Newer
Older
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
if selection_type == "TWO_NOT_CONNECTED":
self.selection_V2_exists = True
first_vert_V2_idx = nearest_tip_to_first_st_last_pt_idx
else:
self.selection_V_is_closed = True
closing_vert_V_idx = nearest_tip_to_first_st_first_pt_idx
# Get the neighbors of the first (unselected) vert of the closed selection U.
vert_neighbors = []
for verts in single_unselected_verts_and_neighbors:
if verts[0] == nearest_tip_to_first_st_first_pt_idx:
vert_neighbors.append(verts[1])
vert_neighbors.append(verts[2])
break
verts_V = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, vert_neighbors[0], middle_vertex_idx, None)
for i in range(0, len(verts_V)):
if verts_V[i].index == nearest_vert_to_second_st_first_pt_idx:
if i >= len(verts_V) / 2: # If the vertex nearest to the first point of the second stroke is in the first half of the selected verts.
first_vert_V_idx = vert_neighbors[1]
break
else:
first_vert_V_idx = vert_neighbors[0]
break
if selection_type == "TWO_NOT_CONNECTED":
self.selection_V2_exists = True
if nearest_tip_to_first_st_last_pt_idx not in single_unselected_verts or nearest_tip_to_first_st_last_pt_idx == middle_vertex_idx: # If the second selection is not closed.
self.selection_V2_is_closed = False
first_neighbor_V2_idx = None
closing_vert_V2_idx = None
first_vert_V2_idx = nearest_tip_to_first_st_last_pt_idx
else:
self.selection_V2_is_closed = True
closing_vert_V2_idx = nearest_tip_to_first_st_last_pt_idx
# Get the neighbors of the first (unselected) vert of the closed selection U.
vert_neighbors = []
for verts in single_unselected_verts_and_neighbors:
if verts[0] == nearest_tip_to_first_st_last_pt_idx:
vert_neighbors.append(verts[1])
vert_neighbors.append(verts[2])
break
verts_V2 = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, vert_neighbors[0], middle_vertex_idx, None)
for i in range(0, len(verts_V2)):
if verts_V2[i].index == nearest_vert_to_second_st_last_pt_idx:
if i >= len(verts_V2) / 2: # If the vertex nearest to the first point of the second stroke is in the first half of the selected verts.
first_vert_V2_idx = vert_neighbors[1]
break
else:
first_vert_V2_idx = vert_neighbors[0]
break
else:
self.selection_V2_exists = False
else:
self.selection_U_exists = True
self.selection_V_exists = False
if nearest_tip_to_first_st_first_pt_idx not in single_unselected_verts or nearest_tip_to_first_st_first_pt_idx == middle_vertex_idx: # If the first selection is not closed.
self.selection_U_is_closed = False
first_neighbor_U_idx = None
closing_vert_U_idx = None
points_tips = []
points_tips.append(self.main_object.matrix_world * self.main_object.data.vertices[nearest_tip_to_first_st_first_pt_idx].co)
points_tips.append(self.main_object.matrix_world * self.main_object.data.vertices[nearest_tip_to_first_st_first_pt_opposite_idx].co)
points_first_stroke_tips = []
points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[0].co)
points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[len(self.main_splines.data.splines[0].bezier_points) - 1].co)
vec_A = points_tips[0] - points_tips[1]
vec_B = points_first_stroke_tips[0] - points_first_stroke_tips[1]
# Compare the direction of the selection and the first grease pencil stroke to determine which is the "first" vertex of the selection.
if vec_A.dot(vec_B) < 0:
first_vert_U_idx = nearest_tip_to_first_st_first_pt_opposite_idx
else:
first_vert_U_idx = nearest_tip_to_first_st_first_pt_idx
else:
self.selection_U_is_closed = True
closing_vert_U_idx = nearest_tip_to_first_st_first_pt_idx
# Get the neighbors of the first (unselected) vert of the closed selection U.
vert_neighbors = []
for verts in single_unselected_verts_and_neighbors:
if verts[0] == nearest_tip_to_first_st_first_pt_idx:
vert_neighbors.append(verts[1])
vert_neighbors.append(verts[2])
break
points_first_and_neighbor = []
points_first_and_neighbor.append(self.main_object.matrix_world * self.main_object.data.vertices[nearest_tip_to_first_st_first_pt_idx].co)
points_first_and_neighbor.append(self.main_object.matrix_world * self.main_object.data.vertices[vert_neighbors[0]].co)
points_first_stroke_tips = []
points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[0].co)
points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[1].co)
vec_A = points_first_and_neighbor[0] - points_first_and_neighbor[1]
vec_B = points_first_stroke_tips[0] - points_first_stroke_tips[1]
# Compare the direction of the selection and the first grease pencil stroke to determine which is the vertex neighbor to the first vertex (unselected) of the closed selection. This will determine the direction of the closed selection.
