

            color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy

            file.write('light_source {\n')
            file.write('\t< 0,0,0 >\n')
            file.write('\tcolor rgb<%.3g, %.3g, %.3g>\n' % color)

            if lamp.type == 'POINT': # Point Lamp
                pass
            elif lamp.type == 'SPOT': # Spot
                file.write('\tspotlight\n')

                # Falloff is the main radius from the centre line
                file.write('\tfalloff %.2f\n' % (degrees(lamp.spot_size) / 2.0)) # 1 TO 179 FOR BOTH
                file.write('\tradius %.6f\n' % ((degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend)))

                # Blender does not have a tightness equivilent, 0 is most like blender default.
                file.write('\ttightness 0\n') # 0:10f

                file.write('\tpoint_at  <0, 0, -1>\n')
            elif lamp.type == 'SUN':
                file.write('\tparallel\n')
                file.write('\tpoint_at  <0, 0, -1>\n') # *must* be after 'parallel'

            elif lamp.type == 'AREA':

                size_x = lamp.size
                samples_x = lamp.shadow_ray_samples_x
                if lamp.shape == 'SQUARE':
                    size_y = size_x
                    samples_y = samples_x
                else:
                    size_y = lamp.size_y
                    samples_y = lamp.shadow_ray_samples_y

                file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y))
                if lamp.shadow_ray_sampling_method == 'CONSTANT_JITTERED':
                    if lamp.jitter:
                        file.write('\tjitter\n')
                else:
                    file.write('\tadaptive 1\n')
                    file.write('\tjitter\n')

            if lamp.shadow_method == 'NOSHADOW':
                file.write('\tshadowless\n')

            file.write('\tfade_distance %.6f\n' % lamp.distance)
            file.write('\tfade_power %d\n' % 1) # Could use blenders lamp quad?
            writeMatrix(matrix)

            file.write('}\n')

    def exportMeta(metas):

        # TODO - blenders 'motherball' naming is not supported.

        for ob in metas:
            meta = ob.data

            file.write('blob {\n')
            file.write('\t\tthreshold %.4g\n' % meta.threshold)

            try:
                material = meta.materials[0] # lame! - blender cant do enything else.
            except:
                material = None

            for elem in meta.elements:

                if elem.type not in ('BALL', 'ELLIPSOID'):
                    continue # Not supported

                loc = elem.location

                stiffness = elem.stiffness
                if elem.negative:
                    stiffness = - stiffness

                if elem.type == 'BALL':

                    file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x, loc.y, loc.z, elem.radius, stiffness))

                    # After this wecould do something simple like...
                    # 	"pigment {Blue} }"
                    # except we'll write the color

                elif elem.type == 'ELLIPSOID':
                    # location is modified by scale
                    file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z, elem.radius, stiffness))
                    file.write('scale <%.6g, %.6g, %.6g> ' % (elem.size_x, elem.size_y, elem.size_z))

                if material:
                    diffuse_color = material.diffuse_color

                    if material.transparency and material.transparency_method == 'RAYTRACE':
                        trans = 1.0 - material.raytrace_transparency.filter
                    else:
                        trans = 0.0

                    file.write('pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s} }\n' % \
                        (diffuse_color[0], diffuse_color[1], diffuse_color[2], 1.0 - material.alpha, trans, materialNames[material.name]))

                else:
                    file.write('pigment {rgb<1 1 1>} finish {%s} }\n' % DEF_MAT_NAME)		# Write the finish last.

            writeObjectMaterial(material)

            writeMatrix(ob.matrix_world)

            file.write('}\n')

    def exportMeshs(scene, sel):

        ob_num = 0

        for ob in sel:
            ob_num += 1

            if ob.type in ('LAMP', 'CAMERA', 'EMPTY', 'META', 'ARMATURE', 'LATTICE'):
Luca Bonavita's avatar
Luca Bonavita committed
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
                continue

            me = ob.data
            me_materials = me.materials

            me = ob.create_mesh(scene, True, 'RENDER')

            if not me:
                continue

            if info_callback:
                info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name))

            #if ob.type!='MESH':
            #	continue
            # me = ob.data

            matrix = ob.matrix_world
            try:
                uv_layer = me.active_uv_texture.data
            except:
                uv_layer = None

            try:
                vcol_layer = me.active_vertex_color.data
            except:
                vcol_layer = None

            faces_verts = [f.verts for f in me.faces]
            faces_normals = [tuple(f.normal) for f in me.faces]
            verts_normals = [tuple(v.normal) for v in me.verts]

