Skip to content
Snippets Groups Projects
add_mesh_solid.py 35.6 KiB
Newer Older
Brendon Murphy's avatar
Brendon Murphy committed
import bpy
from bpy.props import FloatProperty,EnumProperty,BoolProperty
from math import sqrt
from mathutils import Vector,Matrix
#from rawMeshUtils import *
from functools import reduce

bl_addon_info = {
    'name': 'Add Mesh: Regular Solids',
    'author': 'DreamPainter',
    'version': '1',
    'blender': (2, 5, 3),
    'location': 'View3D > Add > Mesh > Regular Solids',
    'description': 'Add a Regular Solid mesh.',
    'wiki_url': 'http://wiki.blender.org/index.php/Extensions:2.5/Py/' \
Brendon Murphy's avatar
Brendon Murphy committed
        'Scripts/Add_Mesh/Add_Solid',
Luca Bonavita's avatar
Luca Bonavita committed
    'tracker_url': 'https://projects.blender.org/tracker/index.php?'\
        'func=detail&aid=22405&group_id=153&atid=469',
Brendon Murphy's avatar
Brendon Murphy committed
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
    'category': 'Add Mesh'}

# Apply view rotation to objects if "Align To" for
# new objects was set to "VIEW" in the User Preference.
def apply_object_align(context, ob):
    obj_align = bpy.context.user_preferences.edit.object_align

    if (context.space_data.type == 'VIEW_3D'
        and obj_align == 'VIEW'):
            view3d = context.space_data
            region = view3d.region_3d
            viewMatrix = region.view_matrix
            rot = viewMatrix.rotation_part()
            ob.rotation_euler = rot.invert().to_euler()


# Create a new mesh (object) from verts/edges/faces.
# verts/edges/faces ... List of vertices/edges/faces for the
#                       new mesh (as used in from_pydata).
# name ... Name of the new mesh (& object).
# edit ... Replace existing mesh data.
# Note: Using "edit" will destroy/delete existing mesh data.
def create_mesh_object(context, verts, edges, faces, name, edit):
    scene = context.scene
    obj_act = scene.objects.active

    # Can't edit anything, unless we have an active obj.
    if edit and not obj_act:
        return None

    # Create new mesh
    mesh = bpy.data.meshes.new(name)

    # Make a mesh from a list of verts/edges/faces.
    mesh.from_pydata(verts, edges, faces)

    # Update mesh geometry after adding stuff.
    mesh.update()

    # Deselect all objects.
    bpy.ops.object.select_all(action='DESELECT')

    if edit:
        # Replace geometry of existing object

        # Use the active obj and select it.
        ob_new = obj_act
        ob_new.selected = True

        if obj_act.mode == 'OBJECT':
            # Get existing mesh datablock.
            old_mesh = ob_new.data

            # Set object data to nothing
            ob_new.data = None

            # Clear users of existing mesh datablock.
            old_mesh.user_clear()

            # Remove old mesh datablock if no users are left.
            if (old_mesh.users == 0):
                bpy.data.meshes.remove(old_mesh)

            # Assign new mesh datablock.
            ob_new.data = mesh

    else:
        # Create new object
        ob_new = bpy.data.objects.new(name, mesh)

        # Link new object to the given scene and select it.
        scene.objects.link(ob_new)
        ob_new.selected = True

        # Place the object at the 3D cursor location.
        ob_new.location = scene.cursor_location

        apply_object_align(context, ob_new)

    if obj_act and obj_act.mode == 'EDIT':
        if not edit:
            # We are in EditMode, switch to ObjectMode.
            bpy.ops.object.mode_set(mode='OBJECT')

            # Select the active object as well.
            obj_act.selected = True

            # Apply location of new object.
            scene.update()

            # Join new object into the active.
            bpy.ops.object.join()

            # Switching back to EditMode.
            bpy.ops.object.mode_set(mode='EDIT')

            ob_new = obj_act

    else:
        # We are in ObjectMode.
        # Make the new object the active one.
        scene.objects.active = ob_new

    return ob_new


# A very simple "bridge" tool.
# Connects two equally long vertex rows with faces.
# Returns a list of the new faces (list of  lists)
#
# vertIdx1 ... First vertex list (list of vertex indices).
# vertIdx2 ... Second vertex list (list of vertex indices).
# closed ... Creates a loop (first & last are closed).
# flipped ... Invert the normal of the face(s).
#
# Note: You can set vertIdx1 to a single vertex index to create
#       a fan/star of faces.
# Note: If both vertex idx list are the same length they have
#       to have at least 2 vertices.
def createFaces(vertIdx1, vertIdx2, closed=False, flipped=False):
    faces = []

