Skip to content
Snippets Groups Projects
scenography.py 36 KiB
Newer Older
  • Learn to ignore specific revisions
  • Maurice Raybaud's avatar
    Maurice Raybaud committed
    # ***** BEGIN GPL LICENSE BLOCK *****
    #
    # This program is free software; you can redistribute it and/or
    # modify it under the terms of the GNU General Public License
    # as published by the Free Software Foundation; either version 2
    # of the License, or (at your option) any later version.
    #
    # This program is distributed in the hope that it will be useful,
    # but WITHOUT ANY WARRANTY; without even the implied warranty of
    # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    # GNU General Public License for more details.
    #
    # You should have received a copy of the GNU General Public License
    # along with this program; if not, write to the Free Software Foundation,
    # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    #
    # #**** END GPL LICENSE BLOCK #****
    
    # <pep8 compliant>
    
    """With respect to camera frame and optics distortions, also export environment
    
    with world, sky, atmospheric effects such as rainbows or smoke """
    
    import bpy
    
    from bpy.utils import register_class, unregister_class
    
    Maurice Raybaud's avatar
    Maurice Raybaud committed
    27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
    import os
    from imghdr import what  # imghdr is a python lib to identify image file types
    from math import atan, pi, sqrt, degrees
    from . import df3_library  # for smoke rendering
    from .object_primitives import write_object_modifiers
    
    ##############find image texture # used for export_world
    def image_format(imgF):
        """Identify input image filetypes to transmit to POV."""
        # First use the below explicit extensions to identify image file prospects
        ext = {
            'JPG': "jpeg",
            'JPEG': "jpeg",
            'GIF': "gif",
            'TGA': "tga",
            'IFF': "iff",
            'PPM': "ppm",
            'PNG': "png",
            'SYS': "sys",
            'TIFF': "tiff",
            'TIF': "tiff",
            'EXR': "exr",
            'HDR': "hdr",
        }.get(os.path.splitext(imgF)[-1].upper(), "")
        # Then, use imghdr to really identify the filetype as it can be different
        if not ext:
            # maybe add a check for if path exists here?
            print(" WARNING: texture image has no extension")  # too verbose
    
            ext = what(imgF)  # imghdr is a python lib to identify image file types
        return ext
    
    
    def img_map(ts):
        """Translate mapping type from Blender UI to POV syntax and return that string."""
        image_map = ""
        texdata = bpy.data.textures[ts.texture]
        if ts.mapping == 'FLAT':
            image_map = "map_type 0 "
        elif ts.mapping == 'SPHERE':
            image_map = "map_type 1 "
        elif ts.mapping == 'TUBE':
            image_map = "map_type 2 "
    
        ## map_type 3 and 4 in development (?) (ENV in pov 3.8)
        ## for POV-Ray, currently they just seem to default back to Flat (type 0)
        # elif ts.mapping=="?":
        #    image_map = " map_type 3 "
        # elif ts.mapping=="?":
        #    image_map = " map_type 4 "
        if ts.use_interpolation:  # Available if image sampling class reactivated?
            image_map += " interpolate 2 "
        if texdata.extension == 'CLIP':
            image_map += " once "
        # image_map += "}"
        # if ts.mapping=='CUBE':
        #    image_map+= "warp { cubic } rotate <-90,0,180>"
        # no direct cube type mapping. Though this should work in POV 3.7
        # it doesn't give that good results(best suited to environment maps?)
        # if image_map == "":
        #    print(" No texture image  found ")
        return image_map
    
    
    def img_map_transforms(ts):
        """Translate mapping transformations from Blender UI to POV syntax and return that string."""
        # XXX TODO: unchecked textures give error of variable referenced before assignment XXX
        # POV-Ray "scale" is not a number of repetitions factor, but ,its
        # inverse, a standard scale factor.
        # 0.5 Offset is needed relatively to scale because center of the
        # scale is 0.5,0.5 in blender and 0,0 in POV
        # Strange that the translation factor for scale is not the same as for
        # translate.
        # TODO: verify both matches with other blender renderers / internal in previous versions.
        image_map_transforms = ""
        image_map_transforms = "scale <%.4g,%.4g,%.4g> translate <%.4g,%.4g,%.4g>" % (
            ts.scale[0],
            ts.scale[1],
            ts.scale[2],
            ts.offset[0],
            ts.offset[1],
            ts.offset[2],
        )
        # image_map_transforms = (" translate <-0.5,-0.5,0.0> scale <%.4g,%.4g,%.4g> translate <%.4g,%.4g,%.4g>" % \
        # ( 1.0 / ts.scale.x,
        # 1.0 / ts.scale.y,
        # 1.0 / ts.scale.z,
        # (0.5 / ts.scale.x) + ts.offset.x,
        # (0.5 / ts.scale.y) + ts.offset.y,
        # ts.offset.z))
        # image_map_transforms = (
        # "translate <-0.5,-0.5,0> "
        # "scale <-1,-1,1> * <%.4g,%.4g,%.4g> "
        # "translate <0.5,0.5,0> + <%.4g,%.4g,%.4g>" % \
        # (1.0 / ts.scale.x,
        # 1.0 / ts.scale.y,
        # 1.0 / ts.scale.z,
        # ts.offset.x,
        # ts.offset.y,
        # ts.offset.z)
        # )
        return image_map_transforms
    