if vec_A.dot(vec_B) < 0:
first_vert_U_idx = vert_neighbors[1]
else:
first_vert_U_idx = vert_neighbors[0]
if selection_type == "TWO_NOT_CONNECTED":
self.selection_U2_exists = True
if nearest_tip_to_last_st_first_pt_idx not in single_unselected_verts or nearest_tip_to_last_st_first_pt_idx == middle_vertex_idx: # If the second selection is not closed.
self.selection_U2_is_closed = False
first_neighbor_U2_idx = None
closing_vert_U2_idx = None
first_vert_U2_idx = nearest_tip_to_last_st_first_pt_idx
else:
self.selection_U2_is_closed = True
closing_vert_U2_idx = nearest_tip_to_last_st_first_pt_idx
# Get the neighbors of the first (unselected) vert of the closed selection U.
vert_neighbors = []
for verts in single_unselected_verts_and_neighbors:
if verts[0] == nearest_tip_to_last_st_first_pt_idx:
vert_neighbors.append(verts[1])
vert_neighbors.append(verts[2])
break
points_first_and_neighbor = []
points_first_and_neighbor.append(self.main_object.matrix_world * self.main_object.data.vertices[nearest_tip_to_last_st_first_pt_idx].co)
points_first_and_neighbor.append(self.main_object.matrix_world * self.main_object.data.vertices[vert_neighbors[0]].co)
points_last_stroke_tips = []
points_last_stroke_tips.append(self.main_splines.data.splines[len(self.main_splines.data.splines) - 1].bezier_points[0].co)
points_last_stroke_tips.append(self.main_splines.data.splines[len(self.main_splines.data.splines) - 1].bezier_points[1].co)
vec_A = points_first_and_neighbor[0] - points_first_and_neighbor[1]
vec_B = points_last_stroke_tips[0] - points_last_stroke_tips[1]
# Compare the direction of the selection and the last grease pencil stroke to determine which is the vertex neighbor to the first vertex (unselected) of the closed selection. This will determine the direction of the closed selection.
if vec_A.dot(vec_B) < 0:
first_vert_U2_idx = vert_neighbors[1]
else:
first_vert_U2_idx = vert_neighbors[0]
else:
self.selection_U2_exists = False
elif selection_type == "NO_SELECTION":
self.selection_U_exists = False
self.selection_V_exists = False
#### Get an ordered list of the vertices of Selection-U.
verts_ordered_U = []
if self.selection_U_exists:
verts_ordered_U = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_U_idx, middle_vertex_idx, closing_vert_U_idx)
verts_ordered_U_indices = [x.index for x in verts_ordered_U]
#### Get an ordered list of the vertices of Selection-U2.
verts_ordered_U2 = []
if self.selection_U2_exists:
verts_ordered_U2 = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_U2_idx, middle_vertex_idx, closing_vert_U2_idx)
verts_ordered_U2_indices = [x.index for x in verts_ordered_U2]
#### Get an ordered list of the vertices of Selection-V.
verts_ordered_V = []
if self.selection_V_exists:
verts_ordered_V = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_V_idx, middle_vertex_idx, closing_vert_V_idx)
verts_ordered_V_indices = [x.index for x in verts_ordered_V]
#### Get an ordered list of the vertices of Selection-V2.
verts_ordered_V2 = []
if self.selection_V2_exists:
verts_ordered_V2 = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_V2_idx, middle_vertex_idx, closing_vert_V2_idx)
verts_ordered_V2_indices = [x.index for x in verts_ordered_V2]
#### Check if when there are two-not-connected selections both have the same number of verts. If not terminate the script.
if ((self.selection_U2_exists and len(verts_ordered_U) != len(verts_ordered_U2)) or (self.selection_V2_exists and len(verts_ordered_V) != len(verts_ordered_V2))):
# Display a warning.
self.report({'WARNING'}, "Both selections must have the same number of edges")
self.cleanup_on_interruption()
self.stopping_errors = True
return{'CANCELLED'}
#### Calculate edges U proportions.
# Sum selected edges U lengths.
edges_lengths_U = []
edges_lengths_sum_U = 0
if self.selection_U_exists:
edges_lengths_U, edges_lengths_sum_U = self.get_chain_length(self.main_object, verts_ordered_U)
if self.selection_U2_exists:
edges_lengths_U2, edges_lengths_sum_U2 = self.get_chain_length(self.main_object, verts_ordered_U2)
# Sum selected edges V lengths.
edges_lengths_V = []
edges_lengths_sum_V = 0
if self.selection_V_exists:
edges_lengths_V, edges_lengths_sum_V = self.get_chain_length(self.main_object, verts_ordered_V)
if self.selection_V2_exists:
edges_lengths_V2, edges_lengths_sum_V2 = self.get_chain_length(self.main_object, verts_ordered_V2)
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts = bpy.context.scene.SURFSK_precision)
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
# Proportions U.
edges_proportions_U = []
edges_proportions_U = self.get_edges_proportions(edges_lengths_U, edges_lengths_sum_U, self.selection_U_exists, self.edges_U)
verts_count_U = len(edges_proportions_U) + 1
if self.selection_U2_exists:
edges_proportions_U2 = []
edges_proportions_U2 = self.get_edges_proportions(edges_lengths_U2, edges_lengths_sum_U2, self.selection_U2_exists, self.edges_V)