    if not vertIdx1 or not vertIdx2:
        return None

    if len(vertIdx1) < 2 and len(vertIdx2) < 2:
        return None

    fan = False
    if (len(vertIdx1) != len(vertIdx2)):
        if (len(vertIdx1) == 1 and len(vertIdx2) > 1):
            fan = True
        else:
            return None

    total = len(vertIdx2)

    if closed:
        # Bridge the start with the end.
        if flipped:
            face = [
                vertIdx1[0],
                vertIdx2[0],
                vertIdx2[total - 1]]
            if not fan:
                face.append(vertIdx1[total - 1])
            faces.append(face)

        else:
            face = [vertIdx2[0], vertIdx1[0]]
            if not fan:
                face.append(vertIdx1[total - 1])
            face.append(vertIdx2[total - 1])
            faces.append(face)

    # Bridge the rest of the faces.
    for num in range(total - 1):
        if flipped:
            if fan:
                face = [vertIdx2[num], vertIdx1[0], vertIdx2[num + 1]]
            else:
                face = [vertIdx2[num], vertIdx1[num],
                    vertIdx1[num + 1], vertIdx2[num + 1]]
            faces.append(face)
        else:
            if fan:
                face = [vertIdx1[0], vertIdx2[num], vertIdx2[num + 1]]
            else:
                face = [vertIdx1[num], vertIdx2[num],
                    vertIdx2[num + 1], vertIdx1[num + 1]]
            faces.append(face)

    return faces
# this function creates a chain of quads and, when necessary, a remaining tri
# for each polygon created in this script. be aware though, that this function
# assumes each polygon is convex.
#  poly: list of faces, or a single face, like those
#        needed for mesh.from_pydata.
#  returns the tesselated faces.
def createPolys(poly):
    # check for faces
    if len(poly) == 0:
        return []
    # one or more faces
    if type(poly[0]) == type(1):
        poly = [poly] # if only one, make it a list of one face
    faces = []
    for i in poly:
        l = len(i)
        # let all faces of 3 or 4 verts be
        if l < 5:
            faces.append(i)
        # split all polygons in half and bridge the two halves
        else:
            half = int(l/2)
            f = createFaces(i[:half],[i[-1-j] for j in range(half)])        
            faces.extend(f)
            # if the polygon has an odd number of verts, add the last tri
            if l%2 == 1:
                faces.append([i[half-1],i[half],i[half+1]])
    return faces

# function to make the reduce function work as a workaround to sum a list of vectors 
def Asum(list):
    return reduce(lambda a,b: a+b, list)

# creates the 5 platonic solids as a base for the rest
#  plato: should be one of {"4","6","8","12","20"}. decides what solid the
#         outcome will be.
#  returns a list of vertices and faces and the appropriate name
def source(plato):
    verts = []
    faces = []

    # Tetrahedron
    if plato == "4":
        # Calculate the necessary constants
        s = sqrt(2)/3.0
        t = -1/3
        u = sqrt(6)/3

        # create the vertices and faces
        v = [(0,0,1),(2*s,0,t),(-s,u,t),(-s,-u,t)]
        faces = [[0,1,2],[0,2,3],[0,3,1],[1,3,2]]

    # Hexahedron (cube)
    elif plato == "6":
        # Calculate the necessary constants
        s = 1/sqrt(3)
    
        # create the vertices and faces
        v = [(-s,-s,-s),(s,-s,-s),(s,s,-s),(-s,s,-s),(-s,-s,s),(s,-s,s),(s,s,s),(-s,s,s)]
        faces = [[0,3,2,1],[0,1,5,4],[0,4,7,3],[6,5,1,2],[6,2,3,7],[6,7,4,5]]

    # Octahedron
    elif plato == "8":
        # create the vertices and faces
        v = [(1,0,0),(-1,0,0),(0,1,0),(0,-1,0),(0,0,1),(0,0,-1)]
        faces = [[4,0,2],[4,2,1],[4,1,3],[4,3,0],[5,2,0],[5,1,2],[5,3,1],[5,0,3]]

    # Dodecahedron
    elif plato == "12":
        # Calculate the necessary constants
        s = 1/sqrt(3)
        t = sqrt((3-sqrt(5))/6)
        u = sqrt((3+sqrt(5))/6)

