Skip to content
Snippets Groups Projects
xyz_import.py 38 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
    # ##### BEGIN GPL LICENSE BLOCK #####
    #
    #  This program is free software; you can redistribute it and/or
    #  modify it under the terms of the GNU General Public License
    #  as published by the Free Software Foundation; either version 2
    #  of the License, or (at your option) any later version.
    #
    #  This program is distributed in the hope that it will be useful,
    #  but WITHOUT ANY WARRANTY; without even the implied warranty of
    #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    #  GNU General Public License for more details.
    #
    #  You should have received a copy of the GNU General Public License
    #  along with this program; if not, write to the Free Software Foundation,
    #  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    #
    # ##### END GPL LICENSE BLOCK #####
    
    import os
    import bpy
    from math import pi, sqrt
    from mathutils import Vector, Matrix
    
    # -----------------------------------------------------------------------------
    #                                                  Atom and element data
    
    
    # This is a list that contains some data of all possible elements. The structure
    # is as follows:
    #
    # 1, "Hydrogen", "H", [0.0,0.0,1.0], 0.32, 0.32, 0.32 , -1 , 1.54   means
    #
    # No., name, short name, color, radius (used), radius (covalent), radius (atomic),
    #
    # charge state 1, radius (ionic) 1, charge state 2, radius (ionic) 2, ... all
    # charge states for any atom are listed, if existing.
    # The list is fixed and cannot be changed ... (see below)
    