verts_count_U2 = len(edges_proportions_U2) + 1
# Proportions V.
edges_proportions_V = []
edges_proportions_V = self.get_edges_proportions(edges_lengths_V, edges_lengths_sum_V, self.selection_V_exists, self.edges_V)
verts_count_V = len(edges_proportions_V) + 1
if self.selection_V2_exists:
edges_proportions_V2 = []
edges_proportions_V2 = self.get_edges_proportions(edges_lengths_V2, edges_lengths_sum_V2, self.selection_V2_exists, self.edges_V)
verts_count_V2 = len(edges_proportions_V2) + 1
#### Cyclic Follow: simplify sketched curves, make them Cyclic, and complete the actual sketched curves with a "closing segment".
if self.cyclic_follow and not self.selection_V_exists and not ((self.selection_U_exists and not self.selection_U_is_closed) or (self.selection_U2_exists and not self.selection_U2_is_closed)):
simplified_spline_coords = []
simplified_curve = []
ob_simplified_curve = []
splines_first_v_co = []
for i in range(len(self.main_splines.data.splines)):
# Create a curve object for the actual spline "cyclic extension".
simplified_curve.append(bpy.data.curves.new('SURFSKIO_simpl_crv', 'CURVE'))
ob_simplified_curve.append(bpy.data.objects.new('SURFSKIO_simpl_crv', simplified_curve[i]))
bpy.context.scene.objects.link(ob_simplified_curve[i])
simplified_curve[i].dimensions = "3D"
spline_coords = []
for bp in self.main_splines.data.splines[i].bezier_points:
spline_coords.append(bp.co)
# Simplification.
simplified_spline_coords.append(self.simplify_spline(spline_coords, 5))
# Get the coordinates of the first vert of the actual spline.
splines_first_v_co.append(simplified_spline_coords[i][0])
# Generate the spline.
spline = simplified_curve[i].splines.new('BEZIER')
spline.bezier_points.add(len(simplified_spline_coords[i]) - 1) # less one because one point is added when the spline is created.
for p in range(0, len(simplified_spline_coords[i])):
spline.bezier_points[p].co = simplified_spline_coords[i][p]
spline.use_cyclic_u = True
spline_bp_count = len(spline.bezier_points)
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[ob_simplified_curve[i].name].select = True
bpy.context.scene.objects.active = bpy.context.scene.objects[ob_simplified_curve[i].name]
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='SELECT')
bpy.ops.curve.handle_type_set('INVOKE_REGION_WIN', type='AUTOMATIC')
bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
# Select the "closing segment", and subdivide it.
ob_simplified_curve[i].data.splines[0].bezier_points[0].select_control_point = True
ob_simplified_curve[i].data.splines[0].bezier_points[0].select_left_handle = True
ob_simplified_curve[i].data.splines[0].bezier_points[0].select_right_handle = True
ob_simplified_curve[i].data.splines[0].bezier_points[spline_bp_count - 1].select_control_point = True
ob_simplified_curve[i].data.splines[0].bezier_points[spline_bp_count - 1].select_left_handle = True
ob_simplified_curve[i].data.splines[0].bezier_points[spline_bp_count - 1].select_right_handle = True
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
segments = sqrt((ob_simplified_curve[i].data.splines[0].bezier_points[0].co - ob_simplified_curve[i].data.splines[0].bezier_points[spline_bp_count - 1].co).length / self.average_gp_segment_length)
for t in range(2):
bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts = segments)
# Delete the other vertices and make it non-cyclic to keep only the needed verts of the "closing segment".
bpy.ops.curve.select_all(action = 'INVERT')
bpy.ops.curve.delete(type='SELECTED')
ob_simplified_curve[i].data.splines[0].use_cyclic_u = False
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
# Add the points of the "closing segment" to the original curve from grease pencil stroke.
first_new_index = len(self.main_splines.data.splines[i].bezier_points)
self.main_splines.data.splines[i].bezier_points.add(len(ob_simplified_curve[i].data.splines[0].bezier_points) - 1)
for t in range(1, len(ob_simplified_curve[i].data.splines[0].bezier_points)):
self.main_splines.data.splines[i].bezier_points[t - 1 + first_new_index].co = ob_simplified_curve[i].data.splines[0].bezier_points[t].co
# Delete the temporal curve.
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[ob_simplified_curve[i].name].select = True
bpy.context.scene.objects.active = bpy.context.scene.objects[ob_simplified_curve[i].name]
bpy.ops.object.delete()
#### Get the coords of the points distributed along the sketched strokes, with proportions-U of the first selection.
pts_on_strokes_with_proportions_U = self.distribute_pts(self.main_splines.data.splines, edges_proportions_U)
sketched_splines_parsed = []
if self.selection_U2_exists:
# Initialize the multidimensional list with the proportions of all the segments.
proportions_loops_crossing_strokes = []
for i in range(len(pts_on_strokes_with_proportions_U)):
proportions_loops_crossing_strokes.append([])
for t in range(len(pts_on_strokes_with_proportions_U[0])):
proportions_loops_crossing_strokes[i].append(None)
# Calculate the proportions of each segment of the loops-U from pts_on_strokes_with_proportions_U.
for lp in range(len(pts_on_strokes_with_proportions_U[0])):
loop_segments_lengths = []
for st in range(len(pts_on_strokes_with_proportions_U)):
if st == 0: # When on the first stroke, add the segment from the selection to the dirst stroke.
