Newer
Older
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# #**** END GPL LICENSE BLOCK #****
# <pep8 compliant>
"""Translate to POV the control point compounded geometries like polygon
meshes or curve based shapes."""
# --------
# -- Faster mesh export ...one day
# import numpy as np
# --------
import bpy
from . import texturing # for how textures influence shaders
from .scenography import export_smoke
def matrix_as_pov_string(matrix):
"""Translate some transform matrix from Blender UI
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
to POV syntax and return that string """
matrix_string = (
"matrix <%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f>\n"
% (
matrix[0][0],
matrix[1][0],
matrix[2][0],
matrix[0][1],
matrix[1][1],
matrix[2][1],
matrix[0][2],
matrix[1][2],
matrix[2][2],
matrix[0][3],
matrix[1][3],
matrix[2][3],
)
)
return matrix_string
# objectNames = {}
DEF_OBJ_NAME = "Default"
def export_meshes(
preview_dir,
file,
scene,
sel,
csg,
string_strip_hyphen,
safety,
write_object_modifiers,
material_names_dictionary,
exported_lights_count,
unpacked_images,
image_format,
img_map,
img_map_transforms,
path_image,
smoke_path,
global_matrix,
write_matrix,
using_uberpov,
comments,
linebreaksinlists,
tab,
tab_level,
tab_write,
info_callback,
):
"""write all meshes as POV mesh2{} syntax to exported file """
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# # some numpy functions to speed up mesh export NOT IN USE YET