    ELEMENTS_DEFAULT = (
    ( 1,      "Hydrogen",        "H", (  1.0,   1.0,   1.0, 1.0), 0.32, 0.32, 0.79 , -1 , 1.54 ),
    ( 2,        "Helium",       "He", ( 0.85,   1.0,   1.0, 1.0), 0.93, 0.93, 0.49 ),
    ( 3,       "Lithium",       "Li", (  0.8,  0.50,   1.0, 1.0), 1.23, 1.23, 2.05 ,  1 , 0.68 ),
    ( 4,     "Beryllium",       "Be", ( 0.76,   1.0,   0.0, 1.0), 0.90, 0.90, 1.40 ,  1 , 0.44 ,  2 , 0.35 ),
    ( 5,         "Boron",        "B", (  1.0,  0.70,  0.70, 1.0), 0.82, 0.82, 1.17 ,  1 , 0.35 ,  3 , 0.23 ),
    ( 6,        "Carbon",        "C", ( 0.56,  0.56,  0.56, 1.0), 0.77, 0.77, 0.91 , -4 , 2.60 ,  4 , 0.16 ),
    ( 7,      "Nitrogen",        "N", ( 0.18,  0.31,  0.97, 1.0), 0.75, 0.75, 0.75 , -3 , 1.71 ,  1 , 0.25 ,  3 , 0.16 ,  5 , 0.13 ),
    ( 8,        "Oxygen",        "O", (  1.0,  0.05,  0.05, 1.0), 0.73, 0.73, 0.65 , -2 , 1.32 , -1 , 1.76 ,  1 , 0.22 ,  6 , 0.09 ),
    ( 9,      "Fluorine",        "F", ( 0.56,  0.87,  0.31, 1.0), 0.72, 0.72, 0.57 , -1 , 1.33 ,  7 , 0.08 ),
    (10,          "Neon",       "Ne", ( 0.70,  0.89,  0.96, 1.0), 0.71, 0.71, 0.51 ,  1 , 1.12 ),
    (11,        "Sodium",       "Na", ( 0.67,  0.36,  0.94, 1.0), 1.54, 1.54, 2.23 ,  1 , 0.97 ),
    (12,     "Magnesium",       "Mg", ( 0.54,   1.0,   0.0, 1.0), 1.36, 1.36, 1.72 ,  1 , 0.82 ,  2 , 0.66 ),
    (13,     "Aluminium",       "Al", ( 0.74,  0.65,  0.65, 1.0), 1.18, 1.18, 1.82 ,  3 , 0.51 ),
    (14,       "Silicon",       "Si", ( 0.94,  0.78,  0.62, 1.0), 1.11, 1.11, 1.46 , -4 , 2.71 , -1 , 3.84 ,  1 , 0.65 ,  4 , 0.42 ),
    (15,    "Phosphorus",        "P", (  1.0,  0.50,   0.0, 1.0), 1.06, 1.06, 1.23 , -3 , 2.12 ,  3 , 0.44 ,  5 , 0.35 ),
    (16,        "Sulfur",        "S", (  1.0,   1.0,  0.18, 1.0), 1.02, 1.02, 1.09 , -2 , 1.84 ,  2 , 2.19 ,  4 , 0.37 ,  6 , 0.30 ),
    (17,      "Chlorine",       "Cl", ( 0.12,  0.94,  0.12, 1.0), 0.99, 0.99, 0.97 , -1 , 1.81 ,  5 , 0.34 ,  7 , 0.27 ),
    (18,         "Argon",       "Ar", ( 0.50,  0.81,  0.89, 1.0), 0.98, 0.98, 0.88 ,  1 , 1.54 ),
    (19,     "Potassium",        "K", ( 0.56,  0.25,  0.83, 1.0), 2.03, 2.03, 2.77 ,  1 , 0.81 ),
    (20,       "Calcium",       "Ca", ( 0.23,   1.0,   0.0, 1.0), 1.74, 1.74, 2.23 ,  1 , 1.18 ,  2 , 0.99 ),
    (21,      "Scandium",       "Sc", ( 0.90,  0.90,  0.90, 1.0), 1.44, 1.44, 2.09 ,  3 , 0.73 ),
    (22,      "Titanium",       "Ti", ( 0.74,  0.76,  0.78, 1.0), 1.32, 1.32, 2.00 ,  1 , 0.96 ,  2 , 0.94 ,  3 , 0.76 ,  4 , 0.68 ),
    (23,      "Vanadium",        "V", ( 0.65,  0.65,  0.67, 1.0), 1.22, 1.22, 1.92 ,  2 , 0.88 ,  3 , 0.74 ,  4 , 0.63 ,  5 , 0.59 ),
    (24,      "Chromium",       "Cr", ( 0.54,   0.6,  0.78, 1.0), 1.18, 1.18, 1.85 ,  1 , 0.81 ,  2 , 0.89 ,  3 , 0.63 ,  6 , 0.52 ),
    (25,     "Manganese",       "Mn", ( 0.61,  0.47,  0.78, 1.0), 1.17, 1.17, 1.79 ,  2 , 0.80 ,  3 , 0.66 ,  4 , 0.60 ,  7 , 0.46 ),
    (26,          "Iron",       "Fe", ( 0.87,   0.4,   0.2, 1.0), 1.17, 1.17, 1.72 ,  2 , 0.74 ,  3 , 0.64 ),
    (27,        "Cobalt",       "Co", ( 0.94,  0.56,  0.62, 1.0), 1.16, 1.16, 1.67 ,  2 , 0.72 ,  3 , 0.63 ),
    (28,        "Nickel",       "Ni", ( 0.31,  0.81,  0.31, 1.0), 1.15, 1.15, 1.62 ,  2 , 0.69 ),
    (29,        "Copper",       "Cu", ( 0.78,  0.50,   0.2, 1.0), 1.17, 1.17, 1.57 ,  1 , 0.96 ,  2 , 0.72 ),
    (30,          "Zinc",       "Zn", ( 0.49,  0.50,  0.69, 1.0), 1.25, 1.25, 1.53 ,  1 , 0.88 ,  2 , 0.74 ),
    (31,       "Gallium",       "Ga", ( 0.76,  0.56,  0.56, 1.0), 1.26, 1.26, 1.81 ,  1 , 0.81 ,  3 , 0.62 ),
    (32,     "Germanium",       "Ge", (  0.4,  0.56,  0.56, 1.0), 1.22, 1.22, 1.52 , -4 , 2.72 ,  2 , 0.73 ,  4 , 0.53 ),
    (33,       "Arsenic",       "As", ( 0.74,  0.50,  0.89, 1.0), 1.20, 1.20, 1.33 , -3 , 2.22 ,  3 , 0.58 ,  5 , 0.46 ),
    (34,      "Selenium",       "Se", (  1.0,  0.63,   0.0, 1.0), 1.16, 1.16, 1.22 , -2 , 1.91 , -1 , 2.32 ,  1 , 0.66 ,  4 , 0.50 ,  6 , 0.42 ),
    (35,       "Bromine",       "Br", ( 0.65,  0.16,  0.16, 1.0), 1.14, 1.14, 1.12 , -1 , 1.96 ,  5 , 0.47 ,  7 , 0.39 ),
    (36,       "Krypton",       "Kr", ( 0.36,  0.72,  0.81, 1.0), 1.31, 1.31, 1.24 ),
    (37,      "Rubidium",       "Rb", ( 0.43,  0.18,  0.69, 1.0), 2.16, 2.16, 2.98 ,  1 , 1.47 ),
    (38,     "Strontium",       "Sr", (  0.0,   1.0,   0.0, 1.0), 1.91, 1.91, 2.45 ,  2 , 1.12 ),
    (39,       "Yttrium",        "Y", ( 0.58,   1.0,   1.0, 1.0), 1.62, 1.62, 2.27 ,  3 , 0.89 ),
    (40,     "Zirconium",       "Zr", ( 0.58,  0.87,  0.87, 1.0), 1.45, 1.45, 2.16 ,  1 , 1.09 ,  4 , 0.79 ),
    (41,       "Niobium",       "Nb", ( 0.45,  0.76,  0.78, 1.0), 1.34, 1.34, 2.08 ,  1 , 1.00 ,  4 , 0.74 ,  5 , 0.69 ),
    (42,    "Molybdenum",       "Mo", ( 0.32,  0.70,  0.70, 1.0), 1.30, 1.30, 2.01 ,  1 , 0.93 ,  4 , 0.70 ,  6 , 0.62 ),
    (43,    "Technetium",       "Tc", ( 0.23,  0.61,  0.61, 1.0), 1.27, 1.27, 1.95 ,  7 , 0.97 ),
    (44,     "Ruthenium",       "Ru", ( 0.14,  0.56,  0.56, 1.0), 1.25, 1.25, 1.89 ,  4 , 0.67 ),
    (45,       "Rhodium",       "Rh", ( 0.03,  0.49,  0.54, 1.0), 1.25, 1.25, 1.83 ,  3 , 0.68 ),
    (46,     "Palladium",       "Pd", (  0.0,  0.41,  0.52, 1.0), 1.28, 1.28, 1.79 ,  2 , 0.80 ,  4 , 0.65 ),
    (47,        "Silver",       "Ag", ( 0.75,  0.75,  0.75, 1.0), 1.34, 1.34, 1.75 ,  1 , 1.26 ,  2 , 0.89 ),
    (48,       "Cadmium",       "Cd", (  1.0,  0.85,  0.56, 1.0), 1.48, 1.48, 1.71 ,  1 , 1.14 ,  2 , 0.97 ),
    (49,        "Indium",       "In", ( 0.65,  0.45,  0.45, 1.0), 1.44, 1.44, 2.00 ,  3 , 0.81 ),
    (50,           "Tin",       "Sn", (  0.4,  0.50,  0.50, 1.0), 1.41, 1.41, 1.72 , -4 , 2.94 , -1 , 3.70 ,  2 , 0.93 ,  4 , 0.71 ),
    (51,      "Antimony",       "Sb", ( 0.61,  0.38,  0.70, 1.0), 1.40, 1.40, 1.53 , -3 , 2.45 ,  3 , 0.76 ,  5 , 0.62 ),