loop_segments_lengths.append(((self.main_object.matrix_world * verts_ordered_U[lp].co) - pts_on_strokes_with_proportions_U[0][lp]).length)
if st != len(pts_on_strokes_with_proportions_U) - 1: # For all strokes except for the last, calculate the distance from the actual stroke to the next.
loop_segments_lengths.append((pts_on_strokes_with_proportions_U[st][lp] - pts_on_strokes_with_proportions_U[st + 1][lp]).length)
if st == len(pts_on_strokes_with_proportions_U) - 1: # When on the last stroke, add the segments from the last stroke to the second selection.
loop_segments_lengths.append((pts_on_strokes_with_proportions_U[st][lp] - (self.main_object.matrix_world * verts_ordered_U2[lp].co)).length)
# Calculate full loop length.
loop_seg_lengths_sum = 0
for i in range(len(loop_segments_lengths)):
loop_seg_lengths_sum += loop_segments_lengths[i]
# Fill the multidimensional list with the proportions of all the segments.
for st in range(len(pts_on_strokes_with_proportions_U)):
proportions_loops_crossing_strokes[st][lp] = loop_segments_lengths[st] / loop_seg_lengths_sum
# Calculate proportions for each stroke.
for st in range(len(pts_on_strokes_with_proportions_U)):
actual_stroke_spline = []
actual_stroke_spline.append(self.main_splines.data.splines[st]) # Needs to be a list for the "distribute_pts" method.
# Calculate the proportions for the actual stroke.
actual_edges_proportions_U = []
for i in range(len(edges_proportions_U)):
proportions_sum = 0
# Sum the proportions of this loop up to the actual.
for t in range(0, st + 1):
proportions_sum += proportions_loops_crossing_strokes[t][i]
actual_edges_proportions_U.append(edges_proportions_U[i] - ((edges_proportions_U[i] - edges_proportions_U2[i]) * proportions_sum)) # i + 1, because proportions_loops_crossing_strokes refers to loops, and the proportions refer to edges, so we start at the element 1 of proportions_loops_crossing_strokes instead of element 0.
points_actual_spline = self.distribute_pts(actual_stroke_spline, actual_edges_proportions_U)
sketched_splines_parsed.append(points_actual_spline[0])
else:
sketched_splines_parsed = pts_on_strokes_with_proportions_U
#### If the selection type is "TWO_NOT_CONNECTED" replace the points of the last spline with the points in the "target" selection.
if selection_type == "TWO_NOT_CONNECTED":
if self.selection_U2_exists:
for i in range(0, len(sketched_splines_parsed[len(sketched_splines_parsed) - 1])):
sketched_splines_parsed[len(sketched_splines_parsed) - 1][i] = self.main_object.matrix_world * verts_ordered_U2[i].co
#### Create temporary curves along the "control-points" found on the sketched curves and the mesh selection.
mesh_ctrl_pts_name = "SURFSKIO_ctrl_pts"
me = bpy.data.meshes.new(mesh_ctrl_pts_name)
ob_ctrl_pts = bpy.data.objects.new(mesh_ctrl_pts_name, me)
ob_ctrl_pts.data = me
bpy.context.scene.objects.link(ob_ctrl_pts)
cyclic_loops_U = []
first_verts = []
second_verts = []
last_verts = []
for i in range(0, verts_count_U):
vert_num_in_spline = 1
if self.selection_U_exists:
ob_ctrl_pts.data.vertices.add(1)
last_v = ob_ctrl_pts.data.vertices[len(ob_ctrl_pts.data.vertices) - 1]
last_v.co = self.main_object.matrix_world * verts_ordered_U[i].co
vert_num_in_spline += 1
for t in range(0, len(sketched_splines_parsed)):
ob_ctrl_pts.data.vertices.add(1)
v = ob_ctrl_pts.data.vertices[len(ob_ctrl_pts.data.vertices) - 1]
v.co = sketched_splines_parsed[t][i]
if vert_num_in_spline > 1:
ob_ctrl_pts.data.edges.add(1)
ob_ctrl_pts.data.edges[len(ob_ctrl_pts.data.edges) - 1].vertices[0] = len(ob_ctrl_pts.data.vertices) - 2
ob_ctrl_pts.data.edges[len(ob_ctrl_pts.data.edges) - 1].vertices[1] = len(ob_ctrl_pts.data.vertices) - 1
if t == 0:
first_verts.append(v.index)
if t == 1:
second_verts.append(v.index)
if t == len(sketched_splines_parsed) - 1:
last_verts.append(v.index)
last_v = v
vert_num_in_spline += 1
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[ob_ctrl_pts.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[ob_ctrl_pts.name]
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.mesh.select_all(action='DESELECT')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
#### Determine which loops-U will be "Cyclic".
for i in range(0, len(first_verts)):
if self.automatic_join and not self.cyclic_cross and selection_type != "TWO_CONNECTED" and len(self.main_splines.data.splines) >= 3: # When there is Cyclic Cross there is no need of Automatic Join, (and there are at least three strokes).