    
    def img_map_bg(wts):
        """Translate world mapping from Blender UI to POV syntax and return that string."""
        tex = bpy.data.textures[wts.texture]
        image_mapBG = ""
        # texture_coords refers to the mapping of world textures:
        if wts.texture_coords == 'VIEW' or wts.texture_coords == 'GLOBAL':
            image_mapBG = " map_type 0 "
        elif wts.texture_coords == 'ANGMAP':
            image_mapBG = " map_type 1 "
        elif wts.texture_coords == 'TUBE':
            image_mapBG = " map_type 2 "
    
        if tex.use_interpolation:
            image_mapBG += " interpolate 2 "
        if tex.extension == 'CLIP':
            image_mapBG += " once "
        # image_mapBG += "}"
        # if wts.mapping == 'CUBE':
        #   image_mapBG += "warp { cubic } rotate <-90,0,180>"
        # no direct cube type mapping. Though this should work in POV 3.7
        # it doesn't give that good results(best suited to environment maps?)
        # if image_mapBG == "":
        #    print(" No background texture image  found ")
        return image_mapBG
    
    
    def path_image(image):
        """Conform a path string to POV syntax to avoid POV errors."""
        return bpy.path.abspath(image.filepath, library=image.library).replace("\\", "/")
        # .replace("\\","/") to get only forward slashes as it's what POV prefers,
        # even on windows
    
    
    # end find image texture
    # -----------------------------------------------------------------------------
    
    
    def export_camera(scene, global_matrix, render, tab_write):
        """Translate camera from Blender UI to POV syntax and write to exported file."""
        camera = scene.camera
    
        # DH disabled for now, this isn't the correct context
        active_object = None  # bpy.context.active_object # does not always work  MR
        matrix = global_matrix @ camera.matrix_world
        focal_point = camera.data.dof.focus_distance
    
        # compute resolution
        q_size = render.resolution_x / render.resolution_y
        tab_write("#declare camLocation  = <%.6f, %.6f, %.6f>;\n" % matrix.translation[:])
        tab_write(
            "#declare camLookAt = <%.6f, %.6f, %.6f>;\n"
            % tuple([degrees(e) for e in matrix.to_3x3().to_euler()])
        )
    
        tab_write("camera {\n")
        if scene.pov.baking_enable and active_object and active_object.type == 'MESH':
            tab_write("mesh_camera{ 1 3\n")  # distribution 3 is what we want here
            tab_write("mesh{%s}\n" % active_object.name)
            tab_write("}\n")
            tab_write("location <0,0,.01>")
            tab_write("direction <0,0,-1>")
    
        else:
            if camera.data.type == 'ORTHO':
                # todo: track when SensorHeightRatio was added to see if needed (not used)
                sensor_height_ratio = (
                    render.resolution_x * camera.data.ortho_scale / render.resolution_y
                )
                tab_write("orthographic\n")
                # Blender angle is radian so should be converted to degrees:
                # % (camera.data.angle * (180.0 / pi) )
                # but actually argument is not compulsory after angle in pov ortho mode
                tab_write("angle\n")
                tab_write("right <%6f, 0, 0>\n" % -camera.data.ortho_scale)
                tab_write("location  <0, 0, 0>\n")
                tab_write("look_at  <0, 0, -1>\n")
                tab_write("up <0, %6f, 0>\n" % (camera.data.ortho_scale / q_size))
    
            elif camera.data.type == 'PANO':
                tab_write("panoramic\n")
                tab_write("location  <0, 0, 0>\n")
                tab_write("look_at  <0, 0, -1>\n")
                tab_write("right <%s, 0, 0>\n" % -q_size)
                tab_write("up <0, 1, 0>\n")
                tab_write("angle  %f\n" % (360.0 * atan(16.0 / camera.data.lens) / pi))
            elif camera.data.type == 'PERSP':
                # Standard camera otherwise would be default in pov
                tab_write("location  <0, 0, 0>\n")
                tab_write("look_at  <0, 0, -1>\n")
                tab_write("right <%s, 0, 0>\n" % -q_size)
                tab_write("up <0, 1, 0>\n")
                tab_write(
                    "angle  %f\n"
                    % (2 * atan(camera.data.sensor_width / 2 / camera.data.lens) * 180.0 / pi)
                )
    