        # create the vertices and faces
        v = [(s,s,s),(s,s,-s),(s,-s,s),(s,-s,-s),(-s,s,s),(-s,s,-s),(-s,-s,s),(-s,-s,-s),
             (t,u,0),(-t,u,0),(t,-u,0),(-t,-u,0),(u,0,t),(u,0,-t),(-u,0,t),(-u,0,-t),(0,t,u),
             (0,-t,u),(0,t,-u),(0,-t,-u)]
        faces = [[0,8,9,4,16],[0,12,13,1,8],[0,16,17,2,12],[8,1,18,5,9],[12,2,10,3,13],
                 [16,4,14,6,17],[9,5,15,14,4],[6,11,10,2,17],[3,19,18,1,13],[7,15,5,18,19],
                 [7,11,6,14,15],[7,19,3,10,11]]

    # Icosahedron
    elif plato == "20":
        # Calculate the necessary constants
        s = (1+sqrt(5))/2
        t = sqrt(1+s*s)
        s = s/t
        t = 1/t

        # create the vertices and faces
        v = [(s,t,0),(-s,t,0),(s,-t,0),(-s,-t,0),(t,0,s),(t,0,-s),(-t,0,s),(-t,0,-s),
             (0,s,t),(0,-s,t),(0,s,-t),(0,-s,-t)]
        faces = [[0,8,4],[0,5,10],[2,4,9],[2,11,5],[1,6,8],[1,10,7],[3,9,6],[3,7,11],
                 [0,10,8],[1,8,10],[2,9,11],[3,11,9],[4,2,0],[5,0,2],[6,1,3],[7,3,1],
                 [8,6,4],[9,4,6],[10,5,7],[11,7,5]]

    # handles faulty values of plato
    else:
        print("Choose keyword 'plato' from {'4','6','8','12','20'}")
        return None

    # convert the tuples to Vectors
    verts = [Vector(i) for i in v]

    return verts,faces

# processes the raw data from source
def createSolid(plato,vtrunc,etrunc,dual,snub):
    verts = []
    faces = []
    edges = []
    # the duals from each platonic solid
    dualSource = {"4":"4",
                  "6":"8",
                  "8":"6",
                  "12":"20",
                  "20":"12"}

    # constants saving space and readability
    vtrunc *= 0.5
    etrunc *= 0.5
    supposed_size = 0
    noSnub = (snub == "0") or (etrunc == 0.5) or (etrunc == 0)
    lSnub = (snub == "L") and (0 < etrunc < 0.5)
    rSnub = (snub == "R") and (0 < etrunc < 0.5)

    # no truncation
    if vtrunc == 0:
        if dual: # dual is as simple as another, but mirrored platonic solid
            vInput,fInput = source(dualSource[plato])
            supposed_size = Asum([vInput[i] for i in fInput[0]]).length/len(fInput[0])
            vInput = [-i*supposed_size for i in vInput]            # mirror it
            return vInput,fInput
        return source(plato)
    # simple truncation of the source
    elif 0.5 >= vtrunc > 0:
        vInput,fInput = source(plato)
    # truncation is now equal to simple truncation of the dual of the source
    elif vtrunc > 0.5: 
        vInput,fInput = source(dualSource[plato])
        supposed_size = Asum([vInput[i] for i in fInput[0]]).length/len(fInput[0])
        # account for the source being a dual
        vtrunc = 1-vtrunc
        if vtrunc == 0: # no truncation
            if dual:
                vInput,fInput = source(plato)
                vInput = [i*supposed_size for i in vInput]
                return vInput,fInput,sourceName
            vInput = [-i*supposed_size for i in vInput]
            return vInput,fInput

    # generate a database for creating the faces. this exists out of a list for
    # every vertex in the source
    # 0 : vertex id
    # 1 : vertices connected to this vertex, listed ccw(Counter Clock Wise)
    # 2 : vertices generated to form the faces of this vertex
    # 3 : faces connected to this vertex, listed ccw
    # 4 : dictionairy containing the verts used by the connected faces
    # 5 : list of edges that use this vertex, listed ccw
    # 6 : dictionairy containing the verts used by the connected edges
    v = [[i,[],[],[],{},[],{}] for i in range(len(vInput))]