# # Current 2.93 beta numpy linking has troubles so definitions commented off for now
# # TODO: also write a numpy function to read matrices at object level?
# # feed below with mesh object.data, but only after doing data.calc_loop_triangles()
# def read_verts_co(self, mesh):
# #'float64' would be a slower 64-bit floating-point number numpy datatype
# # using 'float32' vert coordinates for now until any issue is reported
# mverts_co = np.zeros((len(mesh.vertices) * 3), dtype=np.float32)
# mesh.vertices.foreach_get("co", mverts_co)
# return np.reshape(mverts_co, (len(mesh.vertices), 3))
# def read_verts_idx(self, mesh):
# mverts_idx = np.zeros((len(mesh.vertices)), dtype=np.int64)
# mesh.vertices.foreach_get("index", mverts_idx)
# return np.reshape(mverts_idx, (len(mesh.vertices), 1))
# def read_verts_norms(self, mesh):
# #'float64' would be a slower 64-bit floating-point number numpy datatype
# # using less accurate 'float16' normals for now until any issue is reported
# mverts_no = np.zeros((len(mesh.vertices) * 3), dtype=np.float16)
# mesh.vertices.foreach_get("normal", mverts_no)
# return np.reshape(mverts_no, (len(mesh.vertices), 3))
# def read_faces_idx(self, mesh):
# mfaces_idx = np.zeros((len(mesh.loop_triangles)), dtype=np.int64)
# mesh.loop_triangles.foreach_get("index", mfaces_idx)
# return np.reshape(mfaces_idx, (len(mesh.loop_triangles), 1))
# def read_faces_verts_indices(self, mesh):
# mfaces_verts_idx = np.zeros((len(mesh.loop_triangles) * 3), dtype=np.int64)
# mesh.loop_triangles.foreach_get("vertices", mfaces_verts_idx)
# return np.reshape(mfaces_verts_idx, (len(mesh.loop_triangles), 3))
# # Why is below different from vertex indices?
# def read_faces_verts_loops(self, mesh):
# mfaces_verts_loops = np.zeros((len(mesh.loop_triangles) * 3), dtype=np.int64)
# mesh.loop_triangles.foreach_get("loops", mfaces_verts_loops)
# return np.reshape(mfaces_verts_loops, (len(mesh.loop_triangles), 3))
# def read_faces_norms(self, mesh):
# #'float64' would be a slower 64-bit floating-point number numpy datatype
# # using less accurate 'float16' normals for now until any issue is reported
# mfaces_no = np.zeros((len(mesh.loop_triangles) * 3), dtype=np.float16)
# mesh.loop_triangles.foreach_get("normal", mfaces_no)
# return np.reshape(mfaces_no, (len(mesh.loop_triangles), 3))
# def read_faces_smooth(self, mesh):
# mfaces_smth = np.zeros((len(mesh.loop_triangles) * 1), dtype=np.bool)
# mesh.loop_triangles.foreach_get("use_smooth", mfaces_smth)
# return np.reshape(mfaces_smth, (len(mesh.loop_triangles), 1))
# def read_faces_material_indices(self, mesh):
# mfaces_mats_idx = np.zeros((len(mesh.loop_triangles)), dtype=np.int16)
# mesh.loop_triangles.foreach_get("material_index", mfaces_mats_idx)
# return np.reshape(mfaces_mats_idx, (len(mesh.loop_triangles), 1))
# obmatslist = []
# def hasUniqueMaterial():
# # Grab materials attached to object instances ...
# if hasattr(ob, 'material_slots'):
# for ms in ob.material_slots:
# if ms.material is not None and ms.link == 'OBJECT':
# if ms.material in obmatslist:
# return False
# else:
# obmatslist.append(ms.material)
# return True
# def hasObjectMaterial(ob):
# # Grab materials attached to object instances ...
# if hasattr(ob, 'material_slots'):
# for ms in ob.material_slots:
# if ms.material is not None and ms.link == 'OBJECT':
# # If there is at least one material slot linked to the object
# # and not the data (mesh), always create a new, "private" data instance.
# return True
# return False
# For objects using local material(s) only!
# This is a mapping between a tuple (dataname, material_names_dictionary, ...),
# and the POV dataname.
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# As only objects using:
# * The same data.
# * EXACTLY the same materials, in EXACTLY the same sockets.
# ... can share a same instance in POV export.
obmats2data = {}
def check_object_materials(ob, name, dataname):
"""Compare other objects exported material slots to avoid rewriting duplicates"""
if hasattr(ob, 'material_slots'):
has_local_mats = False
key = [dataname]
for ms in ob.material_slots:
if ms.material is not None:
key.append(ms.material.name)
if ms.link == 'OBJECT' and not has_local_mats:
has_local_mats = True
else:
# Even if the slot is empty, it is important to grab it...
key.append("")
if has_local_mats:
# If this object uses local material(s), lets find if another object
# using the same data and exactly the same list of materials
# (in the same slots) has already been processed...
# Note that here also, we use object name as new, unique dataname for Pov.
key = tuple(key) # Lists are not hashable...
if key not in obmats2data:
obmats2data[key] = name
return obmats2data[key]
return None
data_ref = {}
def store(scene, ob, name, dataname, matrix):
# The Object needs to be written at least once but if its data is
# already in data_ref this has already been done.
# This func returns the "povray" name of the data, or None
# if no writing is needed.
if ob.is_modified(scene, 'RENDER'):
# Data modified.
# Create unique entry in data_ref by using object name
# (always unique in Blender) as data name.
data_ref[name] = [(name, matrix_as_pov_string(matrix))]
return name
# Here, we replace dataname by the value returned by check_object_materials, only if
# it is not evaluated to False (i.e. only if the object uses some local material(s)).
dataname = check_object_materials(ob, name, dataname) or dataname
if dataname in data_ref:
# Data already known, just add the object instance.
data_ref[dataname].append((name, matrix_as_pov_string(matrix)))
# No need to write data
return None
# Else (no return yet): Data not yet processed, create a new entry in data_ref.
data_ref[dataname] = [(name, matrix_as_pov_string(matrix))]
return dataname
ob_num = 0
depsgraph = bpy.context.evaluated_depsgraph_get()
for ob in sel:
# Using depsgraph
ob = bpy.data.objects[ob.name].evaluated_get(depsgraph)
# subtract original from the count of their instances as were not counted before 2.8
if not (ob.is_instancer and ob.original != ob):
ob_num += 1
# XXX I moved all those checks here, as there is no need to compute names
# for object we won't export here!
if ob.type in {
'LIGHT',
'CAMERA', # 'EMPTY', #empties can bear dupligroups
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
'META',
'ARMATURE',
'LATTICE',
}:
continue
fluid_flag = False
for mod in ob.modifiers:
if mod and hasattr(mod, 'fluid_type'):
fluid_flag = True
if mod.fluid_type == 'DOMAIN':
if mod.domain_settings.domain_type == 'GAS':
export_smoke(
file, ob.name, smoke_path, comments, global_matrix, write_matrix
)
break # don't render domain mesh, skip to next object.
if mod.fluid_type == 'FLOW': # The domain contains all the smoke. so that's it.