v = ob_ctrl_pts.data.vertices
first_point_co = v[first_verts[i]].co
second_point_co = v[second_verts[i]].co
last_point_co = v[last_verts[i]].co
# Coordinates of the point in the center of both the first and last verts.
verts_center_co = [(first_point_co[0] + last_point_co[0]) / 2, (first_point_co[1] + last_point_co[1]) / 2, (first_point_co[2] + last_point_co[2]) / 2]
vec_A = second_point_co - first_point_co
vec_B = second_point_co - mathutils.Vector(verts_center_co)
# Calculate the length of the first segment of the loop, and the length it would have after moving the first vert to the middle position between first and last.
length_original = (second_point_co - first_point_co).length
length_target = (second_point_co - mathutils.Vector(verts_center_co)).length
angle = vec_A.angle(vec_B) / math.pi
if length_target <= length_original * 1.03 * self.join_stretch_factor and angle <= 0.008 * self.join_stretch_factor and not self.selection_U_exists: # If the target length doesn't stretch too much, and the its angle doesn't change to much either.
cyclic_loops_U.append(True)
# Move the first vert to the center coordinates.
ob_ctrl_pts.data.vertices[first_verts[i]].co = verts_center_co
# Select the last verts from Cyclic loops, for later deletion all at once.
v[last_verts[i]].select = True
else:
cyclic_loops_U.append(False)
else:
if self.cyclic_cross and not self.selection_U_exists and not ((self.selection_V_exists and not self.selection_V_is_closed) or (self.selection_V2_exists and not self.selection_V2_is_closed)): # If "Cyclic Cross" is active then "all" crossing curves become cyclic.
cyclic_loops_U.append(True)
else:
cyclic_loops_U.append(False)
# The cyclic_loops_U list needs to be reversed.
cyclic_loops_U.reverse()
# Delete the previously selected (last_)verts.
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.mesh.delete('INVOKE_REGION_WIN', type='VERT')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
# Create curves from control points.
bpy.ops.object.convert('INVOKE_REGION_WIN', target='CURVE', keep_original=False)
ob_curves_surf = bpy.context.scene.objects.active
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.curve.spline_type_set('INVOKE_REGION_WIN', type='BEZIER')
bpy.ops.curve.handle_type_set('INVOKE_REGION_WIN', type='AUTOMATIC')
# Make Cyclic the splines designated as Cyclic.
for i in range(0, len(cyclic_loops_U)):
ob_curves_surf.data.splines[i].use_cyclic_u = cyclic_loops_U[i]
#### Get the coords of all points on first loop-U, for later comparison with its subdivided version, to know which points of the loops-U are crossed by the original strokes. The indices wiil be the same for the other loops-U.
if self.loops_on_strokes:
coords_loops_U_control_points = []
for p in ob_ctrl_pts.data.splines[0].bezier_points:
coords_loops_U_control_points.append(["%.4f" % p.co[0], "%.4f" % p.co[1], "%.4f" % p.co[2]])
tuple(coords_loops_U_control_points)
# Calculate number of edges-V in case option "Loops on strokes" is active or inactive.
if self.loops_on_strokes and not self.selection_V_exists:
edges_V_count = len(self.main_splines.data.splines) * self.edges_V
else:
edges_V_count = len(edges_proportions_V)
# The Follow precision will vary depending on the number of Follow face-loops.
precision_multiplier = round(2 + (edges_V_count / 15))
curve_cuts = bpy.context.scene.SURFSK_precision * precision_multiplier
# Subdivide the curves.
bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts = curve_cuts)
# The verts position shifting that happens with splines subdivision. For later reorder splines points.
verts_position_shift = curve_cuts + 1
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
# Reorder coordinates of the points of each spline to put the first point of the spline starting at the position it was the first point before sudividing the curve. And make a new curve object per spline (to handle memory better later).
splines_U_objects = []
for i in range(len(ob_curves_surf.data.splines)):
spline_U_curve = bpy.data.curves.new('SURFSKIO_spline_U_' + str(i), 'CURVE')
ob_spline_U = bpy.data.objects.new('SURFSKIO_spline_U_' + str(i), spline_U_curve)
bpy.context.scene.objects.link(ob_spline_U)
spline_U_curve.dimensions = "3D"
# Add points to the spline in the new curve object.
ob_spline_U.data.splines.new('BEZIER')
for t in range(len(ob_curves_surf.data.splines[i].bezier_points)):
if cyclic_loops_U[i] == True and not self.selection_U_exists: # If the loop is cyclic.
if t + verts_position_shift <= len(ob_curves_surf.data.splines[i].bezier_points) - 1:
point_index = t + verts_position_shift
else:
point_index = t + verts_position_shift - len(ob_curves_surf.data.splines[i].bezier_points)
else:
point_index = t
if t > 0: # to avoid adding the first point since it's added when the spline is created.
ob_spline_U.data.splines[0].bezier_points.add(1)
ob_spline_U.data.splines[0].bezier_points[t].co = ob_curves_surf.data.splines[i].bezier_points[point_index].co
if cyclic_loops_U[i] == True and not self.selection_U_exists: # If the loop is cyclic.