    (52,     "Tellurium",       "Te", ( 0.83,  0.47,   0.0, 1.0), 1.36, 1.36, 1.42 , -2 , 2.11 , -1 , 2.50 ,  1 , 0.82 ,  4 , 0.70 ,  6 , 0.56 ),
    (53,        "Iodine",        "I", ( 0.58,   0.0,  0.58, 1.0), 1.33, 1.33, 1.32 , -1 , 2.20 ,  5 , 0.62 ,  7 , 0.50 ),
    (54,         "Xenon",       "Xe", ( 0.25,  0.61,  0.69, 1.0), 1.31, 1.31, 1.24 ),
    (55,       "Caesium",       "Cs", ( 0.34,  0.09,  0.56, 1.0), 2.35, 2.35, 3.35 ,  1 , 1.67 ),
    (56,        "Barium",       "Ba", (  0.0,  0.78,   0.0, 1.0), 1.98, 1.98, 2.78 ,  1 , 1.53 ,  2 , 1.34 ),
    (57,     "Lanthanum",       "La", ( 0.43,  0.83,   1.0, 1.0), 1.69, 1.69, 2.74 ,  1 , 1.39 ,  3 , 1.06 ),
    (58,        "Cerium",       "Ce", (  1.0,   1.0,  0.78, 1.0), 1.65, 1.65, 2.70 ,  1 , 1.27 ,  3 , 1.03 ,  4 , 0.92 ),
    (59,  "Praseodymium",       "Pr", ( 0.85,   1.0,  0.78, 1.0), 1.65, 1.65, 2.67 ,  3 , 1.01 ,  4 , 0.90 ),
    (60,     "Neodymium",       "Nd", ( 0.78,   1.0,  0.78, 1.0), 1.64, 1.64, 2.64 ,  3 , 0.99 ),
    (61,    "Promethium",       "Pm", ( 0.63,   1.0,  0.78, 1.0), 1.63, 1.63, 2.62 ,  3 , 0.97 ),
    (62,      "Samarium",       "Sm", ( 0.56,   1.0,  0.78, 1.0), 1.62, 1.62, 2.59 ,  3 , 0.96 ),
    (63,      "Europium",       "Eu", ( 0.38,   1.0,  0.78, 1.0), 1.85, 1.85, 2.56 ,  2 , 1.09 ,  3 , 0.95 ),
    (64,    "Gadolinium",       "Gd", ( 0.27,   1.0,  0.78, 1.0), 1.61, 1.61, 2.54 ,  3 , 0.93 ),
    (65,       "Terbium",       "Tb", ( 0.18,   1.0,  0.78, 1.0), 1.59, 1.59, 2.51 ,  3 , 0.92 ,  4 , 0.84 ),
    (66,    "Dysprosium",       "Dy", ( 0.12,   1.0,  0.78, 1.0), 1.59, 1.59, 2.49 ,  3 , 0.90 ),
    (67,       "Holmium",       "Ho", (  0.0,   1.0,  0.61, 1.0), 1.58, 1.58, 2.47 ,  3 , 0.89 ),
    (68,        "Erbium",       "Er", (  0.0,  0.90,  0.45, 1.0), 1.57, 1.57, 2.45 ,  3 , 0.88 ),
    (69,       "Thulium",       "Tm", (  0.0,  0.83,  0.32, 1.0), 1.56, 1.56, 2.42 ,  3 , 0.87 ),
    (70,     "Ytterbium",       "Yb", (  0.0,  0.74,  0.21, 1.0), 1.74, 1.74, 2.40 ,  2 , 0.93 ,  3 , 0.85 ),
    (71,      "Lutetium",       "Lu", (  0.0,  0.67,  0.14, 1.0), 1.56, 1.56, 2.25 ,  3 , 0.85 ),
    (72,       "Hafnium",       "Hf", ( 0.30,  0.76,   1.0, 1.0), 1.44, 1.44, 2.16 ,  4 , 0.78 ),
    (73,      "Tantalum",       "Ta", ( 0.30,  0.65,   1.0, 1.0), 1.34, 1.34, 2.09 ,  5 , 0.68 ),
    (74,      "Tungsten",        "W", ( 0.12,  0.58,  0.83, 1.0), 1.30, 1.30, 2.02 ,  4 , 0.70 ,  6 , 0.62 ),
    (75,       "Rhenium",       "Re", ( 0.14,  0.49,  0.67, 1.0), 1.28, 1.28, 1.97 ,  4 , 0.72 ,  7 , 0.56 ),
    (76,        "Osmium",       "Os", ( 0.14,   0.4,  0.58, 1.0), 1.26, 1.26, 1.92 ,  4 , 0.88 ,  6 , 0.69 ),
    (77,       "Iridium",       "Ir", ( 0.09,  0.32,  0.52, 1.0), 1.27, 1.27, 1.87 ,  4 , 0.68 ),
    (78,      "Platinum",       "Pt", ( 0.81,  0.81,  0.87, 1.0), 1.30, 1.30, 1.83 ,  2 , 0.80 ,  4 , 0.65 ),
    (79,          "Gold",       "Au", (  1.0,  0.81,  0.13, 1.0), 1.34, 1.34, 1.79 ,  1 , 1.37 ,  3 , 0.85 ),
    (80,       "Mercury",       "Hg", ( 0.72,  0.72,  0.81, 1.0), 1.49, 1.49, 1.76 ,  1 , 1.27 ,  2 , 1.10 ),
    (81,      "Thallium",       "Tl", ( 0.65,  0.32,  0.30, 1.0), 1.48, 1.48, 2.08 ,  1 , 1.47 ,  3 , 0.95 ),
    (82,          "Lead",       "Pb", ( 0.34,  0.34,  0.38, 1.0), 1.47, 1.47, 1.81 ,  2 , 1.20 ,  4 , 0.84 ),
    (83,       "Bismuth",       "Bi", ( 0.61,  0.30,  0.70, 1.0), 1.46, 1.46, 1.63 ,  1 , 0.98 ,  3 , 0.96 ,  5 , 0.74 ),
    (84,      "Polonium",       "Po", ( 0.67,  0.36,   0.0, 1.0), 1.46, 1.46, 1.53 ,  6 , 0.67 ),
    (85,      "Astatine",       "At", ( 0.45,  0.30,  0.27, 1.0), 1.45, 1.45, 1.43 , -3 , 2.22 ,  3 , 0.85 ,  5 , 0.46 ),
    (86,         "Radon",       "Rn", ( 0.25,  0.50,  0.58, 1.0), 1.00, 1.00, 1.34 ),
    (87,      "Francium",       "Fr", ( 0.25,   0.0,   0.4, 1.0), 1.00, 1.00, 1.00 ,  1 , 1.80 ),
    (88,        "Radium",       "Ra", (  0.0,  0.49,   0.0, 1.0), 1.00, 1.00, 1.00 ,  2 , 1.43 ),
    (89,      "Actinium",       "Ac", ( 0.43,  0.67,  0.98, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.18 ),
    (90,       "Thorium",       "Th", (  0.0,  0.72,   1.0, 1.0), 1.65, 1.65, 1.00 ,  4 , 1.02 ),
    (91,  "Protactinium",       "Pa", (  0.0,  0.63,   1.0, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.13 ,  4 , 0.98 ,  5 , 0.89 ),
    (92,       "Uranium",        "U", (  0.0,  0.56,   1.0, 1.0), 1.42, 1.42, 1.00 ,  4 , 0.97 ,  6 , 0.80 ),
    (93,     "Neptunium",       "Np", (  0.0,  0.50,   1.0, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.10 ,  4 , 0.95 ,  7 , 0.71 ),
    (94,     "Plutonium",       "Pu", (  0.0,  0.41,   1.0, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.08 ,  4 , 0.93 ),
    (95,     "Americium",       "Am", ( 0.32,  0.36,  0.94, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.07 ,  4 , 0.92 ),
    (96,        "Curium",       "Cm", ( 0.47,  0.36,  0.89, 1.0), 1.00, 1.00, 1.00 ),
    (97,     "Berkelium",       "Bk", ( 0.54,  0.30,  0.89, 1.0), 1.00, 1.00, 1.00 ),
    (98,   "Californium",       "Cf", ( 0.63,  0.21,  0.83, 1.0), 1.00, 1.00, 1.00 ),
    (99,   "Einsteinium",       "Es", ( 0.70,  0.12,  0.83, 1.0), 1.00, 1.00, 1.00 ),
    (100,       "Fermium",       "Fm", ( 0.70,  0.12, 0.72, 1.0), 1.00, 1.00, 1.00 ),
    (101,   "Mendelevium",       "Md", ( 0.70,  0.05, 0.65, 1.0), 1.00, 1.00, 1.00 ),
    (102,      "Nobelium",       "No", ( 0.74,  0.05, 0.52, 1.0), 1.00, 1.00, 1.00 ),
    (103,    "Lawrencium",       "Lr", ( 0.78,   0.0,  0.4, 1.0), 1.00, 1.00, 1.00 ),
    (104,       "Vacancy",      "Vac", (  0.5,   0.5,  0.5, 1.0), 1.00, 1.00, 1.00),
    (105,       "Default",  "Default", (  1.0,   1.0,  1.0, 1.0), 1.00, 1.00, 1.00),
    (106,         "Stick",    "Stick", (  0.5,   0.5,  0.5, 1.0), 1.00, 1.00, 1.00),
    )
    