    # this piece of code, generates the database and the lists in ccw order
    for x in range(len(fInput)):
        i = fInput[x]
        # in every faces, check which vertices connect the each vert and sort
        #  in ccw order
        for j in range(-1,len(i)-1):
            # only generate an edge dict, if edge truncation is needed
            if etrunc:
                # list edges as [min,max], to evade confusion
                first = min([i[j-1],i[j]])
                last = max([i[j-1],i[j]])
                # if an edge is not allready in, add it and give the index
                try:
                    y = edges.index([first,last])
                except:
                    edges.append([first,last])
                    y = len(edges)-1
                # add a dict item
                v[i[j]][6][str(y)] = [0,0]
            # the vertex before and after the current vertex, check whether they
            #  are allready in the database
            after = i[j+1] not in v[i[j]][1]
            before = i[j-1] not in v[i[j]][1]
            # sort them and add faces and, when necessary, edges in the database
            if after:
                if before:
                    v[i[j]][1].append(i[j+1])
                    v[i[j]][1].append(i[j-1])
                    v[i[j]][3].append(x)
                    if etrunc: v[i[j]][5].append(y)
                else:
                    z = v[i[j]][1].index(i[j-1])
                    v[i[j]][1].insert(z,i[j+1])
                    v[i[j]][3].insert(z,x)
                    if etrunc: v[i[j]][5].insert(z,y)
            else:
                z = v[i[j]][1].index(i[j+1])
                v[i[j]][3].insert(z,x)
                if etrunc: v[i[j]][5].insert(z,y)
                if before:
                    v[i[j]][1].insert(z+1,i[j-1])
            # add the current face to the current vertex in the dict
            v[i[j]][4][str(x)] = [0,0] 

    # generate vert-only truncated vertices by linear interpolation         
    for i in v:
        for j in range(len(i[1])):
            verts.append(vInput[i[0]]*(1-vtrunc)+vInput[i[1][j]]*vtrunc)
            l = len(verts)-1
            # face resulting from truncating this vertex
            i[2].append(l)
            # this vertex is used by both faces using this edge
            i[4][str(i[3][j])][1] = l
            i[4][str(i[3][j-1])][0] = l

    # only truncate edges when needed
    vert_faces = []
    if etrunc:
        # generate a new list of vertices, by linear interpolating each vert-face
        nVerts = []
        for i in v:
            f = []
            # weird range so we dont run out of array bounds
            for j in range(-1,len(i[2])-1):
                # making use of the fact that the snub operation takes only
                #  one of the two vertices per edge. so rSnub only takes the
                #  first, lSnub only takes the second, and noSnub takes both
                if rSnub or noSnub: 
                    # interpolate
                    nVerts.append((1-etrunc)*verts[i[2][j]] + etrunc*verts[i[2][j-1]])
                    # add last vertex to the vert-face, face-face and edge-face
                    l = len(nVerts)-1
                    f.append(l)
                    i[4][str(i[3][j-1])][0] = l
                    i[6][str(i[5][j-1])][1] = l
                if lSnub or noSnub:
                    # interpolate
                    nVerts.append((1-etrunc)*verts[i[2][j]] + etrunc*verts[i[2][j+1]])
                    # add last vertex to the vert-face, face-face and edge-face
                    l = len(nVerts)-1
                    f.append(l)
                    i[4][str(i[3][j])][1] = l
                    i[6][str(i[5][j-1])][0] = l
            # add vert-face
            vert_faces.append(f)

        # snub operator creates 2 tri's instead of a planar quad, needing the
        #  next piece of code. making use of the dictionairy to create them.
        if lSnub or rSnub:
            edge_faces = []
            for x in range(len(edges)):
                one = v[edges[x][0]]    # the first vertex of this edge
                two = v[edges[x][1]]    # the second
                # using max() since the dict consists of one filled spot and one
                #  empty('cause only one vert is created)
                f = [max(two[6][str(x)]),max(one[6][str(x)])]
                index = one[5].index(x)
                # create this tri from the middle line and the the previous edge
                #  on this vertex
                if lSnub:
                    f.append(max(one[6][str(one[5][index-1])]))
                else: # or in this case, the next
                    if index+1 >= len(one[5]): index = -1
                    f.append(max(one[6][str(one[5][index+1])]))
                edge_faces.append(f)

                # do the same for the other end of the edge
                f = [max(one[6][str(x)]),max(two[6][str(x)])]
                index = two[5].index(x)
                if lSnub:
                    f.append(max(two[6][str(two[5][index-1])]))
                else:
                    if index+1 >= len(one[5]): index = -1
                    f.append(max(two[6][str(two[5][index+1])]))
                edge_faces.append(f)
        else:
            # generate edge-faces from the dictionairy, simple quads for noSnub
            edge_faces = []
            for i in range(len(edges)):
                f = []
                for j in edges[i]:
                    f.extend(v[j][6][str(i)])
                edge_faces.append(f)
        verts = nVerts
    else:
        # generate vert-faces for non-edge-truncation
        vert_faces = [i[2] for i in v]