            tab_write(
                "rotate  <%.6f, %.6f, %.6f>\n" % tuple([degrees(e) for e in matrix.to_3x3().to_euler()])
            )
            tab_write("translate <%.6f, %.6f, %.6f>\n" % matrix.translation[:])
            if camera.data.dof.use_dof and (focal_point != 0 or camera.data.dof.focus_object):
                tab_write("aperture %.3g\n" % (1 / (camera.data.dof.aperture_fstop * 10000) * 1000))
                tab_write(
                    "blur_samples %d %d\n"
                    % (camera.data.pov.dof_samples_min, camera.data.pov.dof_samples_max)
                )
                tab_write("variance 1/%d\n" % camera.data.pov.dof_variance)
                tab_write("confidence %.3g\n" % camera.data.pov.dof_confidence)
                if camera.data.dof.focus_object:
                    focal_ob = scene.objects[camera.data.dof.focus_object.name]
                    matrix_blur = global_matrix @ focal_ob.matrix_world
                    tab_write("focal_point <%.4f,%.4f,%.4f>\n" % matrix_blur.translation[:])
                else:
                    tab_write("focal_point <0, 0, %f>\n" % focal_point)
        if camera.data.pov.normal_enable:
            tab_write(
                "normal {%s %.4f turbulence %.4f scale %.4f}\n"
                % (
                    camera.data.pov.normal_patterns,
                    camera.data.pov.cam_normal,
                    camera.data.pov.turbulence,
                    camera.data.pov.scale,
                )
            )
        tab_write("}\n")
    
    
    exported_lights_count = 0
    
    
    def export_lights(lamps, file, scene, global_matrix, write_matrix, tab_write):
        """Translate lights from Blender UI to POV syntax and write to exported file."""
    
        # Incremented after each lamp export to declare its target
        # currently used for Fresnel diffuse shader as their slope vector:
        global exported_lights_count
        exported_lights_count = 0
        # Get all lamps
        for ob in lamps:
            lamp = ob.data
    
            matrix = global_matrix @ ob.matrix_world
    
            # Color is no longer modified by energy
            # any way to directly get bpy_prop_array as tuple?
            color = tuple(lamp.color)
    
            tab_write("light_source {\n")
            tab_write("< 0,0,0 >\n")
            tab_write("color srgb<%.3g, %.3g, %.3g>\n" % color)
    
            if lamp.type == 'POINT':
                pass
            elif lamp.type == 'SPOT':
                tab_write("spotlight\n")
    
                # Falloff is the main radius from the centre line
                tab_write("falloff %.2f\n" % (degrees(lamp.spot_size) / 2.0))  # 1 TO 179 FOR BOTH
                tab_write("radius %.6f\n" % ((degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend)))
    
                # Blender does not have a tightness equivalent, 0 is most like blender default.
                tab_write("tightness 0\n")  # 0:10f
    
                tab_write("point_at  <0, 0, -1>\n")
                if lamp.pov.use_halo:
                    tab_write("looks_like{\n")
                    tab_write("sphere{<0,0,0>,%.6f\n" % lamp.distance)
                    tab_write("hollow\n")
                    tab_write("material{\n")
                    tab_write("texture{\n")
                    tab_write("pigment{rgbf<1,1,1,%.4f>}\n" % (lamp.pov.halo_intensity * 5.0))
                    tab_write("}\n")
                    tab_write("interior{\n")
                    tab_write("media{\n")
                    tab_write("emission 1\n")
                    tab_write("scattering {1, 0.5}\n")
                    tab_write("density{\n")
                    tab_write("spherical\n")
                    tab_write("color_map{\n")
                    tab_write("[0.0 rgb <0,0,0>]\n")
                    tab_write("[0.5 rgb <1,1,1>]\n")
                    tab_write("[1.0 rgb <1,1,1>]\n")
                    tab_write("}\n")
                    tab_write("}\n")
                    tab_write("}\n")
                    tab_write("}\n")
                    tab_write("}\n")
                    tab_write("}\n")
                    tab_write("}\n")
            elif lamp.type == 'SUN':
                tab_write("parallel\n")
                tab_write("point_at  <0, 0, -1>\n")  # *must* be after 'parallel'
    
            elif lamp.type == 'AREA':
                tab_write("fade_distance %.6f\n" % (lamp.distance / 2.0))
                # Area lights have no falloff type, so always use blenders lamp quad equivalent
                # for those?
                tab_write("fade_power %d\n" % 2)
                size_x = lamp.size
                samples_x = lamp.pov.shadow_ray_samples_x
                if lamp.shape == 'SQUARE':
                    size_y = size_x
                    samples_y = samples_x
                else:
                    size_y = lamp.size_y
                    samples_y = lamp.pov.shadow_ray_samples_y
    
                tab_write(
                    "area_light <%.6f,0,0>,<0,%.6f,0> %d, %d\n" % (size_x, size_y, samples_x, samples_y)
                )
                tab_write("area_illumination\n")
                if lamp.pov.shadow_ray_sample_method == 'CONSTANT_JITTERED':
                    if lamp.pov.use_jitter:
                        tab_write("jitter\n")
                else:
                    tab_write("adaptive 1\n")
                    tab_write("jitter\n")
    
            # No shadow checked either at global or light level:
            if not scene.pov.use_shadows or (lamp.pov.shadow_method == 'NOSHADOW'):
                tab_write("shadowless\n")
    
            # Sun shouldn't be attenuated. Area lights have no falloff attribute so they
            # are put to type 2 attenuation a little higher above.
            if lamp.type not in {'SUN', 'AREA'}:
                if lamp.falloff_type == 'INVERSE_SQUARE':
                    tab_write("fade_distance %.6f\n" % (sqrt(lamp.distance / 2.0)))
                    tab_write("fade_power %d\n" % 2)  # Use blenders lamp quad equivalent
                elif lamp.falloff_type == 'INVERSE_LINEAR':
                    tab_write("fade_distance %.6f\n" % (lamp.distance / 2.0))
                    tab_write("fade_power %d\n" % 1)  # Use blenders lamp linear
                elif lamp.falloff_type == 'CONSTANT':
                    tab_write("fade_distance %.6f\n" % (lamp.distance / 2.0))
                    tab_write("fade_power %d\n" % 3)
                    # Use blenders lamp constant equivalent no attenuation.
                # Using Custom curve for fade power 3 for now.
                elif lamp.falloff_type == 'CUSTOM_CURVE':
                    tab_write("fade_power %d\n" % 4)
    
            write_matrix(matrix)
    
            tab_write("}\n")
    
            exported_lights_count += 1
    
            # v(A,B) rotates vector A about origin by vector B.
            file.write(
                "#declare lampTarget%s= vrotate(<%.4g,%.4g,%.4g>,<%.4g,%.4g,%.4g>);\n"
                % (
                    exported_lights_count,
                    -(ob.location.x),
                    -(ob.location.y),
                    -(ob.location.z),
                    ob.rotation_euler.x,
                    ob.rotation_euler.y,
                    ob.rotation_euler.z,
                )
            )
    
    
    def export_world(world, scene, global_matrix, tab_write):
        """write world as POV backgrounbd and sky_sphere to exported file """
        render = scene.pov
        camera = scene.camera
        matrix = global_matrix @ camera.matrix_world  # view dependant for later use
        if not world:
            return
        #############Maurice####################################
        # These lines added to get sky gradient (visible with PNG output)
        if world:
            # For simple flat background:
            if not world.pov.use_sky_blend:
                # Non fully transparent background could premultiply alpha and avoid anti-aliasing
                # display issue:
                if render.alpha_mode == 'TRANSPARENT':
                    tab_write(
                        "background {rgbt<%.3g, %.3g, %.3g, 0.75>}\n" % (world.pov.horizon_color[:])
                    )
                # Currently using no alpha with Sky option:
                elif render.alpha_mode == 'SKY':
                    tab_write("background {rgbt<%.3g, %.3g, %.3g, 0>}\n" % (world.pov.horizon_color[:]))
                # StraightAlpha:
                # XXX Does not exists anymore
                # else:
                # tab_write("background {rgbt<%.3g, %.3g, %.3g, 1>}\n" % (world.pov.horizon_color[:]))
    
            world_tex_count = 0
            # For Background image textures
            for t in world.pov_texture_slots:  # risk to write several sky_spheres but maybe ok.
                if t:
                    tex = bpy.data.textures[t.texture]
                if tex.type is not None:
                    world_tex_count += 1
                    # XXX No enable checkbox for world textures yet (report it?)
                    # if t and tex.type == 'IMAGE' and t.use:
                    if tex.type == 'IMAGE':
                        image_filename = path_image(tex.image)
                        if tex.image.filepath != image_filename:
                            tex.image.filepath = image_filename
                        if image_filename != "" and t.use_map_blend:
                            textures_blend = image_filename
                            # colvalue = t.default_value
                            t_blend = t
    
                        # Commented below was an idea to make the Background image oriented as camera
                        # taken here:
                        # http://news.pov.org/pov.newusers/thread/%3Cweb.4a5cddf4e9c9822ba2f93e20@news.pov.org%3E/
                        # Replace 4/3 by the ratio of each image found by some custom or existing
                        # function
                        # mapping_blend = (" translate <%.4g,%.4g,%.4g> rotate z*degrees" \
                        #                "(atan((camLocation - camLookAt).x/(camLocation - " \
                        #                "camLookAt).y)) rotate x*degrees(atan((camLocation - " \
                        #                "camLookAt).y/(camLocation - camLookAt).z)) rotate y*" \
                        #                "degrees(atan((camLocation - camLookAt).z/(camLocation - " \
                        #                "camLookAt).x)) scale <%.4g,%.4g,%.4g>b" % \
                        #                (t_blend.offset.x / 10 , t_blend.offset.y / 10 ,
                        #                 t_blend.offset.z / 10, t_blend.scale.x ,
                        #                 t_blend.scale.y , t_blend.scale.z))
                        # using camera rotation valuesdirectly from blender seems much easier
                        if t_blend.texture_coords == 'ANGMAP':
                            mapping_blend = ""
                        else:
                            # POV-Ray "scale" is not a number of repetitions factor, but its
                            # inverse, a standard scale factor.
                            # 0.5 Offset is needed relatively to scale because center of the
                            # UV scale is 0.5,0.5 in blender and 0,0 in POV
                            # Further Scale by 2 and translate by -1 are
                            # required for the sky_sphere not to repeat
    
                            mapping_blend = (
                                "scale 2 scale <%.4g,%.4g,%.4g> translate -1 "
                                "translate <%.4g,%.4g,%.4g> rotate<0,0,0> "
                                % (
                                    (1.0 / t_blend.scale.x),
                                    (1.0 / t_blend.scale.y),
                                    (1.0 / t_blend.scale.z),
                                    0.5 - (0.5 / t_blend.scale.x) - t_blend.offset.x,
                                    0.5 - (0.5 / t_blend.scale.y) - t_blend.offset.y,
                                    t_blend.offset.z,
                                )
                            )
    
                            # The initial position and rotation of the pov camera is probably creating
                            # the rotation offset should look into it someday but at least background
                            # won't rotate with the camera now.
                        # Putting the map on a plane would not introduce the skysphere distortion and
                        # allow for better image scale matching but also some waay to chose depth and
                        # size of the plane relative to camera.
                        tab_write("sky_sphere {\n")
                        tab_write("pigment {\n")
                        tab_write(
                            "image_map{%s \"%s\" %s}\n"
                            % (image_format(textures_blend), textures_blend, img_map_bg(t_blend))
                        )
                        tab_write("}\n")
                        tab_write("%s\n" % (mapping_blend))
                        # The following layered pigment opacifies to black over the texture for
                        # transmit below 1 or otherwise adds to itself
                        tab_write("pigment {rgb 0 transmit %s}\n" % (tex.intensity))
                        tab_write("}\n")
                        # tab_write("scale 2\n")
                        # tab_write("translate -1\n")
    
            # For only Background gradient
    
            if world_tex_count == 0:
                if world.pov.use_sky_blend:
                    tab_write("sky_sphere {\n")
                    tab_write("pigment {\n")
                    # maybe Should follow the advice of POV doc about replacing gradient
                    # for skysphere..5.5
                    tab_write("gradient y\n")
                    tab_write("color_map {\n")
                    # XXX Does not exists anymore
                    # if render.alpha_mode == 'STRAIGHT':
                    # tab_write("[0.0 rgbt<%.3g, %.3g, %.3g, 1>]\n" % (world.pov.horizon_color[:]))
                    # tab_write("[1.0 rgbt<%.3g, %.3g, %.3g, 1>]\n" % (world.pov.zenith_color[:]))
                    if render.alpha_mode == 'TRANSPARENT':
                        tab_write("[0.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n" % (world.pov.horizon_color[:]))
                        # aa premult not solved with transmit 1
                        tab_write("[1.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n" % (world.pov.zenith_color[:]))
                    else:
                        tab_write("[0.0 rgbt<%.3g, %.3g, %.3g, 0>]\n" % (world.pov.horizon_color[:]))
                        tab_write("[1.0 rgbt<%.3g, %.3g, %.3g, 0>]\n" % (world.pov.zenith_color[:]))
                    tab_write("}\n")
                    tab_write("}\n")
                    tab_write("}\n")
                    # Sky_sphere alpha (transmit) is not translating into image alpha the same
                    # way as 'background'
    
            # if world.pov.light_settings.use_indirect_light:
            #    scene.pov.radio_enable=1
    
            # Maybe change the above to a function copyInternalRenderer settings when
            # user pushes a button, then:
            # scene.pov.radio_enable = world.pov.light_settings.use_indirect_light
            # and other such translations but maybe this would not be allowed either?
    
        ###############################################################
    
        mist = world.mist_settings
    
        if mist.use_mist:
            tab_write("fog {\n")
            if mist.falloff == 'LINEAR':
                tab_write("distance %.6f\n" % ((mist.start + mist.depth) * 0.368))
            elif mist.falloff == 'QUADRATIC':  # n**2 or squrt(n)?
                tab_write("distance %.6f\n" % ((mist.start + mist.depth) ** 2 * 0.368))
            elif mist.falloff == 'INVERSE_QUADRATIC':  # n**2 or squrt(n)?
                tab_write("distance %.6f\n" % ((mist.start + mist.depth) ** 2 * 0.368))
            tab_write(
                "color rgbt<%.3g, %.3g, %.3g, %.3g>\n"
                % (*world.pov.horizon_color, 1.0 - mist.intensity)
            )
            # tab_write("fog_offset %.6f\n" % mist.start) #create a pov property to prepend
            # tab_write("fog_alt %.6f\n" % mist.height) #XXX right?
            # tab_write("turbulence 0.2\n")
            # tab_write("turb_depth 0.3\n")
            tab_write("fog_type 1\n")  # type2 for height
            tab_write("}\n")
        if scene.pov.media_enable:
            tab_write("media {\n")
            tab_write(
                "scattering { %d, rgb %.12f*<%.4g, %.4g, %.4g>\n"
                % (
                    int(scene.pov.media_scattering_type),
                    (scene.pov.media_diffusion_scale),
                    *(scene.pov.media_diffusion_color[:]),
                )
            )
            if scene.pov.media_scattering_type == '5':
                tab_write("eccentricity %.3g\n" % scene.pov.media_eccentricity)
            tab_write("}\n")
            tab_write(
                "absorption %.12f*<%.4g, %.4g, %.4g>\n"
                % (scene.pov.media_absorption_scale, *(scene.pov.media_absorption_color[:]))
            )
            tab_write("\n")
            tab_write("samples %.d\n" % scene.pov.media_samples)
            tab_write("}\n")
    
    
    ####################################################################################################
    def export_rainbows(rainbows, file, scene, global_matrix, write_matrix, tab_write):
        """write all POV rainbows primitives to exported file """
        for ob in rainbows:
            povdataname = ob.data.name  # enough? XXX not used nor matrix fn?
            angle = degrees(ob.data.spot_size / 2.5)  # radians in blender (2
            width = ob.data.spot_blend * 10
            distance = ob.data.shadow_buffer_clip_start
            # eps=0.0000001
            # angle = br/(cr+eps) * 10 #eps is small epsilon variable to avoid dividing by zero
            # width = ob.dimensions[2] #now let's say width of rainbow is the actual proxy height
            # formerly:
            # cz-bz # let's say width of the rainbow is height of the cone (interfacing choice
    
            # v(A,B) rotates vector A about origin by vector B.
            # and avoid a 0 length vector by adding 1
    
            # file.write("#declare %s_Target= vrotate(<%.6g,%.6g,%.6g>,<%.4g,%.4g,%.4g>);\n" % \
            # (povdataname, -(ob.location.x+0.1), -(ob.location.y+0.1), -(ob.location.z+0.1),
            # ob.rotation_euler.x, ob.rotation_euler.y, ob.rotation_euler.z))
    
            direction = (  # XXX currently not used (replaced by track to?)
                ob.location.x,
                ob.location.y,
                ob.location.z,
            )  # not taking matrix into account
            rmatrix = global_matrix @ ob.matrix_world
    
            # ob.rotation_euler.to_matrix().to_4x4() * mathutils.Vector((0,0,1))
            # XXX Is result of the below offset by 90 degrees?
            up = ob.matrix_world.to_3x3()[1].xyz  # * global_matrix
    
            # XXX TO CHANGE:
            # formerly:
            # tab_write("#declare %s = rainbow {\n"%povdataname)
    
            # clumsy for now but remove the rainbow from instancing
            # system because not an object. use lamps later instead of meshes
    
            # del data_ref[dataname]
            tab_write("rainbow {\n")
    
            tab_write("angle %.4f\n" % angle)
            tab_write("width %.4f\n" % width)
            tab_write("distance %.4f\n" % distance)
            tab_write("arc_angle %.4f\n" % ob.pov.arc_angle)
            tab_write("falloff_angle %.4f\n" % ob.pov.falloff_angle)
            tab_write("direction <%.4f,%.4f,%.4f>\n" % rmatrix.translation[:])
            tab_write("up <%.4f,%.4f,%.4f>\n" % (up[0], up[1], up[2]))
            tab_write("color_map {\n")
            tab_write("[0.000  color srgbt<1.0, 0.5, 1.0, 1.0>]\n")
            tab_write("[0.130  color srgbt<0.5, 0.5, 1.0, 0.9>]\n")
            tab_write("[0.298  color srgbt<0.2, 0.2, 1.0, 0.7>]\n")
            tab_write("[0.412  color srgbt<0.2, 1.0, 1.0, 0.4>]\n")
            tab_write("[0.526  color srgbt<0.2, 1.0, 0.2, 0.4>]\n")
            tab_write("[0.640  color srgbt<1.0, 1.0, 0.2, 0.4>]\n")
            tab_write("[0.754  color srgbt<1.0, 0.5, 0.2, 0.6>]\n")
            tab_write("[0.900  color srgbt<1.0, 0.2, 0.2, 0.7>]\n")
            tab_write("[1.000  color srgbt<1.0, 0.2, 0.2, 1.0>]\n")
            tab_write("}\n")
    
            pov_mat_name = "Default_texture"
            # tab_write("texture {%s}\n"%pov_mat_name)
            write_object_modifiers(scene, ob, file)
            # tab_write("rotate x*90\n")
            # matrix = global_matrix @ ob.matrix_world
            # write_matrix(matrix)
            tab_write("}\n")
            # continue #Don't render proxy mesh, skip to next object
    
    
    def export_smoke(file, smoke_obj_name, smoke_path, comments, global_matrix, write_matrix):
        """export Blender smoke type fluids to pov media using df3 library"""
    
        flowtype = -1  # XXX todo: not used yet? should trigger emissive for fire type
        depsgraph = bpy.context.evaluated_depsgraph_get()
        smoke_obj = bpy.data.objects[smoke_obj_name].evaluated_get(depsgraph)
        domain = None
        smoke_modifier = None
        # Search smoke domain target for smoke modifiers
        for mod in smoke_obj.modifiers:
            if mod.type == 'FLUID':
                if mod.fluid_type == 'FLOW':
                    if mod.flow_settings.flow_type == 'BOTH':
                        flowtype = 2
                    else:
                        if mod.flow_settings.smoke_flow_type == 'SMOKE':
                            flowtype = 0
                        else:
                            if mod.flow_settings.smoke_flow_type == 'FIRE':
                                flowtype = 1
    
                if mod.fluid_type == 'DOMAIN':
                    domain = smoke_obj
                    smoke_modifier = mod
    
        eps = 0.000001  # XXX not used currently. restore from corner case ... zero div?
        if domain is not None:
            mod_set = smoke_modifier.domain_settings
            channeldata = []
            for v in mod_set.density_grid:
                channeldata.append(v.real)
                print(v.real)
            ## Usage en voxel texture:
            # channeldata = []
            # if channel == 'density':
            # for v in mod_set.density_grid:
            # channeldata.append(v.real)
    
            # if channel == 'fire':
            # for v in mod_set.flame_grid:
            # channeldata.append(v.real)
    
            resolution = mod_set.resolution_max
            big_res = []
            big_res.append(mod_set.domain_resolution[0])
            big_res.append(mod_set.domain_resolution[1])
            big_res.append(mod_set.domain_resolution[2])
    
            if mod_set.use_noise:
                big_res[0] = big_res[0] * (mod_set.noise_scale + 1)
                big_res[1] = big_res[1] * (mod_set.noise_scale + 1)
                big_res[2] = big_res[2] * (mod_set.noise_scale + 1)
            # else:
            # p = []
            ##gather smoke domain settings
            # BBox = domain.bound_box
            # p.append([BBox[0][0], BBox[0][1], BBox[0][2]])
            # p.append([BBox[6][0], BBox[6][1], BBox[6][2]])
            # mod_set = smoke_modifier.domain_settings
            # resolution = mod_set.resolution_max
            # smokecache = mod_set.point_cache
            # ret = read_cache(smokecache, mod_set.use_noise, mod_set.noise_scale + 1, flowtype)
            # res_x = ret[0]
            # res_y = ret[1]
            # res_z = ret[2]
            # density = ret[3]
            # fire = ret[4]
    
            # if res_x * res_y * res_z > 0:
            ##new cache format
            # big_res = []
            # big_res.append(res_x)
            # big_res.append(res_y)
            # big_res.append(res_z)
            # else:
            # max = domain.dimensions[0]
            # if (max - domain.dimensions[1]) < -eps:
            # max = domain.dimensions[1]
    
            # if (max - domain.dimensions[2]) < -eps:
            # max = domain.dimensions[2]
    
            # big_res = [int(round(resolution * domain.dimensions[0] / max, 0)),
            # int(round(resolution * domain.dimensions[1] / max, 0)),
            # int(round(resolution * domain.dimensions[2] / max, 0))]
    
            # if mod_set.use_noise:
            # big_res = [big_res[0] * (mod_set.noise_scale + 1),
            # big_res[1] * (mod_set.noise_scale + 1),
            # big_res[2] * (mod_set.noise_scale + 1)]
    
            # if channel == 'density':
            # channeldata = density
    
            # if channel == 'fire':
            # channeldata = fire
    
            # sc_fr = '%s/%s/%s/%05d' % (
            # efutil.export_path,
            # efutil.scene_filename(),
            # bpy.context.scene.name,
            # bpy.context.scene.frame_current
            # )
            #               if not os.path.exists( sc_fr ):
            #                   os.makedirs(sc_fr)
            #
            #               smoke_filename = '%s.smoke' % bpy.path.clean_name(domain.name)
            #               smoke_path = '/'.join([sc_fr, smoke_filename])
            #
            #               with open(smoke_path, 'wb') as smoke_file:
            #                   # Binary densitygrid file format
            #                   #
            #                   # File header
            #                   smoke_file.write(b'SMOKE')        #magic number
            #                   smoke_file.write(struct.pack('<I', big_res[0]))
            #                   smoke_file.write(struct.pack('<I', big_res[1]))
            #                   smoke_file.write(struct.pack('<I', big_res[2]))
            # Density data
            #                   smoke_file.write(struct.pack('<%df'%len(channeldata), *channeldata))
            #
            #               LuxLog('Binary SMOKE file written: %s' % (smoke_path))
    
            # return big_res[0], big_res[1], big_res[2], channeldata
    
            mydf3 = df3_library.df3(big_res[0], big_res[1], big_res[2])
            sim_sizeX, sim_sizeY, sim_sizeZ = mydf3.size()
            for x in range(sim_sizeX):
                for y in range(sim_sizeY):
                    for z in range(sim_sizeZ):
                        mydf3.set(x, y, z, channeldata[((z * sim_sizeY + y) * sim_sizeX + x)])
    
            mydf3.exportDF3(smoke_path)
            print('Binary smoke.df3 file written in preview directory')
            if comments:
                file.write("\n//--Smoke--\n\n")
    
            # Note: We start with a default unit cube.
            #       This is mandatory to read correctly df3 data - otherwise we could just directly use bbox
            #       coordinates from the start, and avoid scale/translate operations at the end...
            file.write("box{<0,0,0>, <1,1,1>\n")
            file.write("    pigment{ rgbt 1 }\n")
            file.write("    hollow\n")
            file.write("    interior{ //---------------------\n")
            file.write("        media{ method 3\n")
            file.write("               emission <1,1,1>*1\n")  # 0>1 for dark smoke to white vapour
            file.write("               scattering{ 1, // Type\n")
            file.write("                  <1,1,1>*0.1\n")
            file.write("                } // end scattering\n")
            file.write("                density{density_file df3 \"%s\"\n" % (smoke_path))
            file.write("                        color_map {\n")
            file.write("                        [0.00 rgb 0]\n")
            file.write("                        [0.05 rgb 0]\n")
            file.write("                        [0.20 rgb 0.2]\n")
            file.write("                        [0.30 rgb 0.6]\n")
            file.write("                        [0.40 rgb 1]\n")
            file.write("                        [1.00 rgb 1]\n")
            file.write("                       } // end color_map\n")
            file.write("               } // end of density\n")
            file.write("               samples %i // higher = more precise\n" % resolution)
            file.write("         } // end of media --------------------------\n")
            file.write("    } // end of interior\n")
    
            # START OF TRANSFORMATIONS
    
            # Size to consider here are bbox dimensions (i.e. still in object space, *before* applying
            # loc/rot/scale and other transformations (like parent stuff), aka matrix_world).
            bbox = smoke_obj.bound_box
            dim = [
                abs(bbox[6][0] - bbox[0][0]),
                abs(bbox[6][1] - bbox[0][1]),
                abs(bbox[6][2] - bbox[0][2]),
            ]
    
            # We scale our cube to get its final size and shapes but still in *object* space (same as Blender's bbox).
            file.write("scale<%.6g,%.6g,%.6g>\n" % (dim[0], dim[1], dim[2]))
    
            # We offset our cube such that (0,0,0) coordinate matches Blender's object center.
            file.write("translate<%.6g,%.6g,%.6g>\n" % (bbox[0][0], bbox[0][1], bbox[0][2]))
    
            # We apply object's transformations to get final loc/rot/size in world space!
            # Note: we could combine the two previous transformations with this matrix directly...
            write_matrix(global_matrix @ smoke_obj.matrix_world)
    
            # END OF TRANSFORMATIONS
    
            file.write("}\n")
    
            # file.write("               interpolate 1\n")
            # file.write("               frequency 0\n")
            # file.write("   }\n")
            # file.write("}\n")
    
    
    
    classes = ()
    
    
    def register():
        for cls in classes:
            register_class(cls)
    
    
    def unregister():
        for cls in classes:
            unregister_class(cls)