    # This list here contains all data of the elements and will be used during
    # runtime. It is a list of classes.
    # During executing Atomic Blender, the list will be initialized with the fixed
    # data from above via the class structure below (ElementProp). We
    # have then one fixed list (above), which will never be changed, and a list of
    # classes with same data. The latter can be modified via loading a separate
    # custom data file for instance.
    ELEMENTS = []
    
    # This is the list, which contains all atoms of all frames! Each item is a
    # list which contains the atoms of a single frame. It is a list of
    # 'AtomProp'.
    ALL_FRAMES = []
    
    # A list of ALL balls which are put into the scene
    STRUCTURE = []
    
    
    # This is the class, which stores the properties for one element.
    class ElementProp(object):
        __slots__ = ('number', 'name', 'short_name', 'color', 'radii', 'radii_ionic')
        def __init__(self, number, name, short_name, color, radii, radii_ionic):
            self.number = number
            self.name = name
            self.short_name = short_name
            self.color = color
            self.radii = radii
            self.radii_ionic = radii_ionic
    
    # This is the class, which stores the properties of one atom.
    class AtomProp(object):
        __slots__ = ('element', 'name', 'location', 'radius', 'color', 'material')
        def __init__(self, element, name, location, radius, color, material):
            self.element = element
            self.name = name
            self.location = location
            self.radius = radius
            self.color = color
            self.material = material
    