    # calculate supposed vertex length to ensure continuity
    if supposed_size:
        supposed_size *= len(vert_faces[0])/Asum([verts[i] for i in vert_faces[0]]).length
        verts = [-i*supposed_size for i in verts]
        
    # generate face-faces by looking up the old verts and replacing them with
    #  the vertices in the dictionairy
    face_faces = []
    for x in range(len(fInput)):
        f = []
        for j in fInput[x]:
            # again using the fact, that only one of the two verts is used
            #  for snub operation
            if rSnub and etrunc:
                f.append(v[j][4][str(x)][0])
            elif lSnub and etrunc:
                f.append(v[j][4][str(x)][1])
            else:
                # for cool graphics, comment the first line and uncomment the second line
                # then work the vTrunc property, leave the other properties at 0 
                # (can also change 0 to 1 in second line to change from ccw to cw)
                f.extend(v[j][4][str(x)])                  # first
                #f.append(v[j][4][str(x)][0])               # second
        face_faces.append(f)
    
    if dual:
        # create verts by taking the average of all vertices that make up each
        #  face. do it in this order to ease the following face creation
        nVerts = []
        for i in vert_faces:
            nVerts.append(Asum([verts[j] for j in i])/len(i))
        if etrunc:
            eStart = len(nVerts)
            for i in edge_faces:
                nVerts.append(Asum([verts[j] for j in i])/len(i))
        fStart = len(nVerts)
        for i in face_faces:
            nVerts.append(Asum([verts[j] for j in i])/len(i))
        # the special face generation for snub duals, it sucks, even i dont get it
        if lSnub or rSnub:
            for x in range(len(fInput)):
                i = fInput[x]
                for j in range(-1,len(i)-1):
                
                    if i[j] > i[j+1]: 
                        eNext = edges.index([i[j+1],i[j]])
                        [a,b] = [1,0]
                    else: 
                        eNext = edges.index([i[j],i[j+1]])
                        [a,b] = [0,1]
                    if i[j] > i[j-1]: 
                        ePrev = edges.index([i[j-1],i[j]])
                        [c,d] = [0,1]
                    else: 
                        ePrev = edges.index([i[j],i[j-1]])
                        [c,d] = [1,0]
                    if lSnub:
                        f = [eStart+2*eNext+b,eStart+2*eNext+a,i[j]]
                        f.append(eStart+2*ePrev+d)
                        f.append(fStart + x)
                    else:
                        f = [eStart+2*ePrev+c,eStart+2*ePrev+d,i[j]]
                        f.append(eStart+2*eNext+a)
                        f.append(fStart + x)
                    if supposed_size: faces.append(f)
                    else: faces.append(f[2:]+f[:2])
        else:
            # for noSnub situations, the face generation is somewhat easier.
            # first calculate what order faces must be added to ensure convex solids
            # this by calculating the angle between the middle of the four vertices
            #  and the first face. if the face is above the middle, use that diagonal
            #  otherwise use the other diagonal
            if etrunc:
                f = [v[0][0],eStart+v[0][5][-1],fStart+v[0][3][0],eStart+v[0][5][0]]
            else:
                f = [v[0][0],fStart+v[0][3][0],v[0][1][0],fStart+v[0][3][-1]]
            p = [nVerts[i] for i in f]
            mid = 0.25*Asum(p)
            norm = (p[1]-p[0]).cross(p[2]-p[0])
            dot = norm.dot(mid-p[0])/(norm.length*(mid-p[0]).length)
            tollerance = 0.001 # ~ cos(0.06 degrees)
            if ((dot > tollerance) and (not supposed_size)) or ((dot < -tollerance) and (supposed_size)):
                direction = 1 # first diagonal
            elif ((dot < -tollerance) and (not supposed_size)) or ((dot > tollerance) and (supposed_size)):
                direction = -1 # second diagonal
            else: 
                direction = 0 # no diagonal, face is planar (somewhat)
        