            # quads incur an extra face
            quadCount = len([f for f in faces_verts if len(f) == 4])

            file.write('mesh2 {\n')
            file.write('\tvertex_vectors {\n')
            file.write('\t\t%s' % (len(me.verts))) # vert count
            for v in me.verts:
                file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count
            file.write('\n  }\n')


            # Build unique Normal list
            uniqueNormals = {}
            for fi, f in enumerate(me.faces):
                fv = faces_verts[fi]
                # [-1] is a dummy index, use a list so we can modify in place
                if f.smooth: # Use vertex normals
                    for v in fv:
                        key = verts_normals[v]
                        uniqueNormals[key] = [-1]
                else: # Use face normal
                    key = faces_normals[fi]
                    uniqueNormals[key] = [-1]

            file.write('\tnormal_vectors {\n')
            file.write('\t\t%d' % len(uniqueNormals)) # vert count
            idx = 0
            for no, index in uniqueNormals.items():
                file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count
                index[0] = idx
                idx += 1
            file.write('\n  }\n')


            # Vertex colours
            vertCols = {} # Use for material colours also.

            if uv_layer:
                # Generate unique UV's
                uniqueUVs = {}

                for fi, uv in enumerate(uv_layer):

                    if len(faces_verts[fi]) == 4:
                        uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
                    else:
                        uvs = uv.uv1, uv.uv2, uv.uv3

                    for uv in uvs:
                        uniqueUVs[tuple(uv)] = [-1]

                file.write('\tuv_vectors {\n')
                #print unique_uvs
                file.write('\t\t%s' % (len(uniqueUVs))) # vert count
                idx = 0
                for uv, index in uniqueUVs.items():
                    file.write(',\n\t\t<%.6f, %.6f>' % uv)
                    index[0] = idx
                    idx += 1
                '''
                else:
                    # Just add 1 dummy vector, no real UV's
                    file.write('\t\t1') # vert count
                    file.write(',\n\t\t<0.0, 0.0>')
                '''
                file.write('\n  }\n')


            if me.vertex_colors:

                for fi, f in enumerate(me.faces):
                    material_index = f.material_index
                    material = me_materials[material_index]

                    if material and material.vertex_color_paint:

                        col = vcol_layer[fi]

                        if len(faces_verts[fi]) == 4:
                            cols = col.color1, col.color2, col.color3, col.color4
                        else:
                            cols = col.color1, col.color2, col.color3

                        for col in cols:
                            key = col[0], col[1], col[2], material_index # Material index!
                            vertCols[key] = [-1]

                    else:
                        if material:
                            diffuse_color = tuple(material.diffuse_color)
                            key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index
                            vertCols[key] = [-1]


            else:
                # No vertex colours, so write material colours as vertex colours
                for i, material in enumerate(me_materials):

                    if material:
                        diffuse_color = tuple(material.diffuse_color)
                        key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
                        vertCols[key] = [-1]


            # Vert Colours
            file.write('\ttexture_list {\n')
            file.write('\t\t%s' % (len(vertCols))) # vert count
            idx = 0
            for col, index in vertCols.items():

                if me_materials:
                    material = me_materials[col[3]]
                    material_finish = materialNames[material.name]

                    if material.transparency and material.transparency_method == 'RAYTRACE':
                        trans = 1.0 - material.raytrace_transparency.filter
                    else:
                        trans = 0.0

                else:
                    material_finish = DEF_MAT_NAME # not working properly,
                    trans = 0.0

                #print material.apl
                file.write(',\n\t\ttexture { pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s}}' %
                            (col[0], col[1], col[2], 1.0 - material.alpha, trans, material_finish))

                index[0] = idx
                idx += 1

            file.write('\n  }\n')

            # Face indicies
            file.write('\tface_indices {\n')
            file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
            for fi, f in enumerate(me.faces):
                fv = faces_verts[fi]
                material_index = f.material_index
                if len(fv) == 4:
                    indicies = (0, 1, 2), (0, 2, 3)
                else:
                    indicies = ((0, 1, 2),)

                if vcol_layer:
                    col = vcol_layer[fi]

                    if len(fv) == 4:
                        cols = col.color1, col.color2, col.color3, col.color4
                    else:
                        cols = col.color1, col.color2, col.color3


                if not me_materials or me_materials[material_index] == None: # No materials
                    for i1, i2, i3 in indicies:
                        file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count
                else:
                    material = me_materials[material_index]
                    for i1, i2, i3 in indicies:
                        if me.vertex_colors and material.vertex_color_paint:
                            # Colour per vertex - vertex colour

                            col1 = cols[i1]
                            col2 = cols[i2]
                            col3 = cols[i3]