# Add a last point at the same location as the first one.
ob_spline_U.data.splines[0].bezier_points.add(1)
ob_spline_U.data.splines[0].bezier_points[len(ob_spline_U.data.splines[0].bezier_points) - 1].co = ob_spline_U.data.splines[0].bezier_points[0].co
else:
ob_spline_U.data.splines[0].use_cyclic_u = False
splines_U_objects.append(ob_spline_U)
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[ob_spline_U.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[ob_spline_U.name]
#### When option "Loops on strokes" is active each "Cross" loop will have its own proportions according to where the original strokes "touch" them.
if self.loops_on_strokes:
# Get the indices of points where the original strokes "touch" loops-U.
points_U_crossed_by_strokes = []
for i in range(len(splines_U_objects[0].data.splines[0].bezier_points)):
bp = splines_U_objects[0].data.splines[0].bezier_points[i]
if ["%.4f" % bp.co[0], "%.4f" % bp.co[1], "%.4f" % bp.co[2]] in coords_loops_U_control_points:
points_U_crossed_by_strokes.append(i)
# Make a dictionary with the number of the edge, in the selected chain V, corresponding to each stroke.
edge_order_number_for_splines = {}
if self.selection_V_exists:
# For two-connected selections add a first hypothetic stroke at the begining.
if selection_type == "TWO_CONNECTED":
edge_order_number_for_splines[0] = 0
for i in range(len(self.main_splines.data.splines)):
sp = self.main_splines.data.splines[i]
v_idx, dist_temp = self.shortest_distance(self.main_object, sp.bezier_points[0].co, verts_ordered_V_indices)
edge_idx_in_chain = verts_ordered_V_indices.index(v_idx) # Get the position (edges count) of the vert v_idx in the selected chain V.
# For two-connected selections the strokes go after the hypothetic stroke added before, so the index adds one per spline.
if selection_type == "TWO_CONNECTED":
spline_number = i + 1
else:
spline_number = i
edge_order_number_for_splines[spline_number] = edge_idx_in_chain
# Get the first and last verts indices for later comparison.
if i == 0:
first_v_idx = v_idx
elif i == len(self.main_splines.data.splines) - 1:
last_v_idx = v_idx
if self.selection_V_is_closed:
# If there is no last stroke on the last vertex (same as first vertex), add a hypothetic spline at last vert order.
if first_v_idx != last_v_idx:
edge_order_number_for_splines[(len(self.main_splines.data.splines) - 1) + 1] = len(verts_ordered_V_indices) - 1
else:
if self.cyclic_cross:
edge_order_number_for_splines[len(self.main_splines.data.splines) - 1] = len(verts_ordered_V_indices) - 2
edge_order_number_for_splines[(len(self.main_splines.data.splines) - 1) + 1] = len(verts_ordered_V_indices) - 1
else:
edge_order_number_for_splines[len(self.main_splines.data.splines) - 1] = len(verts_ordered_V_indices) - 1
#### Get the coords of the points distributed along the "crossing curves", with appropriate proportions-V.
surface_splines_parsed = []
for i in range(len(splines_U_objects)):
sp_ob = splines_U_objects[i]
# If "Loops on strokes" option is active, calculate the proportions for each loop-U.
if self.loops_on_strokes:
# Segments distances from stroke to stroke.
dist = 0
full_dist = 0
segments_distances = []
for t in range(len(sp_ob.data.splines[0].bezier_points)):
bp = sp_ob.data.splines[0].bezier_points[t]
if t == 0:
last_p = bp.co
else:
actual_p = bp.co
dist += (last_p - actual_p).length
if t in points_U_crossed_by_strokes:
segments_distances.append(dist)
full_dist += dist
dist = 0
last_p = actual_p
# Calculate Proportions.
used_edges_proportions_V = []
for t in range(len(segments_distances)):
if self.selection_V_exists:
if t == 0:
order_number_last_stroke = 0
segment_edges_length_V = 0
segment_edges_length_V2 = 0
for order in range(order_number_last_stroke, edge_order_number_for_splines[t + 1]):
segment_edges_length_V += edges_lengths_V[order]
if self.selection_V2_exists:
segment_edges_length_V2 += edges_lengths_V2[order]
for order in range(order_number_last_stroke, edge_order_number_for_splines[t + 1]):