    
    # -----------------------------------------------------------------------------
    #                                                           Some basic routines
    
    def read_elements():
    
        del ELEMENTS[:]
    
        for item in ELEMENTS_DEFAULT:
    
            # All three radii into a list
            radii = [item[4],item[5],item[6]]
            # The handling of the ionic radii will be done later. So far, it is an
            # empty list.
            radii_ionic = []
    
            li = ElementProp(item[0],item[1],item[2],item[3],
                                         radii,radii_ionic)
            ELEMENTS.append(li)
    
    
    # filepath_pdb: path to pdb file
    # radiustype  : '0' default
    #               '1' atomic radii
    #               '2' van der Waals
    def read_xyz_file(filepath_xyz,radiustype):
    
        number_frames = 0
        total_number_atoms = 0
    
        # Open the file ...
        filepath_xyz_p = open(filepath_xyz, "r")
    
        #Go through the whole file.
        FLAG = False
        for line in filepath_xyz_p:
    
            # ... the loop is broken here (EOF) ...
            if line == "":
                continue
    
            split_list = line.rsplit()
    
            if len(split_list) == 1:
                number_atoms = int(split_list[0])
                FLAG = True
    
            if FLAG == True:
    
                line = filepath_xyz_p.readline()
                line = line.rstrip()
    
                all_atoms= []
                for i in range(number_atoms):
    
    
                    # This is a guarantee that only the total number of atoms of the
                    # first frame is used. Condition is, so far, that the number of
                    # atoms in a xyz file is constant. However, sometimes the number
                    # may increase (or decrease). If it decreases, the addon crashes.
                    # If it increases, only the tot number of atoms of the first frame
                    # is used.
                    # By time, I will allow varying atom numbers ... but this takes
                    # some time ...
                    if number_frames != 0:
                        if i >= total_number_atoms:
                            break
    
    
                    line = filepath_xyz_p.readline()
                    line = line.rstrip()
                    split_list = line.rsplit()
                    short_name = str(split_list[0])
    
                    # Go through all elements and find the element of the current atom.
                    FLAG_FOUND = False
                    for element in ELEMENTS:
                        if str.upper(short_name) == str.upper(element.short_name):
                            # Give the atom its proper name, color and radius:
                            name = element.name
                            # int(radiustype) => type of radius:
                            # pre-defined (0), atomic (1) or van der Waals (2)
                            radius = float(element.radii[int(radiustype)])
                            color = element.color
                            FLAG_FOUND = True
                            break
    
                    # Is it a vacancy or an 'unknown atom' ?
                    if FLAG_FOUND == False:
                        # Give this atom also a name. If it is an 'X' then it is a
                        # vacancy. Otherwise ...
                        if "X" in short_name:
                            short_name = "VAC"
                            name = "Vacancy"
                            radius = float(ELEMENTS[-3].radii[int(radiustype)])
                            color = ELEMENTS[-3].color
                        # ... take what is written in the xyz file. These are somewhat
                        # unknown atoms. This should never happen, the element list is
                        # almost complete. However, we do this due to security reasons.
                        else:
                            name = str.upper(short_name)
                            radius = float(ELEMENTS[-2].radii[int(radiustype)])
                            color = ELEMENTS[-2].color
    
                    x = float(split_list[1])
                    y = float(split_list[2])
                    z = float(split_list[3])
    
                    location = Vector((x,y,z))
    
                    all_atoms.append([short_name, name, location, radius, color])
    
                # We note here all elements. This needs to be done only once.
                if number_frames == 0:
    
                    # This is a guarantee that only the total number of atoms of the
                    # first frame is used. Condition is, so far, that the number of
                    # atoms in a xyz file is constant. However, sometimes the number
                    # may increase (or decrease). If it decreases, the addon crashes.
                    # If it increases, only the tot number of atoms of the first frame
                    # is used.
                    # By time, I will allow varying atom numbers ... but this takes
                    # some time ...
                    total_number_atoms = number_atoms
    
    
                    elements = []
                    for atom in all_atoms:
                        FLAG_FOUND = False
                        for element in elements:
                            # If the atom name is already in the list,
                            # FLAG on 'True'.
                            if element == atom[1]:
                                FLAG_FOUND = True
                                break
                        # No name in the current list has been found? => New entry.
                        if FLAG_FOUND == False:
                            # Stored are: Atom label (e.g. 'Na'), the corresponding
                            # atom name (e.g. 'Sodium') and its color.
                            elements.append(atom[1])
    
                # Sort the atoms: create lists of atoms of one type
                structure = []
                for element in elements:
                    atoms_one_type = []
                    for atom in all_atoms:
                        if atom[1] == element:
                            atoms_one_type.append(AtomProp(atom[0],
                                                           atom[1],
                                                           atom[2],
                                                           atom[3],
                                                           atom[4],[]))
                    structure.append(atoms_one_type)
    
                ALL_FRAMES.append(structure)
                number_frames += 1
                FLAG = False
    
        filepath_xyz_p.close()
    
        return total_number_atoms
    
    
    # Rotate an object.
    def rotate_object(rot_mat, obj):
    
        bpy.ops.object.select_all(action='DESELECT')
        obj.select_set(True)
    
        # Decompose world_matrix's components, and from them assemble 4x4 matrices.
        orig_loc, orig_rot, orig_scale = obj.matrix_world.decompose()
    
        orig_loc_mat   = Matrix.Translation(orig_loc)
        orig_rot_mat   = orig_rot.to_matrix().to_4x4()
        orig_scale_mat = (Matrix.Scale(orig_scale[0],4,(1,0,0)) @ 
                          Matrix.Scale(orig_scale[1],4,(0,1,0)) @ 
                          Matrix.Scale(orig_scale[2],4,(0,0,1)))
    