                            ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
                            ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
                            ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
                        else:
                            # Colour per material - flat material colour
                            diffuse_color = material.diffuse_color
                            ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0]

                        file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count


            file.write('\n  }\n')

            # normal_indices indicies
            file.write('\tnormal_indices {\n')
            file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
            for fi, fv in enumerate(faces_verts):

                if len(fv) == 4:
                    indicies = (0, 1, 2), (0, 2, 3)
                else:
                    indicies = ((0, 1, 2),)

                for i1, i2, i3 in indicies:
                    if f.smooth:
                        file.write(',\n\t\t<%d,%d,%d>' %\
                        (uniqueNormals[verts_normals[fv[i1]]][0],\
                         uniqueNormals[verts_normals[fv[i2]]][0],\
                         uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
                    else:
                        idx = uniqueNormals[faces_normals[fi]][0]
                        file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count

            file.write('\n  }\n')

            if uv_layer:
                file.write('\tuv_indices {\n')
                file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
                for fi, fv in enumerate(faces_verts):

                    if len(fv) == 4:
                        indicies = (0, 1, 2), (0, 2, 3)
                    else:
                        indicies = ((0, 1, 2),)

                    uv = uv_layer[fi]
                    if len(faces_verts[fi]) == 4:
                        uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3), tuple(uv.uv4)
                    else:
                        uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3)

                    for i1, i2, i3 in indicies:
                        file.write(',\n\t\t<%d,%d,%d>' %\
                        (uniqueUVs[uvs[i1]][0],\
                         uniqueUVs[uvs[i2]][0],\
                         uniqueUVs[uvs[i2]][0])) # vert count
                file.write('\n  }\n')

            if me.materials:
                material = me.materials[0] # dodgy
                writeObjectMaterial(material)

            writeMatrix(matrix)
            file.write('}\n')

            bpy.data.meshes.remove(me)

    def exportWorld(world):
        if not world:
            return

        mist = world.mist

        if mist.use_mist:
            file.write('fog {\n')
            file.write('\tdistance %.6f\n' % mist.depth)
            file.write('\tcolor rgbt<%.3g, %.3g, %.3g, %.3g>\n' % (tuple(world.horizon_color) + (1 - mist.intensity,)))
            #file.write('\tfog_offset %.6f\n' % mist.start)
            #file.write('\tfog_alt 5\n')
            #file.write('\tturbulence 0.2\n')
            #file.write('\tturb_depth 0.3\n')
            file.write('\tfog_type 1\n')
            file.write('}\n')

    def exportGlobalSettings(scene):

        file.write('global_settings {\n')

        if scene.pov_radio_enable:
            file.write('\tradiosity {\n')
            file.write("\t\tadc_bailout %.4g\n" % scene.pov_radio_adc_bailout)
            file.write("\t\talways_sample %d\n" % scene.pov_radio_always_sample)
            file.write("\t\tbrightness %.4g\n" % scene.pov_radio_brightness)
            file.write("\t\tcount %d\n" % scene.pov_radio_count)
            file.write("\t\terror_bound %.4g\n" % scene.pov_radio_error_bound)
            file.write("\t\tgray_threshold %.4g\n" % scene.pov_radio_gray_threshold)
            file.write("\t\tlow_error_factor %.4g\n" % scene.pov_radio_low_error_factor)
            file.write("\t\tmedia %d\n" % scene.pov_radio_media)
            file.write("\t\tminimum_reuse %.4g\n" % scene.pov_radio_minimum_reuse)
            file.write("\t\tnearest_count %d\n" % scene.pov_radio_nearest_count)
            file.write("\t\tnormal %d\n" % scene.pov_radio_normal)
            file.write("\t\trecursion_limit %d\n" % scene.pov_radio_recursion_limit)
            file.write('\t}\n')

        if world:
            file.write("\tambient_light rgb<%.3g, %.3g, %.3g>\n" % tuple(world.ambient_color))

        file.write('}\n')


    # Convert all materials to strings we can access directly per vertex.
    writeMaterial(None) # default material

    for material in bpy.data.materials:
        writeMaterial(material)

    exportCamera()
    #exportMaterials()
    sel = scene.objects
    exportLamps([l for l in sel if l.type == 'LAMP'])
    exportMeta([l for l in sel if l.type == 'META'])
    exportMeshs(scene, sel)
    exportWorld(scene.world)
    exportGlobalSettings(scene)

    file.close()
    


def write_pov_ini(filename_ini, filename_pov, filename_image):
    scene = bpy.data.scenes[0]
    render = scene.render

    x = int(render.resolution_x * render.resolution_percentage * 0.01)
    y = int(render.resolution_y * render.resolution_percentage * 0.01)

    file = open(filename_ini, 'w')

    file.write('Input_File_Name="%s"\n' % filename_pov)
    file.write('Output_File_Name="%s"\n' % filename_image)

    file.write('Width=%d\n' % x)
    file.write('Height=%d\n' % y)