            if etrunc: # for every vertex
                for i in v: # add the face, consisting of the vert,edge,next
                            # edge and face between those edges
                    for j in range(len(i[1])):
                        f = [i[0],eStart+i[5][j-1],fStart+i[3][j],eStart+i[5][j]]
                        if direction == 1: # first diagonal
                            faces.extend([[f[0],f[1],f[3]],[f[1],f[2],f[3]]])
                        elif direction == -1: # first diagonal
                            faces.extend([[f[0],f[1],f[2]],[f[0],f[2],f[3]]])
                        else:
                            faces.append(f) # no diagonal
            else:
                for i in v: # for every vertex
                    for j in range(len(i[1])):
                        if i[0] < i[1][j]: # face consists of vert, vert on other
                                           # end of edge and both faces using that
                                           # edge, so exclude verts allready used
                            f = [i[0],fStart+i[3][j], i[1][j],fStart+i[3][j-1]]
                            if direction == -1: # secong diagonal
                                faces.extend([[f[0],f[1],f[3]],[f[1],f[2],f[3]]])
                            elif direction == 1: # first diagonal
                                faces.extend([[f[0],f[1],f[2]],[f[0],f[2],f[3]]])
                            else:
                                faces.append(f) # no diagonal
        verts = nVerts  # use new vertices
    else:
        # concatenate all faces, since they dont have to be used sepperately anymore
        faces = face_faces
        if etrunc: faces += edge_faces
        faces += vert_faces

    return verts,faces
            
        
class Solids(bpy.types.Operator):
    """Add one of the (regular) solids (mesh)"""
    bl_idname = "mesh.primitive_solid_add"
    bl_label = "(Regular) solids"
    bl_description = "Add one of the platoic or archimedean solids"
    bl_options = {'REGISTER', 'UNDO'}

    source = EnumProperty(items = (("4","Tetrahedron",""),
                                   ("6","Hexahedron",""),
                                   ("8","Octahedron",""),
                                   ("12","Dodecahedron",""),
                                   ("20","Icosahedron","")),
                          name = "Source",
                          description = "Starting point of your solid")
    size = FloatProperty(name = "Size",
                         description = "Radius of the sphere through the vertices",
                         min = 0.01,
                         soft_min = 0.01,
                         max = 100,
                         soft_max = 100,
                         default = 1.0)
    vTrunc = FloatProperty(name = "Vertex Truncation",
                           description = "Ammount of vertex truncation",
                           min = 0.0,
                           soft_min = 0.0,
                           max = 2.0,
                           soft_max = 2.0,
                           default = 0.0,
                           precision = 3,
                           step = 0.5)
    eTrunc = FloatProperty(name = "Edge Truncation",
                           description = "Ammount of edge truncation",
                           min = 0.0,
                           soft_min = 0.0,
                           max = 1.0,
                           soft_max = 1.0,
                           default = 0.0,
                           precision = 3,
                           step = 0.2)
    snub = EnumProperty(items = (("0","No Snub",""),
                                 ("L","Left Snub",""),
                                 ("R","Right Snub","")),
                        name = "Snub",
                        description = "Create the snub version")
    dual = BoolProperty(name="Dual",
                        description="Create the dual of the current solid",
                        default=False)
    keepSize = BoolProperty(name="Keep Size",
                        description="Keep the whole solid at a constant size",
                        default=False)
    preset = EnumProperty(items = (("0","Custom",""),
                                   ("t4","Truncated Tetrahedron",""),
                                   ("r4","Cuboctahedron",""),
                                   ("t6","Truncated Cube",""),
                                   ("t8","Truncated Octahedron",""),
                                   ("b6","Rhombicuboctahedron",""),
                                   ("c6","Truncated Cuboctahedron",""),
                                   ("s6","Snub Cube",""),
                                   ("r12","Icosidodecahedron",""),
                                   ("t12","Truncated Dodecahedron",""),
                                   ("t20","Truncated Icosahedron",""),
                                   ("b12","Rhombicosidodecahedron",""),
                                   ("c12","Truncated Icosidodecahedron",""),
                                   ("s12","Snub Dodecahedron",""),
                                   ("dt4","Triakis Tetrahedron",""),
                                   ("dr4","Rhombic Dodecahedron",""),
                                   ("dt6","Triakis Octahedron",""),
                                   ("dt8","Triakis Hexahedron",""),
                                   ("db6","Deltoidal Icositetrahedron",""),
                                   ("dc6","Disdyakis Dodecahedron",""),
                                   ("ds6","Pentagonal Icositetrahedron",""),
                                   ("dr12","Rhombic Triacontahedron",""),
                                   ("dt12","Triakis Icosahedron",""),
                                   ("dt20","Pentakis Dodecahedron",""),
                                   ("db12","Deltoidal Hexecontahedron",""),
                                   ("dc12","Disdyakis Triacontahedron",""),
                                   ("ds12","Pentagonal Hexecontahedron",""),
                                   ("c","Cube",""),
                                   ("sb","Soccer ball","")),
                            name = "Presets",
                            description = "Parameters for some hard names")
    