if mod.flow_settings.flow_type == 'SMOKE': # Check how liquids behave
break # don't render smoke flow emitter mesh either, skip to next object.
if not fluid_flag:
# Export Hair
# importing here rather than at the top recommended for addons startup footprint
from .object_particles import export_hair
render_emitter = True
if hasattr(ob, 'particle_systems'):
render_emitter = False
if ob.show_instancer_for_render:
render_emitter = True
for p_sys in ob.particle_systems:
for mod in [
m
for m in ob.modifiers
if (m is not None) and (m.type == 'PARTICLE_SYSTEM')
]:
if (
(p_sys.settings.render_type == 'PATH')
and mod.show_render
and (p_sys.name == mod.particle_system.name)
):
export_hair(file, ob, mod, p_sys, global_matrix, write_matrix)
if not render_emitter:
continue # don't render mesh, skip to next object.
# ------------------------------------------------
# Generating a name for object just like materials to be able to use it
# (baking for now or anything else).
# XXX I don't understand that if we are here, sel if a non-empty iterable,
# so this condition is always True, IMO -- mont29
# EMPTY type objects treated a little further below -- MR
# modified elif to if below as non EMPTY objects can also be instancers
if ob.is_instancer:
if ob.instance_type == 'COLLECTION':
name_orig = "OB" + ob.name
dataname_orig = "DATA" + ob.instance_collection.name
else:
# hoping only dupligroups have several source datablocks
# ob_dupli_list_create(scene) #deprecated in 2.8
for eachduplicate in depsgraph.object_instances:
# Real dupli instance filtered because
# original included in list since 2.8
if eachduplicate.is_instance:
dataname_orig = "DATA" + eachduplicate.object.name
# ob.dupli_list_clear() #just don't store any reference to instance since 2.8
elif ob.data: # not an EMPTY type object
name_orig = "OB" + ob.name
dataname_orig = "DATA" + ob.data.name
elif ob.type == 'EMPTY':
name_orig = "OB" + ob.name
dataname_orig = "DATA" + ob.name
else:
name_orig = DEF_OBJ_NAME
dataname_orig = DEF_OBJ_NAME
name = string_strip_hyphen(bpy.path.clean_name(name_orig))
dataname = string_strip_hyphen(bpy.path.clean_name(dataname_orig))
# for slot in ob.material_slots:
# if slot.material is not None and slot.link == 'OBJECT':
# obmaterial = slot.material
# ------------------------------------------------
if info_callback:
info_callback("Object %2.d of %2.d (%s)" % (ob_num, len(sel), ob.name))
matrix = global_matrix @ ob.matrix_world
povdataname = store(scene, ob, name, dataname, matrix)
if povdataname is None:
print("This is an instance of " + name)
continue
print("Writing Down First Occurrence of " + name)
# ------------ Povray Primitives ------------ #
# special export_curves() function takes care of writing
# lathe, sphere_sweep, birail, and loft except with modifiers
# converted to mesh
if not ob.is_modified(scene, 'RENDER'):
if ob.type == 'CURVE' and (
ob.pov.curveshape in {'lathe', 'sphere_sweep', 'loft'}
):