        # Assemble the new matrix.
        obj.matrix_world = orig_loc_mat @ rot_mat @ orig_rot_mat @ orig_scale_mat 
    
    
    # Function, which puts a camera and light source into the 3D scene
    def camera_light_source(use_camera,
                            use_light,
                            object_center_vec,
                            object_size):
    
        camera_factor = 15.0
    
        # If chosen a camera is put into the scene.
        if use_camera == True:
    
            # Assume that the object is put into the global origin. Then, the
            # camera is moved in x and z direction, not in y. The object has its
            # size at distance sqrt(object_size) from the origin. So, move the
            # camera by this distance times a factor of camera_factor in x and z.
            # Then add x, y and z of the origin of the object.
            object_camera_vec = Vector((sqrt(object_size) * camera_factor,
                                        0.0,
                                        sqrt(object_size) * camera_factor))
            camera_xyz_vec = object_center_vec + object_camera_vec
    
            # Create the camera
            camera_data = bpy.data.cameras.new("A_camera")
            camera_data.lens = 45
            camera_data.clip_end = 500.0
            camera = bpy.data.objects.new("A_camera", camera_data)
            camera.location = camera_xyz_vec
            bpy.context.collection.objects.link(camera)
    
            # Here the camera is rotated such it looks towards the center of
            # the object. The [0.0, 0.0, 1.0] vector along the z axis
            z_axis_vec             = Vector((0.0, 0.0, 1.0))
            # The angle between the last two vectors
            angle                  = object_camera_vec.angle(z_axis_vec, 0)
            # The cross-product of z_axis_vec and object_camera_vec
            axis_vec               = z_axis_vec.cross(object_camera_vec)
            # Rotate 'axis_vec' by 'angle' and convert this to euler parameters.
            # 4 is the size of the matrix.
            camera.rotation_euler  = Matrix.Rotation(angle, 4, axis_vec).to_euler()
    
            # Rotate the camera around its axis by 90° such that we have a nice
            # camera position and view onto the object.
            bpy.ops.object.select_all(action='DESELECT')
            camera.select_set(True)
            
            # Rotate the camera around its axis 'object_camera_vec' by 90° such 
            # that we have a nice camera view onto the object.
            matrix_rotation = Matrix.Rotation(90/360*2*pi, 4, object_camera_vec)
            rotate_object(matrix_rotation, camera)
    
        # Here a lamp is put into the scene, if chosen.
        if use_light == True:
    
            # This is the distance from the object measured in terms of %
            # of the camera distance. It is set onto 50% (1/2) distance.
            light_dl = sqrt(object_size) * 15 * 0.5
            # This is a factor to which extend the lamp shall go to the right
            # (from the camera  point of view).
            light_dy_right = light_dl * (3.0/4.0)
    
            # Create x, y and z for the lamp.
            object_light_vec = Vector((light_dl,light_dy_right,light_dl))
            light_xyz_vec = object_center_vec + object_light_vec
    
            # Create the lamp
            light_data = bpy.data.lights.new(name="A_light", type="SUN")
            light_data.distance = 500.0
            light_data.energy = 3.0
            lamp = bpy.data.objects.new("A_light", light_data)
            lamp.location = light_xyz_vec
            bpy.context.collection.objects.link(lamp)
    
            # Some settings for the World: a bit ambient occlusion
            bpy.context.scene.world.light_settings.use_ambient_occlusion = True
            bpy.context.scene.world.light_settings.ao_factor = 0.2
            # Some properties for cycles
            lamp.data.use_nodes = True
            lmp_P_BSDF = lamp.data.node_tree.nodes['Emission']
            lmp_P_BSDF.inputs['Strength'].default_value = 5
    
    # -----------------------------------------------------------------------------
    #                                                            The main routine
    
    def import_xyz(Ball_type,
                   Ball_azimuth,
                   Ball_zenith,
                   Ball_radius_factor,
                   radiustype,
                   Ball_distance_factor,
                   put_to_center,
                   put_to_center_all,
                   use_camera,
                   use_light,
                   filepath_xyz):
    
        # List of materials
        atom_material_list = []
    
        # ------------------------------------------------------------------------
        # INITIALIZE THE ELEMENT LIST
    
        read_elements()
    
        # ------------------------------------------------------------------------
        # READING DATA OF ATOMS
    
        Number_of_total_atoms = read_xyz_file(filepath_xyz, radiustype)
    
        # We show the atoms of the first frame.
        first_frame = ALL_FRAMES[0]
    
        # ------------------------------------------------------------------------
        # MATERIAL PROPERTIES FOR ATOMS
    
        # Create first a new list of materials for each type of atom
        # (e.g. hydrogen)
        for atoms_of_one_type in first_frame:
            # Take the first atom
            atom = atoms_of_one_type[0]
            material = bpy.data.materials.new(atom.name)
            material.name = atom.name
            material.diffuse_color = atom.color
            atom_material_list.append(material)
    