    # actual preset values
    p = {"t4":["4",2/3,0,0,"0"],
         "r4":["4",1,1,0,"0"],
         "t6":["6",2/3,0,0,"0"],
         "t8":["8",2/3,0,0,"0"],
         "b6":["6",1.0938,1,0,"0"],
         "c6":["6",1.0572,0.585786,0,"0"],
         "s6":["6",1.0875,0.704,0,"L"],
         "r12":["12",1,0,0,"0"],
         "t12":["12",2/3,0,0,"0"],
         "t20":["20",2/3,0,0,"0"],
         "b12":["12",1.1338,1,0,"0"],
         "c12":["20",0.921,0.553,0,"0"],
         "s12":["12",1.1235,0.68,0,"L"],
         "dt4":["4",2/3,0,1,"0"],
         "dr4":["4",1,2/3,1,"0"],
         "dt6":["6",4/3,0,1,"0"],
         "dt8":["8",1,0,1,"0"],
         "db6":["6",1.0938,0.756,1,"0"],
         "dc6":["6",1,1,1,"0"],
         "ds6":["6",1.0875,0.704,1,"L"],
         "dr12":["12",1.54,0,1,"0"],
         "dt12":["12",5/3,0,1,"0"],
         "dt20":["20",2/3,0,1,"0"],
         "db12":["12",1,0.912,1,"0"],
         "dc12":["20",0.921,1,1,"0"],
         "ds12":["12",1.1235,0.68,1,"L"],
         "c":["6",0,0,0,"0"],
         "sb":["20",2/3,0,0,"0"]}
    
    edit = BoolProperty(name="",
                        description="",
                        default=False,
                        options={'HIDDEN'})

    def execute(self,context):
        # turn off undo for better performance (3 - 5x faster), also makes sure
        #  that mesh ops are undoable and entire script acts as one operator
        bpy.context.user_preferences.edit.global_undo = False

        props = self.properties

        #if preset, set preset
        if props.preset != "0":
            using = self.p[props.preset]
            props.source = using[0]
            props.vTrunc = using[1]
            props.eTrunc = using[2]
            props.dual = using[3]
            props.snub = using[4]
            props.preset = "0"

        # generate mesh    
        verts,faces = createSolid(props.source,
                                  props.vTrunc,
                                  props.eTrunc,
                                  props.dual,
                                  props.snub)

        # turn n-gons in quads and tri's
        faces = createPolys(faces)
        
        # resize to normal size, or if keepSize, make sure all verts are of length 'size'
        if props.keepSize:
            rad = props.size/verts[0].length
        else: rad = props.size
        verts = [i*rad for i in verts]

        # generate object
        obj = create_mesh_object(context,verts,[],faces,"Solid",props.edit)

        # vertices will be on top of each other in some cases,
        #    so remove doubles then
        if ((props.vTrunc == 1) and (props.eTrunc == 0)) or (props.eTrunc == 1):
            current_mode = obj.mode
            if current_mode == 'OBJECT':
                bpy.ops.object.mode_set(mode='EDIT')
            bpy.ops.mesh.select_all(action='SELECT')
            bpy.ops.mesh.remove_doubles()
            bpy.ops.object.mode_set(mode=current_mode)

        # snub duals suck, so make all normals point outwards
        if props.dual and (props.snub != "0"):
            current_mode = obj.mode
            if current_mode == 'OBJECT':
                bpy.ops.object.mode_set(mode='EDIT')
            bpy.ops.mesh.select_all(action='SELECT')
            bpy.ops.mesh.normals_make_consistent()
            bpy.ops.object.mode_set(mode=current_mode)

        # turn undo back on
        bpy.context.user_preferences.edit.global_undo = True 

        return {'FINISHED'}

class Solids_add_menu(bpy.types.Menu):
    """Define the menu with presets"""
    bl_idname = "Solids_add_menu"
    bl_label = "Solids"

    def draw(self,context):
        layout = self.layout
        layout.operator_context = 'INVOKE_REGION_WIN'
        layout.operator(Solids.bl_idname, text = "Solid")
        layout.menu(PlatonicMenu.bl_idname, text = "Platonic")
        layout.menu(ArchiMenu.bl_idname, text = "Archimeadean")
        layout.menu(CatalanMenu.bl_idname, text = "Catalan")
        layout.menu(OtherMenu.bl_idname, text = "Others")

class PlatonicMenu(bpy.types.Menu):
    """Define Platonic menu"""
    bl_idname = "Platonic_calls"
    bl_label = "Platonic"