    # Needed for border render.
    '''
    file.write('Start_Column=%d\n' % part.x)
    file.write('End_Column=%d\n' % (part.x+part.w))

    file.write('Start_Row=%d\n' % (part.y))
    file.write('End_Row=%d\n' % (part.y+part.h))
    '''

    file.write('Display=0\n')
    file.write('Pause_When_Done=0\n')
    file.write('Output_File_Type=T\n') # TGA, best progressive loading
    file.write('Output_Alpha=1\n')

    if render.render_antialiasing:
        aa_mapping = {'5': 2, '8': 3, '11': 4, '16': 5} # method 1 assumed
        file.write('Antialias=1\n')
        file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples])
    else:
        file.write('Antialias=0\n')

    file.close()


class PovrayRender(bpy.types.RenderEngine):
    bl_idname = 'POVRAY_RENDER'
    bl_label = "Povray"
    DELAY = 0.02

    def _export(self, scene):
        import tempfile

        self._temp_file_in = tempfile.mktemp(suffix='.pov')
        self._temp_file_out = tempfile.mktemp(suffix='.tga')
        self._temp_file_ini = tempfile.mktemp(suffix='.ini')
        '''
        self._temp_file_in = '/test.pov'
        self._temp_file_out = '/test.tga'
        self._temp_file_ini = '/test.ini'
        '''

        def info_callback(txt):
            self.update_stats("", "POVRAY: " + txt)

        write_pov(self._temp_file_in, scene, info_callback)

    def _render(self):

        try:
            os.remove(self._temp_file_out) # so as not to load the old file
        except:
            pass

        write_pov_ini(self._temp_file_ini, self._temp_file_in, self._temp_file_out)

        print ("***-STARTING-***")

        pov_binary = "povray"

        if sys.platform == 'win32':
            import winreg
            regKey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, 'Software\\POV-Ray\\v3.6\\Windows')

            if bitness == 64:
                pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine64'
            else:
                pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine'

        if 1:
            # TODO, when povray isnt found this gives a cryptic error, would be nice to be able to detect if it exists
            try:
                self._process = subprocess.Popen([pov_binary, self._temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE
            except OSError:
                # TODO, report api
                print("POVRAY: could not execute '%s', possibly povray isn't installed" % pov_binary)
                import traceback
                traceback.print_exc()
                print ("***-DONE-***")
                return False

        else:
            # This works too but means we have to wait until its done
            os.system('%s %s' % (pov_binary, self._temp_file_ini))

        print ("***-DONE-***")
        return True

    def _cleanup(self):
        for f in (self._temp_file_in, self._temp_file_ini, self._temp_file_out):
            try:
                os.remove(f)
            except:
                pass

        self.update_stats("", "")

    def render(self, scene):

        self.update_stats("", "POVRAY: Exporting data from Blender")
        self._export(scene)
        self.update_stats("", "POVRAY: Parsing File")

        if not self._render():
            self.update_stats("", "POVRAY: Not found")
            return

        r = scene.render

        # compute resolution
        x = int(r.resolution_x * r.resolution_percentage * 0.01)
        y = int(r.resolution_y * r.resolution_percentage * 0.01)

        # Wait for the file to be created
        while not os.path.exists(self._temp_file_out):
            if self.test_break():
                try:
                    self._process.terminate()
                except:
                    pass
                break

            if self._process.poll() != None:
                self.update_stats("", "POVRAY: Failed")
                break

            time.sleep(self.DELAY)

        if os.path.exists(self._temp_file_out):

            self.update_stats("", "POVRAY: Rendering")

            prev_size = -1

            def update_image():
                result = self.begin_result(0, 0, x, y)
                lay = result.layers[0]
                # possible the image wont load early on.
                try:
                    lay.load_from_file(self._temp_file_out)
                except:
                    pass
                self.end_result(result)

            # Update while povray renders
            while True:

                # test if povray exists
                if self._process.poll() is not None:
                    update_image()
                    break

                # user exit
                if self.test_break():
                    try:
                        self._process.terminate()
                    except:
                        pass

                    break

                # Would be nice to redirect the output
                # stdout_value, stderr_value = self._process.communicate() # locks


                # check if the file updated
                new_size = os.path.getsize(self._temp_file_out)

                if new_size != prev_size:
                    update_image()
                    prev_size = new_size

                time.sleep(self.DELAY)

        self._cleanup()