continue # Don't render proxy mesh, skip to next object
# pov_mat_name = "Default_texture" # Not used...remove?
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
if ob.pov.object_as == 'ISOSURFACE':
tab_write("#declare %s = isosurface{ \n" % povdataname)
tab_write("function{ \n")
text_name = ob.pov.iso_function_text
if text_name:
node_tree = bpy.context.scene.node_tree
for node in node_tree.nodes:
if node.bl_idname == "IsoPropsNode" and node.label == ob.name:
for inp in node.inputs:
if inp:
tab_write(
"#declare %s = %.6g;\n" % (inp.name, inp.default_value)
)
text = bpy.data.texts[text_name]
for line in text.lines:
split = line.body.split()
if split[0] != "#declare":
tab_write("%s\n" % line.body)
else:
tab_write("abs(x) - 2 + y")
tab_write("}\n")
tab_write("threshold %.6g\n" % ob.pov.threshold)
tab_write("max_gradient %.6g\n" % ob.pov.max_gradient)
tab_write("accuracy %.6g\n" % ob.pov.accuracy)
tab_write("contained_by { ")
if ob.pov.contained_by == "sphere":
tab_write("sphere {0,%.6g}}\n" % ob.pov.container_scale)
else:
tab_write(
"box {-%.6g,%.6g}}\n" % (ob.pov.container_scale, ob.pov.container_scale)
)
if ob.pov.all_intersections:
tab_write("all_intersections\n")
else:
if ob.pov.max_trace > 1:
tab_write("max_trace %.6g\n" % ob.pov.max_trace)
if ob.active_material:
# pov_mat_name = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
write_object_material_interior(material, ob, tab_write)
except IndexError:
print(me)
# tab_write("texture {%s}\n"%pov_mat_name)
tab_write("scale %.6g\n" % (1 / ob.pov.container_scale))
tab_write("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'SUPERELLIPSOID':
tab_write(
"#declare %s = superellipsoid{ <%.4f,%.4f>\n"
% (povdataname, ob.pov.se_n2, ob.pov.se_n1)
)
if ob.active_material:
# pov_mat_name = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
write_object_material_interior(material, ob, tab_write)
except IndexError:
print(me)
# tab_write("texture {%s}\n"%pov_mat_name)
write_object_modifiers(scene, ob, file)
tab_write("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'SUPERTORUS':
rad_maj = ob.pov.st_major_radius
rad_min = ob.pov.st_minor_radius
ring = ob.pov.st_ring
cross = ob.pov.st_cross
accuracy = ob.pov.st_accuracy
gradient = ob.pov.st_max_gradient
file.write(
"#macro Supertorus(RMj, RMn, MajorControl, MinorControl, Accuracy, MaxGradient)\n"
)
file.write(" #local CP = 2/MinorControl;\n")
file.write(" #local RP = 2/MajorControl;\n")
file.write(" isosurface {\n")
file.write(
" function { pow( pow(abs(pow(pow(abs(x),RP) + pow(abs(z),RP), 1/RP) - RMj),CP) + pow(abs(y),CP) ,1/CP) - RMn }\n"
)
file.write(" threshold 0\n")
file.write(
" contained_by {box {<-RMj-RMn,-RMn,-RMj-RMn>, < RMj+RMn, RMn, RMj+RMn>}}\n"
)
file.write(" #if(MaxGradient >= 1)\n")
file.write(" max_gradient MaxGradient\n")
file.write(" #else\n")
file.write(" evaluate 1, 10, 0.1\n")
file.write(" #end\n")
file.write(" accuracy Accuracy\n")
file.write(" }\n")
file.write("#end\n")
tab_write(
"#declare %s = object{ Supertorus( %.4g,%.4g,%.4g,%.4g,%.4g,%.4g)\n"
% (povdataname, rad_maj, rad_min, ring, cross, accuracy, gradient)
)
if ob.active_material:
# pov_mat_name = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
write_object_material_interior(material, ob, tab_write)
except IndexError:
print(me)
# tab_write("texture {%s}\n"%pov_mat_name)
write_object_modifiers(scene, ob, file)
tab_write("rotate x*90\n")
tab_write("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'PLANE':
tab_write("#declare %s = plane{ <0,0,1>,1\n" % povdataname)
if ob.active_material:
# pov_mat_name = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
write_object_material_interior(material, ob, tab_write)
except IndexError:
print(me)
# tab_write("texture {%s}\n"%pov_mat_name)
write_object_modifiers(scene, ob, file)
# tab_write("rotate x*90\n")
tab_write("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'BOX':
tab_write("#declare %s = box { -1,1\n" % povdataname)
if ob.active_material:
# pov_mat_name = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
write_object_material_interior(material, ob, tab_write)
except IndexError:
print(me)
# tab_write("texture {%s}\n"%pov_mat_name)
write_object_modifiers(scene, ob, file)
# tab_write("rotate x*90\n")
tab_write("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'CONE':
br = ob.pov.cone_base_radius
cr = ob.pov.cone_cap_radius
bz = ob.pov.cone_base_z
cz = ob.pov.cone_cap_z
tab_write(
"#declare %s = cone { <0,0,%.4f>,%.4f,<0,0,%.4f>,%.4f\n"
% (povdataname, bz, br, cz, cr)
)
if ob.active_material:
# pov_mat_name = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
write_object_material_interior(material, ob, tab_write)
except IndexError:
print(me)
# tab_write("texture {%s}\n"%pov_mat_name)
write_object_modifiers(scene, ob, file)
# tab_write("rotate x*90\n")
tab_write("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'CYLINDER':
r = ob.pov.cylinder_radius
x2 = ob.pov.cylinder_location_cap[0]
y2 = ob.pov.cylinder_location_cap[1]
z2 = ob.pov.cylinder_location_cap[2]
tab_write(
"#declare %s = cylinder { <0,0,0>,<%6f,%6f,%6f>,%6f\n"
% (povdataname, x2, y2, z2, r)
)
if ob.active_material:
# pov_mat_name = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
write_object_material_interior(material, ob, tab_write)
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
except IndexError:
print(me)
# tab_write("texture {%s}\n"%pov_mat_name)
# cylinders written at origin, translated below
write_object_modifiers(scene, ob, file)
# tab_write("rotate x*90\n")
tab_write("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'HEIGHT_FIELD':
data = ""
filename = ob.pov.hf_filename
data += '"%s"' % filename
gamma = ' gamma %.4f' % ob.pov.hf_gamma
data += gamma
if ob.pov.hf_premultiplied:
data += ' premultiplied on'
if ob.pov.hf_smooth:
data += ' smooth'
if ob.pov.hf_water > 0:
data += ' water_level %.4f' % ob.pov.hf_water
# hierarchy = ob.pov.hf_hierarchy
tab_write('#declare %s = height_field { %s\n' % (povdataname, data))
if ob.active_material:
# pov_mat_name = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
write_object_material_interior(material, ob, tab_write)
except IndexError:
print(me)
# tab_write("texture {%s}\n"%pov_mat_name)
write_object_modifiers(scene, ob, file)
tab_write("rotate x*90\n")
tab_write("translate <-0.5,0.5,0>\n")
tab_write("scale <0,-1,0>\n")
tab_write("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'SPHERE':
tab_write(
"#declare %s = sphere { 0,%6f\n" % (povdataname, ob.pov.sphere_radius)
)
if ob.active_material:
# pov_mat_name = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
write_object_material_interior(material, ob, tab_write)
except IndexError:
print(me)
# tab_write("texture {%s}\n"%pov_mat_name)
write_object_modifiers(scene, ob, file)
# tab_write("rotate x*90\n")
tab_write("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'TORUS':
tab_write(
"#declare %s = torus { %.4f,%.4f\n"
% (povdataname, ob.pov.torus_major_radius, ob.pov.torus_minor_radius)
)
if ob.active_material:
# pov_mat_name = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
write_object_material_interior(material, ob, tab_write)
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
except IndexError:
print(me)
# tab_write("texture {%s}\n"%pov_mat_name)
write_object_modifiers(scene, ob, file)
tab_write("rotate x*90\n")
tab_write("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'PARAMETRIC':
tab_write("#declare %s = parametric {\n" % povdataname)
tab_write("function { %s }\n" % ob.pov.x_eq)
tab_write("function { %s }\n" % ob.pov.y_eq)
tab_write("function { %s }\n" % ob.pov.z_eq)
tab_write(
"<%.4f,%.4f>, <%.4f,%.4f>\n"
% (ob.pov.u_min, ob.pov.v_min, ob.pov.u_max, ob.pov.v_max)
)
# Previous to 3.8 default max_gradient 1.0 was too slow
tab_write("max_gradient 0.001\n")
if ob.pov.contained_by == "sphere":
tab_write("contained_by { sphere{0, 2} }\n")
else:
tab_write("contained_by { box{-2, 2} }\n")
tab_write("max_gradient %.6f\n" % ob.pov.max_gradient)