    def draw(self,context):
        layout = self.layout
        layout.operator_context = 'INVOKE_REGION_WIN'
        layout.operator(Solids.bl_idname, text = "Tetrahedron").source = "4"
        layout.operator(Solids.bl_idname, text = "Hexahedron").source = "6"
        layout.operator(Solids.bl_idname, text = "Octahedron").source = "8"
        layout.operator(Solids.bl_idname, text = "Dodecahedron").source = "12"
        layout.operator(Solids.bl_idname, text = "Icosahedron").source = "20"

class ArchiMenu(bpy.types.Menu):
    """Defines Achimedean preset menu"""
    bl_idname = "Achimedean_calls"
    bl_label = "Archimedean"

    def draw(self,context):
        layout = self.layout
        layout.operator_context = 'INVOKE_REGION_WIN'
        layout.operator(Solids.bl_idname, text = "Truncated Tetrahedron").preset = "t4"
        layout.operator(Solids.bl_idname, text = "Cuboctahedron").preset = "r4"
        layout.operator(Solids.bl_idname, text = "Truncated Cube").preset = "t6"
        layout.operator(Solids.bl_idname, text = "Truncated Octahedron").preset = "t8"
        layout.operator(Solids.bl_idname, text = "Rhombicuboctahedron").preset = "b6"
        layout.operator(Solids.bl_idname, text = "Truncated Cuboctahedron").preset = "c6"
        layout.operator(Solids.bl_idname, text = "Snub Cube").preset = "s6"
        layout.operator(Solids.bl_idname, text = "Icosidodecahedron").preset = "r12"
        layout.operator(Solids.bl_idname, text = "Truncated Dodecahedron").preset = "t12"
        layout.operator(Solids.bl_idname, text = "Truncated Icosahedron").preset = "t20"
        layout.operator(Solids.bl_idname, text = "Rhombicosidodecahedron").preset = "b12"
        layout.operator(Solids.bl_idname, text = "Truncated Icosidodecahedron").preset = "c12"
        layout.operator(Solids.bl_idname, text = "Snub Dodecahedron").preset = "s12"

class CatalanMenu(bpy.types.Menu):
    """Defines Catalan preset menu"""
    bl_idname = "Catalan_calls"
    bl_label = "Catalan"
    
    def draw(self, context):
        layout = self.layout
        layout.operator_context = 'INVOKE_REGION_WIN'
        layout.operator(Solids.bl_idname, text = "Triakis Tetrahedron").preset = "dt4"
        layout.operator(Solids.bl_idname, text = "Rhombic Dodecahedron").preset = "dr4"
        layout.operator(Solids.bl_idname, text = "Triakis Octahedron").preset = "dt6"
        layout.operator(Solids.bl_idname, text = "Triakis Hexahedron").preset = "dt8"
        layout.operator(Solids.bl_idname, text = "Deltoidal Icositetrahedron").preset = "db6"
        layout.operator(Solids.bl_idname, text = "Disdyakis Dodecahedron").preset = "dc6"
        layout.operator(Solids.bl_idname, text = "Pentagonal Icositetrahedron").preset = "ds6"
        layout.operator(Solids.bl_idname, text = "Rhombic Triacontahedron").preset = "dr12"
        layout.operator(Solids.bl_idname, text = "Triakis Icosahedron").preset = "dt12"
        layout.operator(Solids.bl_idname, text = "Pentakis Dodecahedron").preset = "dt20"
        layout.operator(Solids.bl_idname, text = "Deltoidal Hexecontahedron").preset = "dt20"
        layout.operator(Solids.bl_idname, text = "Disdyakis Triacontahedron").preset = "db12"
        layout.operator(Solids.bl_idname, text = "Pentagonal Hexecontahedron").preset = "ds12"

class OtherMenu(bpy.types.Menu):
    """Defines Others preset menu"""
    bl_idname = "Others_calls"
    bl_label = "Others"
    
    def draw(self, context):
        layout = self.layout
        layout.operator_context = 'INVOKE_REGION_WIN'
        layout.operator(Solids.bl_idname, text = "Cube").preset = "c"
        layout.operator(Solids.bl_idname, text = "Soccer ball").preset = "sb"
        

import space_info

classes = [
    Solids,
    Solids_add_menu,
    PlatonicMenu,
    ArchiMenu,
    CatalanMenu,
    OtherMenu
]

menu_func = (lambda self,
            context: self.layout.menu(Solids_add_menu.bl_idname, icon="PLUGIN"))

def register():
    for i in classes:
        bpy.types.register(i)
    space_info.INFO_MT_mesh_add.append(menu_func)

def unregister():
    for i in classes:
        bpy.types.unregister(i)
    space_info.INFO_MT_mesh_add.remove(menu_func)
      
if __name__ == "__main__":
    register()