        # Now, we go through all atoms and give them a material. For all atoms ...
        for atoms_of_one_type in first_frame:
            for atom in atoms_of_one_type:
                # ... and all materials ...
                for material in atom_material_list:
                    # ... select the correct material for the current atom via
                    # comparison of names ...
                    if atom.name in material.name:
                        # ... and give the atom its material properties.
                        # However, before we check if it is a vacancy
                        # The vacancy is represented by a transparent cube.
                        if atom.name == "Vacancy":
                            material.metallic = 0.8
                            material.specular_intensity = 0.5
                            material.roughness = 0.3
                            material.blend_method = 'ADD'
                            material.show_transparent_back = False
                            # Some properties for cycles
                            material.use_nodes = True
                            mat_P_BSDF = material.node_tree.nodes['Principled BSDF']
                            mat_P_BSDF.inputs['Metallic'].default_value = 0.1
                            mat_P_BSDF.inputs['Roughness'].default_value = 0.2
                            mat_P_BSDF.inputs['Transmission'].default_value = 0.97
                            mat_P_BSDF.inputs['IOR'].default_value = 0.8   
                        # The atom gets its properties.
                        atom.material = material
    
        # ------------------------------------------------------------------------
        # TRANSLATION OF THE STRUCTURE TO THE ORIGIN
    
        # It may happen that the structure in a XYZ file already has an offset
    
    
        # If chosen, the structure is put into the center of the scene
        # (only the first frame).
        if put_to_center == True and put_to_center_all == False:
    
            sum_vec = Vector((0.0,0.0,0.0))
    
            # Sum of all atom coordinates
            for atoms_of_one_type in first_frame:
                sum_vec = sum([atom.location for atom in atoms_of_one_type], sum_vec)
    
            # Then the average is taken
            sum_vec = sum_vec / Number_of_total_atoms
    
            # After, for each atom the center of gravity is substracted
            for atoms_of_one_type in first_frame:
                for atom in atoms_of_one_type:
                    atom.location -= sum_vec
    
        # If chosen, the structure is put into the center of the scene
        # (all frames).
        if put_to_center_all == True:
    
            # For all frames
            for frame in ALL_FRAMES:
    
                sum_vec = Vector((0.0,0.0,0.0))
    
                # Sum of all atom coordinates
                for (i, atoms_of_one_type) in enumerate(frame):
    
                    # This is a guarantee that only the total number of atoms of the
                    # first frame is used. Condition is, so far, that the number of
                    # atoms in a xyz file is constant. However, sometimes the number
                    # may increase (or decrease). If it decreases, the addon crashes.
                    # If it increases, only the tot number of atoms of the first frame
                    # is used.
                    # By time, I will allow varying atom numbers ... but this takes
                    # some time ...
                    if i >= Number_of_total_atoms:
                        break
    
                    sum_vec = sum([atom.location for atom in atoms_of_one_type], sum_vec)
    
                # Then the average is taken
                sum_vec = sum_vec / Number_of_total_atoms
    
                # After, for each atom the center of gravity is substracted
                for atoms_of_one_type in frame:
                    for atom in atoms_of_one_type:
                        atom.location -= sum_vec
    
    
        # ------------------------------------------------------------------------
        # SCALING
    
        # Take all atoms and adjust their radii and scale the distances.
        for atoms_of_one_type in first_frame:
            for atom in atoms_of_one_type:
                atom.location *= Ball_distance_factor
    
        # ------------------------------------------------------------------------
        # DETERMINATION OF SOME GEOMETRIC PROPERTIES
    
        # In the following, some geometric properties of the whole object are
        # determined: center, size, etc.
        sum_vec = Vector((0.0,0.0,0.0))
    
        # First the center is determined. All coordinates are summed up ...
        for atoms_of_one_type in first_frame:
            sum_vec = sum([atom.location for atom in atoms_of_one_type], sum_vec)
    
        # ... and the average is taken. This gives the center of the object.
        object_center_vec = sum_vec / Number_of_total_atoms
    
        # Now, we determine the size.The farthest atom from the object center is
        # taken as a measure. The size is used to place well the camera and light
        # into the scene.
    
        object_size_vec = []
        for atoms_of_one_type in first_frame:
            object_size_vec += [atom.location - object_center_vec for atom in atoms_of_one_type]
    
        object_size = 0.0
        object_size = max(object_size_vec).length
        
        # ------------------------------------------------------------------------
        # COLLECTION
    
        # Before we start to draw the atoms, we first create a collection for the 
        # atomic structure. All atoms (balls) are put into this collection.
        coll_structure_name = os.path.basename(filepath_xyz)
        scene = bpy.context.scene
        coll_structure = bpy.data.collections.new(coll_structure_name)
        scene.collection.children.link(coll_structure)
    
        # ------------------------------------------------------------------------
        # DRAWING THE ATOMS
    
        bpy.ops.object.select_all(action='DESELECT')
    
        # For each list of atoms of ONE type (e.g. Hydrogen)
        for atoms_of_one_type in first_frame:
    
            # Create first the vertices composed of the coordinates of all
            # atoms of one type
            atom_vertices = []
            for atom in atoms_of_one_type:
                # In fact, the object is created in the World's origin.
                # This is why 'object_center_vec' is substracted. At the end
                # the whole object is translated back to 'object_center_vec'.
                atom_vertices.append( atom.location - object_center_vec )
    
            # First, we create a collection of the element, which  
            # contains the atoms (balls + mesh)!  
            coll_element_name = atom.name # the element name
            # Create the new collection and ...
            coll_element = bpy.data.collections.new(coll_element_name)
            # ... link it to the collection, which contains all parts of the 
            # structure.
            coll_structure.children.link(coll_element)
    
            # Now, create a collection for the atoms, which includes the 
            # representative ball and the mesh.
            coll_atom_name = atom.name + "_atom"
            # Create the new collection and ...
            coll_atom = bpy.data.collections.new(coll_atom_name)
            # ... link it to the collection, which contains all parts of the 
            # element (ball and mesh).
            coll_element.children.link(coll_atom)
    