# Calculate each "sub-segment" (the ones between each stroke) length.
if self.selection_V2_exists:
proportion_sub_seg = (edges_lengths_V2[order] - ((edges_lengths_V2[order] - edges_lengths_V[order]) / len(splines_U_objects) * i)) / (segment_edges_length_V2 - (segment_edges_length_V2 - segment_edges_length_V) / len(splines_U_objects) * i)
sub_seg_dist = segments_distances[t] * proportion_sub_seg
else:
proportion_sub_seg = edges_lengths_V[order] / segment_edges_length_V
sub_seg_dist = segments_distances[t] * proportion_sub_seg
used_edges_proportions_V.append(sub_seg_dist / full_dist)
order_number_last_stroke = edge_order_number_for_splines[t + 1]
else:
for c in range(self.edges_V):
# Calculate each "sub-segment" (the ones between each stroke) length.
sub_seg_dist = segments_distances[t] / self.edges_V
used_edges_proportions_V.append(sub_seg_dist / full_dist)
actual_spline = self.distribute_pts(sp_ob.data.splines, used_edges_proportions_V)
surface_splines_parsed.append(actual_spline[0])
else:
if self.selection_V2_exists:
used_edges_proportions_V = []
for p in range(len(edges_proportions_V)):
used_edges_proportions_V.append(edges_proportions_V2[p] - ((edges_proportions_V2[p] - edges_proportions_V[p]) / len(splines_U_objects) * i))
else:
used_edges_proportions_V = edges_proportions_V
actual_spline = self.distribute_pts(sp_ob.data.splines, used_edges_proportions_V)
surface_splines_parsed.append(actual_spline[0])
# Set the verts of the first and last splines to the locations of the respective verts in the selections.
if self.selection_V_exists:
for i in range(0, len(surface_splines_parsed[0])):
surface_splines_parsed[len(surface_splines_parsed) - 1][i] = self.main_object.matrix_world * verts_ordered_V[i].co
if selection_type == "TWO_NOT_CONNECTED":
if self.selection_V2_exists:
for i in range(0, len(surface_splines_parsed[0])):
surface_splines_parsed[0][i] = self.main_object.matrix_world * verts_ordered_V2[i].co
# When "Automatic join" option is active (and the selection type is not "TWO_CONNECTED"), merge the verts of the tips of the loops when they are "near enough".
if self.automatic_join and selection_type != "TWO_CONNECTED":
#### Join the tips of "Follow" loops that are near enough and must be "closed".
if not self.selection_V_exists and len(edges_proportions_U) >= 3:
for i in range(len(surface_splines_parsed[0])):
sp = surface_splines_parsed
loop_segment_dist = (sp[0][i] - sp[1][i]).length
full_loop_dist = loop_segment_dist * self.edges_U
verts_middle_position_co = [(sp[0][i][0] + sp[len(sp) - 1][i][0]) / 2, (sp[0][i][1] + sp[len(sp) - 1][i][1]) / 2, (sp[0][i][2] + sp[len(sp) - 1][i][2]) / 2]
points_original = []
points_original.append(sp[1][i])
points_original.append(sp[0][i])
points_target = []
points_target.append(sp[1][i])
points_target.append(mathutils.Vector(verts_middle_position_co))
vec_A = points_original[0] - points_original[1]
vec_B = points_target[0] - points_target[1]
angle = vec_A.angle(vec_B) / math.pi
edge_new_length = (mathutils.Vector(verts_middle_position_co) - sp[1][i]).length
if edge_new_length <= loop_segment_dist * 1.5 * self.join_stretch_factor and angle < 0.25 * self.join_stretch_factor: # If after moving the verts to the middle point, the segment doesn't stretch too much.
if not (self.selection_U_exists and i == 0) and not (self.selection_U2_exists and i == len(surface_splines_parsed[0]) - 1): # Avoid joining when the actual loop must be merged with the original mesh.
# Change the coords of both verts to the middle position.
surface_splines_parsed[0][i] = verts_middle_position_co
surface_splines_parsed[len(surface_splines_parsed) - 1][i] = verts_middle_position_co
#### Delete object with control points and object from grease pencil convertion.
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[ob_ctrl_pts.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[ob_ctrl_pts.name]
bpy.ops.object.delete()
for sp_ob in splines_U_objects:
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[sp_ob.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[sp_ob.name]
bpy.ops.object.delete()
#### Generate surface.
# Get all verts coords.
all_surface_verts_co = []
for i in range(0, len(surface_splines_parsed)):
# Get coords of all verts and make a list with them
for pt_co in surface_splines_parsed[i]:
all_surface_verts_co.append(pt_co)
# Define verts for each face.
all_surface_faces = []
for i in range(0, len(all_surface_verts_co) - len(surface_splines_parsed[0])):
if ((i + 1) / len(surface_splines_parsed[0]) != int((i + 1) / len(surface_splines_parsed[0]))):
all_surface_faces.append([i+1, i , i + len(surface_splines_parsed[0]), i + len(surface_splines_parsed[0]) + 1])
# Build the mesh.
surf_me_name = "SURFSKIO_surface"
me_surf = bpy.data.meshes.new(surf_me_name)
me_surf.from_pydata(all_surface_verts_co, [], all_surface_faces)
me_surf.update()
ob_surface = bpy.data.objects.new(surf_me_name, me_surf)
bpy.context.scene.objects.link(ob_surface)
# Select all the "unselected but participating" verts, from closed selection or double selections with middle-vertex, for later join with remove doubles.