tab_write("accuracy %.6f\n" % ob.pov.accuracy)
tab_write("precompute 10 x,y,z\n")
tab_write("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'POLYCIRCLE':
# TODO write below macro Once:
# if write_polytocircle_macro_once == 0:
file.write("/****************************\n")
file.write("This macro was written by 'And'.\n")
file.write("Link:(http://news.povray.org/povray.binaries.scene-files/)\n")
file.write("****************************/\n")
file.write("//from math.inc:\n")
file.write("#macro VPerp_Adjust(V, Axis)\n")
file.write(" vnormalize(vcross(vcross(Axis, V), Axis))\n")
file.write("#end\n")
file.write("//Then for the actual macro\n")
file.write("#macro Shape_Slice_Plane_2P_1V(point1, point2, clip_direct)\n")
file.write("#local p1 = point1 + <0,0,0>;\n")
file.write("#local p2 = point2 + <0,0,0>;\n")
file.write("#local clip_v = vnormalize(clip_direct + <0,0,0>);\n")
file.write("#local direct_v1 = vnormalize(p2 - p1);\n")
file.write("#if(vdot(direct_v1, clip_v) = 1)\n")
file.write(' #error "Shape_Slice_Plane_2P_1V error: Can\'t decide plane"\n')
file.write("#end\n\n")
file.write(
"#local norm = -vnormalize(clip_v - direct_v1*vdot(direct_v1,clip_v));\n"
)
file.write("#local d = vdot(norm, p1);\n")
file.write("plane{\n")
file.write("norm, d\n")
file.write("}\n")
file.write("#end\n\n")
file.write("//polygon to circle\n")
file.write(
"#macro Shape_Polygon_To_Circle_Blending(_polygon_n, _side_face, _polygon_circumscribed_radius, _circle_radius, _height)\n"
)
file.write("#local n = int(_polygon_n);\n")
file.write("#if(n < 3)\n")
file.write(" #error " "\n")
file.write("#end\n\n")
file.write("#local front_v = VPerp_Adjust(_side_face, z);\n")
file.write("#if(vdot(front_v, x) >= 0)\n")
file.write(" #local face_ang = acos(vdot(-y, front_v));\n")
file.write("#else\n")
file.write(" #local face_ang = -acos(vdot(-y, front_v));\n")
file.write("#end\n")
file.write("#local polyg_ext_ang = 2*pi/n;\n")
file.write("#local polyg_outer_r = _polygon_circumscribed_radius;\n")
file.write("#local polyg_inner_r = polyg_outer_r*cos(polyg_ext_ang/2);\n")
file.write("#local cycle_r = _circle_radius;\n")
file.write("#local h = _height;\n")
file.write("#if(polyg_outer_r < 0 | cycle_r < 0 | h <= 0)\n")
file.write(' #error "error: each side length must be positive"\n')
file.write("#end\n\n")
file.write("#local multi = 1000;\n")
file.write("#local poly_obj =\n")
file.write("polynomial{\n")
file.write("4,\n")
file.write("xyz(0,2,2): multi*1,\n")
file.write("xyz(2,0,1): multi*2*h,\n")
file.write("xyz(1,0,2): multi*2*(polyg_inner_r-cycle_r),\n")
file.write("xyz(2,0,0): multi*(-h*h),\n")
file.write("xyz(0,0,2): multi*(-pow(cycle_r - polyg_inner_r, 2)),\n")
file.write("xyz(1,0,1): multi*2*h*(-2*polyg_inner_r + cycle_r),\n")
file.write("xyz(1,0,0): multi*2*h*h*polyg_inner_r,\n")
file.write("xyz(0,0,1): multi*2*h*polyg_inner_r*(polyg_inner_r - cycle_r),\n")
file.write("xyz(0,0,0): multi*(-pow(polyg_inner_r*h, 2))\n")
file.write("sturm\n")
file.write("}\n\n")
file.write("#local mockup1 =\n")
file.write("difference{\n")
file.write(" cylinder{\n")
file.write(" <0,0,0.0>,<0,0,h>, max(polyg_outer_r, cycle_r)\n")
file.write(" }\n\n")
file.write(" #for(i, 0, n-1)\n")
file.write(" object{\n")
file.write(" poly_obj\n")
file.write(" inverse\n")
file.write(" rotate <0, 0, -90 + degrees(polyg_ext_ang*i)>\n")
file.write(" }\n")
file.write(" object{\n")
file.write(
" Shape_Slice_Plane_2P_1V(<polyg_inner_r,0,0>,<cycle_r,0,h>,x)\n"
)
file.write(" rotate <0, 0, -90 + degrees(polyg_ext_ang*i)>\n")
file.write(" }\n")
file.write(" #end\n")
file.write("}\n\n")
file.write("object{\n")
file.write("mockup1\n")
file.write("rotate <0, 0, degrees(face_ang)>\n")
file.write("}\n")
file.write("#end\n")
# Use the macro
ngon = ob.pov.polytocircle_ngon
ngonR = ob.pov.polytocircle_ngonR
circleR = ob.pov.polytocircle_circleR
tab_write(
"#declare %s = object { Shape_Polygon_To_Circle_Blending(%s, z, %.4f, %.4f, 2) rotate x*180 translate z*1\n"
% (povdataname, ngon, ngonR, circleR)
)
tab_write("}\n")
continue # Don't render proxy mesh, skip to next object
# Implicit else-if (as not skipped by previous "continue") Keep this last.
# For originals, but not their instances, attempt to export mesh:
if not ob.is_instancer:
# except duplis which should be instances groups for now but all duplis later
if ob.type == 'EMPTY':
# XXX Should we only write this once and instantiate the same for every
# empty in the final matrix writing, or even no marix and just a comment
# with empty object transforms ?
tab_write("\n//dummy sphere to represent Empty location\n")
tab_write(
"#declare %s =sphere {<0, 0, 0>,0 pigment{rgbt 1} no_image no_reflection no_radiosity photons{pass_through collect off} hollow}\n"
% povdataname
)
continue # Don't render empty object but this is later addition, watch it.
ob_eval = ob # not sure this is needed in case to_mesh_clear could damage ob ?
try:
me = ob_eval.to_mesh()
# Here identify the exception for mesh object with no data: Runtime-Error ?
# So we can write something for the dataname or maybe treated "if not me" below
except BaseException as e:
print(e.__doc__)
print('An exception occurred: {}'.format(e))
# also happens when curves cant be made into meshes because of no-data
continue
importance = ob.pov.importance_value
if me:
me.calc_loop_triangles()
me_materials = me.materials
me_faces = me.loop_triangles[:]
# Below otypes = ['int32'] is a 32-bit signed integer number numpy datatype
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
# get_v_index = np.vectorize(lambda l: l.vertex_index, otypes = ['int32'], cache = True)
# faces_verts_idx = get_v_index(me_looptris)
# if len(me_faces)==0:
# tab_write("\n//dummy sphere to represent empty mesh location\n")
# tab_write("#declare %s =sphere {<0, 0, 0>,0 pigment{rgbt 1} no_image no_reflection no_radiosity photons{pass_through collect off} hollow}\n" % povdataname)
if not me or not me_faces:
tab_write("\n//dummy sphere to represent empty mesh location\n")
tab_write(
"#declare %s =sphere {<0, 0, 0>,0 pigment{rgbt 1} no_image no_reflection no_radiosity photons{pass_through collect off} hollow}\n"
% povdataname
)
continue
uv_layers = me.uv_layers
if len(uv_layers) > 0:
if me.uv_layers.active and uv_layers.active.data:
uv_layer = uv_layers.active.data
else:
uv_layer = None
try:
# vcol_layer = me.vertex_colors.active.data
vcol_layer = me.vertex_colors.active.data
except AttributeError:
vcol_layer = None
faces_verts = [f.vertices[:] for f in me_faces]
faces_normals = [f.normal[:] for f in me_faces]
verts_normals = [v.normal[:] for v in me.vertices]
# Use named declaration to allow reference e.g. for baking. MR
file.write("\n")
tab_write("#declare %s =\n" % povdataname)
tab_write("mesh2 {\n")
tab_write("vertex_vectors {\n")
tab_write("%d" % len(me.vertices)) # vert count
tab_str = tab * tab_level
for v in me.vertices:
if linebreaksinlists:
file.write(",\n")
file.write(tab_str + "<%.6f, %.6f, %.6f>" % v.co[:]) # vert count
else:
file.write(", ")
file.write("<%.6f, %.6f, %.6f>" % v.co[:]) # vert count
# tab_write("<%.6f, %.6f, %.6f>" % v.co[:]) # vert count
file.write("\n")
tab_write("}\n")
# Build unique Normal list
uniqueNormals = {}
for fi, f in enumerate(me_faces):
fv = faces_verts[fi]
# [-1] is a dummy index, use a list so we can modify in place
if f.use_smooth: # Use vertex normals
for v in fv:
key = verts_normals[v]
uniqueNormals[key] = [-1]
else: # Use face normal
key = faces_normals[fi]
uniqueNormals[key] = [-1]
tab_write("normal_vectors {\n")
tab_write("%d" % len(uniqueNormals)) # vert count
idx = 0
tab_str = tab * tab_level
for no, index in uniqueNormals.items():
if linebreaksinlists:
file.write(",\n")
file.write(tab_str + "<%.6f, %.6f, %.6f>" % no) # vert count
else:
file.write(", ")
file.write("<%.6f, %.6f, %.6f>" % no) # vert count
index[0] = idx
idx += 1
file.write("\n")
tab_write("}\n")
# Vertex colors
vertCols = {} # Use for material colors also.
if uv_layer:
# Generate unique UV's
uniqueUVs = {}
# n = 0
for f in me_faces: # me.faces in 2.7
uvs = [uv_layer[loop_index].uv[:] for loop_index in f.loops]
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
for uv in uvs:
uniqueUVs[uv[:]] = [-1]
tab_write("uv_vectors {\n")
# print unique_uvs
tab_write("%d" % len(uniqueUVs)) # vert count
idx = 0
tab_str = tab * tab_level
for uv, index in uniqueUVs.items():
if linebreaksinlists:
file.write(",\n")
file.write(tab_str + "<%.6f, %.6f>" % uv)
else:
file.write(", ")
file.write("<%.6f, %.6f>" % uv)
index[0] = idx
idx += 1
'''
else:
# Just add 1 dummy vector, no real UV's
tab_write('1') # vert count
file.write(',\n\t\t<0.0, 0.0>')
'''
file.write("\n")
tab_write("}\n")
if me.vertex_colors:
# Write down vertex colors as a texture for each vertex
tab_write("texture_list {\n")
tab_write("%d\n" % (len(me_faces) * 3)) # assumes we have only triangles
VcolIdx = 0
if comments:
file.write(
"\n //Vertex colors: one simple pigment texture per vertex\n"
)
for fi, f in enumerate(me_faces):
# annoying, index may be invalid
material_index = f.material_index
try:
material = me_materials[material_index]
except BaseException as e:
print(e.__doc__)
print('An exception occurred: {}'.format(e))
material = None
if (
material
): # and material.use_vertex_color_paint: #Always use vertex color when there is some for now
cols = [vcol_layer[loop_index].color[:] for loop_index in f.loops]
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
for col in cols:
key = (
col[0],
col[1],
col[2],
material_index,
) # Material index!
VcolIdx += 1
vertCols[key] = [VcolIdx]
if linebreaksinlists:
tab_write(
"texture {pigment{ color srgb <%6f,%6f,%6f> }}\n"
% (col[0], col[1], col[2])
)
else:
tab_write(
"texture {pigment{ color srgb <%6f,%6f,%6f> }}"
% (col[0], col[1], col[2])
)
tab_str = tab * tab_level
else:
if material:
# Multiply diffuse with SSS Color
if material.pov_subsurface_scattering.use:
diffuse_color = [
i * j
for i, j in zip(
material.pov_subsurface_scattering.color[:],
material.diffuse_color[:],
)
]
key = (
diffuse_color[0],
diffuse_color[1],
diffuse_color[2],
material_index,
)
vertCols[key] = [-1]
else:
diffuse_color = material.diffuse_color[:]
key = (
diffuse_color[0],
diffuse_color[1],
diffuse_color[2],
material_index,
)
vertCols[key] = [-1]
tab_write("\n}\n")
# Face indices
tab_write("\nface_indices {\n")
tab_write("%d" % (len(me_faces))) # faces count
tab_str = tab * tab_level
for fi, f in enumerate(me_faces):
fv = faces_verts[fi]
material_index = f.material_index
if vcol_layer:
cols = [vcol_layer[loop_index].color[:] for loop_index in f.loops]
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
if (
not me_materials or me_materials[material_index] is None
): # No materials
if linebreaksinlists:
file.write(",\n")
# vert count
file.write(tab_str + "<%d,%d,%d>" % (fv[0], fv[1], fv[2]))
else:
file.write(", ")
file.write("<%d,%d,%d>" % (fv[0], fv[1], fv[2])) # vert count
else:
material = me_materials[material_index]
if me.vertex_colors: # and material.use_vertex_color_paint:
# Color per vertex - vertex color
col1 = cols[0]
col2 = cols[1]
col3 = cols[2]
ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
else:
# Color per material - flat material color
if material.pov_subsurface_scattering.use:
diffuse_color = [
i * j
for i, j in zip(
material.pov_subsurface_scattering.color[:],
material.diffuse_color[:],
)
]
else:
diffuse_color = material.diffuse_color[:]
ci1 = ci2 = ci3 = vertCols[
diffuse_color[0],
diffuse_color[1],
diffuse_color[2],
f.material_index,
][0]
# ci are zero based index so we'll subtract 1 from them
if linebreaksinlists:
file.write(",\n")
file.write(
tab_str
+ "<%d,%d,%d>, %d,%d,%d"