            # Build the mesh
            atom_mesh = bpy.data.meshes.new("Mesh_"+atom.name)
            atom_mesh.from_pydata(atom_vertices, [], [])
            atom_mesh.update()
            new_atom_mesh = bpy.data.objects.new(atom.name + "_mesh", atom_mesh)
    
            # Link active object to the new collection
            coll_atom.objects.link(new_atom_mesh)
    
            # Now, build a representative sphere (atom)
            if atom.name == "Vacancy":
                bpy.ops.mesh.primitive_cube_add(
    
                                align='WORLD', enter_editmode=False,
    
                                location=(0.0, 0.0, 0.0),
                                rotation=(0.0, 0.0, 0.0))
            else:
                # NURBS balls
                if Ball_type == "0":
                    bpy.ops.surface.primitive_nurbs_surface_sphere_add(
    
                                align='WORLD', enter_editmode=False,
    
                                location=(0,0,0), rotation=(0.0, 0.0, 0.0))
                # UV balls
                elif Ball_type == "1":
                    bpy.ops.mesh.primitive_uv_sphere_add(
                                segments=Ball_azimuth, ring_count=Ball_zenith,
    
                                align='WORLD', enter_editmode=False,
    
                                location=(0,0,0), rotation=(0, 0, 0))
                # Meta balls
                elif Ball_type == "2":
    
                    bpy.ops.object.metaball_add(type='BALL', align='WORLD',
    
                                enter_editmode=False, location=(0, 0, 0),
                                rotation=(0, 0, 0))
    
            ball = bpy.context.view_layer.objects.active
            # Hide this ball because its appearance has no meaning. It is just the
            # representative ball. The ball is visible at the vertices of the mesh.
            # Rememmber, this is a dupliverts construct!
    
            # However, hiding does not work with meta balls!
            if Ball_type == "0" or Ball_type == "1":
                ball.hide_set(True)
    
            # Scale up/down the ball radius.
            ball.scale  = (atom.radius*Ball_radius_factor,) * 3
    
            if atom.name == "Vacancy":
                ball.name = atom.name + "_cube"
            else:
                ball.name = atom.name + "_ball"
            ball.active_material = atom.material
            ball.parent = new_atom_mesh
            new_atom_mesh.instance_type = 'VERTS'
            # The object is back translated to 'object_center_vec'.
            new_atom_mesh.location = object_center_vec
            STRUCTURE.append(new_atom_mesh)
    
            # Note the collection where the ball was placed into.
            coll_all = ball.users_collection
            if len(coll_all) > 0:
                coll_past = coll_all[0]
            else:
                coll_past = bpy.context.scene.collection
            
            # Put the atom into the new collection 'atom' and ...
            coll_atom.objects.link(ball)
            # ... unlink the atom from the other collection.
            coll_past.objects.unlink(ball)
    
        # ------------------------------------------------------------------------
        # CAMERA and LIGHT SOURCES
    
        camera_light_source(use_camera,
                            use_light,
                            object_center_vec,
                            object_size)
    
        # ------------------------------------------------------------------------
        # SELECT ALL LOADED OBJECTS
    
        bpy.ops.object.select_all(action='DESELECT')
        obj = None
        for obj in STRUCTURE:
            obj.select_set(True)
        # activate the last selected object (perhaps another should be active?)
        if obj:
            bpy.context.view_layer.objects.active = obj
    
    
    
    def build_frames(frame_delta, frame_skip):
    
        scn = bpy.context.scene
    
        # Introduce the basis for all elements that appear in the structure.
        for element in STRUCTURE:
    
            bpy.ops.object.select_all(action='DESELECT')
            bpy.context.view_layer.objects.active = element
            element.select_set(True)
            bpy.ops.object.shape_key_add(True)
    
        frame_skip += 1
    
        # Introduce the keys and reference the atom positions for each key.
        i = 0
        for j, frame in enumerate(ALL_FRAMES):
    
            if j % frame_skip == 0:
    
                for elements_frame, elements_structure in zip(frame,STRUCTURE):
    
                    key = elements_structure.shape_key_add()
    
                    for atom_frame, atom_structure in zip(elements_frame, key.data):
    
                        atom_structure.co = (atom_frame.location
                                           - elements_structure.location)
    
                    key.name = atom_frame.name + "_frame_" + str(i)
    
                i += 1
    
        num_frames = i
    
        scn.frame_start = 0
        scn.frame_end = frame_delta * num_frames
    
        # Manage the values of the keys
        for element in STRUCTURE:
    
            scn.frame_current = 0
    
            element.data.shape_keys.key_blocks[1].value = 1.0
            element.data.shape_keys.key_blocks[2].value = 0.0
            element.data.shape_keys.key_blocks[1].keyframe_insert("value")
            element.data.shape_keys.key_blocks[2].keyframe_insert("value")
    
            scn.frame_current += frame_delta
    
            number = 0
    
            for number in range(num_frames)[2:]:#-1]:
    
                element.data.shape_keys.key_blocks[number-1].value = 0.0
                element.data.shape_keys.key_blocks[number].value = 1.0
                element.data.shape_keys.key_blocks[number+1].value = 0.0
                element.data.shape_keys.key_blocks[number-1].keyframe_insert("value")
                element.data.shape_keys.key_blocks[number].keyframe_insert("value")
                element.data.shape_keys.key_blocks[number+1].keyframe_insert("value")
    
                scn.frame_current += frame_delta
    
            number += 1
    
            element.data.shape_keys.key_blocks[number].value = 1.0
            element.data.shape_keys.key_blocks[number-1].value = 0.0
            element.data.shape_keys.key_blocks[number].keyframe_insert("value")
            element.data.shape_keys.key_blocks[number-1].keyframe_insert("value")