for v_idx in single_unselected_verts:
self.main_object.data.vertices[v_idx].select = True
#### Join the new mesh to the main object.
ob_surface.select = True
self.main_object.select = True
bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]
bpy.ops.object.join('INVOKE_REGION_WIN')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.mesh.remove_doubles('INVOKE_REGION_WIN', threshold=0.0001)
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
bpy.ops.mesh.normals_make_consistent('INVOKE_REGION_WIN', inside=False)
bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT')
return{'FINISHED'}
def execute(self, context):
bpy.context.user_preferences.edit.use_global_undo = False
if not self.is_fill_faces:
bpy.ops.wm.context_set_value(data_path='tool_settings.mesh_select_mode', value='True, False, False')
# Build splines from the "last saved splines".
last_saved_curve = bpy.data.curves.new('SURFSKIO_last_crv', 'CURVE')
self.main_splines = bpy.data.objects.new('SURFSKIO_last_crv', last_saved_curve)
bpy.context.scene.objects.link(self.main_splines)
last_saved_curve.dimensions = "3D"
for sp in self.last_strokes_splines_coords:
spline = self.main_splines.data.splines.new('BEZIER')
spline.bezier_points.add(len(sp) - 1) # less one because one point is added when the spline is created.
for p in range(0, len(sp)):
spline.bezier_points[p].co = [sp[p][0], sp[p][1], sp[p][2]]
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[self.main_splines.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[self.main_splines.name]
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='SELECT')
bpy.ops.curve.handle_type_set(type='VECTOR') # Important to make it vector first and then automatic, otherwise the tips handles get too big and distort the shrinkwrap results later.
bpy.ops.curve.handle_type_set('INVOKE_REGION_WIN', type='AUTOMATIC')
bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
self.main_splines.name = "SURFSKIO_temp_strokes"
if self.is_crosshatch:
strokes_for_crosshatch = True
strokes_for_rectangular_surface = False
else:
strokes_for_rectangular_surface = True
strokes_for_crosshatch = False
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[self.main_object.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
if strokes_for_rectangular_surface:
self.rectangular_surface()
elif strokes_for_crosshatch:
self.crosshatch_surface_execute()
#### Delete main splines
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[self.main_splines.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[self.main_splines.name]
bpy.ops.object.delete()
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[self.main_object.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.context.user_preferences.edit.use_global_undo = self.initial_global_undo_state
return{'FINISHED'}
def invoke(self, context, event):
self.initial_global_undo_state = bpy.context.user_preferences.edit.use_global_undo
self.main_object = bpy.context.scene.objects.active
self.main_object_selected_verts_count = int(self.main_object.data.total_vert_sel)
bpy.context.user_preferences.edit.use_global_undo = False
bpy.ops.wm.context_set_value(data_path='tool_settings.mesh_select_mode', value='True, False, False')
# Out Edit mode and In again to make sure the actual mesh selections are being taken.
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
self.cyclic_cross = bpy.context.scene.SURFSK_cyclic_cross
self.cyclic_follow = bpy.context.scene.SURFSK_cyclic_follow
self.automatic_join = bpy.context.scene.SURFSK_automatic_join
self.loops_on_strokes = bpy.context.scene.SURFSK_loops_on_strokes
self.keep_strokes = bpy.context.scene.SURFSK_keep_strokes
self.edges_U = 10
if self.loops_on_strokes:
self.edges_V = 3
else:
self.edges_V = 10
self.is_fill_faces = False
self.stopping_errors = False
self.last_strokes_splines_coords = []
#### Determine the type of the strokes.
self.strokes_type = get_strokes_type(self.main_object)
#### Check if it will be used grease pencil strokes or curves.
if self.strokes_type == "GP_STROKES" or self.strokes_type == "EXTERNAL_CURVE": # If there are strokes to be used.
if self.strokes_type == "GP_STROKES":
# Convert grease pencil strokes to curve.
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
Bastien Montagne
committed
bpy.ops.gpencil.convert('INVOKE_REGION_WIN', type='CURVE', use_link_strokes=False)
# XXX gpencil.convert now keep org object as active/selected, *not* newly created curve!
# XXX This is far from perfect, but should work in most cases...
# self.original_curve = bpy.context.object
for ob in bpy.context.selected_objects:
if ob != bpy.context.scene.objects.active and ob.name.startswith("GP_Layer"):
self.original_curve = ob
self.using_external_curves = False
elif self.strokes_type == "EXTERNAL_CURVE":
for ob in bpy.context.selected_objects:
if ob != bpy.context.scene.objects.active: