Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# Contributed to Germano Cavalcante (mano-wii), Florian Meyer (testscreenings),
# Brendon Murphy (meta-androcto),
# Maintainer: Vladimir Spivak (cwolf3d)
# Originally an addon by Bart Crouch
"author": "Bart Crouch, Vladimir Spivak (cwolf3d)",
Vladimir Spivak(cwolf3d)
committed
"version": (4, 7, 7),
"location": "View3D > Sidebar > Edit Tab / Edit Mode Context Menu",
"warning": "",
"description": "Mesh modelling toolkit. Several tools to aid modelling",
"doc_url": "{BLENDER_MANUAL_URL}/addons/mesh/looptools.html",
"category": "Mesh",
}
import bmesh
import bpy
import collections
import mathutils
import math
from bpy.types import (
Operator,
Menu,
Panel,
PropertyGroup,
AddonPreferences,
)
from bpy.props import (
BoolProperty,
EnumProperty,
FloatProperty,
IntProperty,
PointerProperty,
StringProperty,
)
# ########################################
# ##### General functions ################
# ########################################
# used by all tools to improve speed on reruns Unlink
looptools_cache = {}
def get_strokes(self, context):
looptools = context.window_manager.looptools
if looptools.gstretch_use_guide == "Annotation":
try:
strokes = bpy.data.grease_pencils[0].layers.active.active_frame.strokes
return True
except:
self.report({'WARNING'}, "active Annotation strokes not found")
return False
if looptools.gstretch_use_guide == "GPencil" and not looptools.gstretch_guide == None:
try:
strokes = looptools.gstretch_guide.data.layers.active.active_frame.strokes
return True
except:
self.report({'WARNING'}, "active GPencil strokes not found")
return False
else:
return False
beta-tester
committed
# force a full recalculation next time
def cache_delete(tool):
if tool in looptools_cache:
del looptools_cache[tool]
# check cache for stored information
def cache_read(tool, object, bm, input_method, boundaries):
# current tool not cached yet
if tool not in looptools_cache:
return(False, False, False, False, False)
# check if selected object didn't change
if object.name != looptools_cache[tool]["object"]:
return(False, False, False, False, False)
# check if input didn't change
if input_method != looptools_cache[tool]["input_method"]:
return(False, False, False, False, False)
if boundaries != looptools_cache[tool]["boundaries"]:
return(False, False, False, False, False)
modifiers = [mod.name for mod in object.modifiers if mod.show_viewport and
mod.type == 'MIRROR']
if modifiers != looptools_cache[tool]["modifiers"]:
return(False, False, False, False, False)
input = [v.index for v in bm.verts if v.select and not v.hide]
if input != looptools_cache[tool]["input"]:
return(False, False, False, False, False)
# reading values
single_loops = looptools_cache[tool]["single_loops"]
loops = looptools_cache[tool]["loops"]
derived = looptools_cache[tool]["derived"]
mapping = looptools_cache[tool]["mapping"]
CoDEmanX
committed
return(True, single_loops, loops, derived, mapping)
# store information in the cache
def cache_write(tool, object, bm, input_method, boundaries, single_loops,
loops, derived, mapping):
# clear cache of current tool
if tool in looptools_cache:
del looptools_cache[tool]
# prepare values to be saved to cache
input = [v.index for v in bm.verts if v.select and not v.hide]
modifiers = [mod.name for mod in object.modifiers if mod.show_viewport
and mod.type == 'MIRROR']
looptools_cache[tool] = {
"input": input, "object": object.name,
"input_method": input_method, "boundaries": boundaries,
"single_loops": single_loops, "loops": loops,
"derived": derived, "mapping": mapping, "modifiers": modifiers}
# calculates natural cubic splines through all given knots
def calculate_cubic_splines(bm_mod, tknots, knots):
# hack for circular loops
if knots[0] == knots[-1] and len(knots) > 1:
circular = True
k_new1 = []
for k in range(-1, -5, -1):
if k - 1 < -len(knots):
k += len(knots)
k_new2 = []
for k in range(4):
if k + 1 > len(knots) - 1:
k -= len(knots)
for k in k_new1:
knots.insert(0, k)
for k in k_new2:
knots.append(k)
t_new1 = []
total1 = 0
for t in range(-1, -5, -1):
if t - 1 < -len(tknots):
t += len(tknots)
total1 += tknots[t] - tknots[t - 1]
t_new1.append(tknots[0] - total1)
t_new2 = []
total2 = 0
for t in range(4):
if t + 1 > len(tknots) - 1:
t -= len(tknots)
total2 += tknots[t + 1] - tknots[t]
t_new2.append(tknots[-1] + total2)
for t in t_new1:
tknots.insert(0, t)
for t in t_new2:
tknots.append(t)
else:
circular = False
# end of hack
CoDEmanX
committed
n = len(knots)
if n < 2:
return False
x = tknots[:]
locs = [bm_mod.verts[k].co[:] for k in knots]
result = []
for j in range(3):
a = []
for i in locs:
a.append(i[j])
h = []
for i in range(n - 1):
if x[i + 1] - x[i] == 0:
h.append(1e-8)
else:
for i in range(1, n - 1):
q.append(3 / h[i] * (a[i + 1] - a[i]) - 3 / h[i - 1] * (a[i] - a[i - 1]))
l = [1.0]
u = [0.0]
z = [0.0]
for i in range(1, n - 1):
l.append(2 * (x[i + 1] - x[i - 1]) - h[i - 1] * u[i - 1])
if l[i] == 0:
l[i] = 1e-8
u.append(h[i] / l[i])
z.append((q[i] - h[i - 1] * z[i - 1]) / l[i])
l.append(1.0)
z.append(0.0)
c = [False for i in range(n)]
d = [False for i in range(n - 1)]
c[n - 1] = 0.0
for i in range(n - 2, -1, -1):
c[i] = z[i] - u[i] * c[i + 1]
b[i] = (a[i + 1] - a[i]) / h[i] - h[i] * (c[i + 1] + 2 * c[i]) / 3
d[i] = (c[i + 1] - c[i]) / (3 * h[i])
for i in range(n - 1):
result.append([a[i], b[i], c[i], d[i], x[i]])
splines = []
for i in range(len(knots) - 1):
splines.append([result[i], result[i + n - 1], result[i + (n - 1) * 2]])
if circular: # cleaning up after hack
knots = knots[4:-4]
tknots = tknots[4:-4]
CoDEmanX
committed
return(splines)
# calculates linear splines through all given knots
def calculate_linear_splines(bm_mod, tknots, knots):
splines = []
a = bm_mod.verts[knots[i]].co
b = bm_mod.verts[knots[i + 1]].co
d = b - a
u = tknots[i + 1] - t
splines.append([a, d, t, u]) # [locStart, locDif, tStart, tDif]
CoDEmanX
committed
return(splines)
# calculate a best-fit plane to the given vertices
def calculate_plane(bm_mod, loop, method="best_fit", object=False):
# getting the vertex locations
locs = [bm_mod.verts[v].co.copy() for v in loop[0]]
CoDEmanX
committed
# calculating the center of masss
com = mathutils.Vector()
for loc in locs:
com += loc
com /= len(locs)
x, y, z = com
CoDEmanX
committed
if method == 'best_fit':
# creating the covariance matrix
mat = mathutils.Matrix(((0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
))
for loc in locs:
mat[0][0] += (loc[0] - x) ** 2
mat[1][0] += (loc[0] - x) * (loc[1] - y)
mat[2][0] += (loc[0] - x) * (loc[2] - z)
mat[0][1] += (loc[1] - y) * (loc[0] - x)
mat[1][1] += (loc[1] - y) ** 2
mat[2][1] += (loc[1] - y) * (loc[2] - z)
mat[0][2] += (loc[2] - z) * (loc[0] - x)
mat[1][2] += (loc[2] - z) * (loc[1] - y)
mat[2][2] += (loc[2] - z) ** 2
CoDEmanX
committed
# calculating the normal to the plane
normal = False
try:
ax = 2
if math.fabs(sum(mat[0])) < math.fabs(sum(mat[1])):
if math.fabs(sum(mat[0])) < math.fabs(sum(mat[2])):
ax = 0
elif math.fabs(sum(mat[1])) < math.fabs(sum(mat[2])):
ax = 1
if ax == 0:
normal = mathutils.Vector((1.0, 0.0, 0.0))
normal = mathutils.Vector((0.0, 1.0, 0.0))
normal = mathutils.Vector((0.0, 0.0, 1.0))
if not normal:
# warning! this is different from .normalize()
itermax = 500
vec2 = mathutils.Vector((1.0, 1.0, 1.0))
for i in range(itermax):
Germano Cavalcante
committed
# Calculate length with double precision to avoid problems with `inf`
vec2_length = math.sqrt(vec2[0] ** 2 + vec2[1] ** 2 + vec2[2] ** 2)
if vec2_length != 0:
vec2 /= vec2_length
if vec2 == vec:
break
if vec2.length == 0:
vec2 = mathutils.Vector((1.0, 1.0, 1.0))
normal = vec2
CoDEmanX
committed
elif method == 'normal':
# averaging the vertex normals
v_normals = [bm_mod.verts[v].normal for v in loop[0]]
normal = mathutils.Vector()
for v_normal in v_normals:
normal += v_normal
normal /= len(v_normals)
normal.normalize()
CoDEmanX
committed
elif method == 'view':
# calculate view normal
rotation = bpy.context.space_data.region_3d.view_matrix.to_3x3().\
inverted()
normal = rotation @ mathutils.Vector((0.0, 0.0, 1.0))
normal = object.matrix_world.inverted().to_euler().to_matrix() @ \
CoDEmanX
committed
return(com, normal)
# calculate splines based on given interpolation method (controller function)
def calculate_splines(interpolation, bm_mod, tknots, knots):
if interpolation == 'cubic':
splines = calculate_cubic_splines(bm_mod, tknots, knots[:])
splines = calculate_linear_splines(bm_mod, tknots, knots[:])
CoDEmanX
committed
return(splines)
# check loops and only return valid ones
def check_loops(loops, mapping, bm_mod):
valid_loops = []
for loop, circular in loops:
# loop needs to have at least 3 vertices
if len(loop) < 3:
continue
# loop needs at least 1 vertex in the original, non-mirrored mesh
if mapping:
all_virtual = True
for vert in loop:
if mapping[vert] > -1:
all_virtual = False
break
if all_virtual:
continue
# vertices can not all be at the same location
stacked = True
for i in range(len(loop) - 1):
if (bm_mod.verts[loop[i]].co - bm_mod.verts[loop[i + 1]].co).length > 1e-6:
stacked = False
break
if stacked:
CoDEmanX
committed
continue
# passed all tests, loop is valid
valid_loops.append([loop, circular])
CoDEmanX
committed
return(valid_loops)
# input: bmesh, output: dict with the edge-key as key and face-index as value
def dict_edge_faces(bm):
edge_faces = dict([[edgekey(edge), []] for edge in bm.edges if not edge.hide])
for face in bm.faces:
if face.hide:
continue
for key in face_edgekeys(face):
edge_faces[key].append(face.index)
CoDEmanX
committed
return(edge_faces)
# input: bmesh (edge-faces optional), output: dict with face-face connections
def dict_face_faces(bm, edge_faces=False):
if not edge_faces:
edge_faces = dict_edge_faces(bm)
CoDEmanX
committed
connected_faces = dict([[face.index, []] for face in bm.faces if not face.hide])
for face in bm.faces:
if face.hide:
continue
for edge_key in face_edgekeys(face):
for connected_face in edge_faces[edge_key]:
if connected_face == face.index:
continue
connected_faces[face.index].append(connected_face)
CoDEmanX
committed
return(connected_faces)
# input: bmesh, output: dict with the vert index as key and edge-keys as value
def dict_vert_edges(bm):
vert_edges = dict([[v.index, []] for v in bm.verts if not v.hide])
for edge in bm.edges:
if edge.hide:
continue
ek = edgekey(edge)
for vert in ek:
vert_edges[vert].append(ek)
CoDEmanX
committed
return(vert_edges)
# input: bmesh, output: dict with the vert index as key and face index as value
def dict_vert_faces(bm):
vert_faces = dict([[v.index, []] for v in bm.verts if not v.hide])
for face in bm.faces:
if not face.hide:
for vert in face.verts:
vert_faces[vert.index].append(face.index)
CoDEmanX
committed
return(vert_faces)
# input: list of edge-keys, output: dictionary with vertex-vertex connections
def dict_vert_verts(edge_keys):
# create connection data
vert_verts = {}
for ek in edge_keys:
for i in range(2):
if ek[i] in vert_verts:
vert_verts[ek[i]].append(ek[1 - i])
CoDEmanX
committed
return(vert_verts)
# return the edgekey ([v1.index, v2.index]) of a bmesh edge
def edgekey(edge):
Bart Crouch
committed
return(tuple(sorted([edge.verts[0].index, edge.verts[1].index])))
# returns the edgekeys of a bmesh face
def face_edgekeys(face):
return([tuple(sorted([edge.verts[0].index, edge.verts[1].index])) for edge in face.edges])
# calculate input loops
Vladimir Spivak(cwolf3d)
committed
def get_connected_input(object, bm, not_use_mirror, input):
# get mesh with modifiers applied
Vladimir Spivak(cwolf3d)
committed
derived, bm_mod = get_derived_bmesh(object, bm, not_use_mirror)
CoDEmanX
committed
# calculate selected loops
edge_keys = [edgekey(edge) for edge in bm_mod.edges if edge.select and not edge.hide]
loops = get_connected_selections(edge_keys)
CoDEmanX
committed
# if only selected loops are needed, we're done
if input == 'selected':
return(derived, bm_mod, loops)
CoDEmanX
committed
# elif input == 'all':
loops = get_parallel_loops(bm_mod, loops)
CoDEmanX
committed
return(derived, bm_mod, loops)
# sorts all edge-keys into a list of loops
def get_connected_selections(edge_keys):
# create connection data
vert_verts = dict_vert_verts(edge_keys)
CoDEmanX
committed
# find loops consisting of connected selected edges
loops = []
while len(vert_verts) > 0:
loop = [iter(vert_verts.keys()).__next__()]
growing = True
flipped = False
CoDEmanX
committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# extend loop
while growing:
# no more connection data for current vertex
if loop[-1] not in vert_verts:
if not flipped:
loop.reverse()
flipped = True
else:
growing = False
else:
extended = False
for i, next_vert in enumerate(vert_verts[loop[-1]]):
if next_vert not in loop:
vert_verts[loop[-1]].pop(i)
if len(vert_verts[loop[-1]]) == 0:
del vert_verts[loop[-1]]
# remove connection both ways
if next_vert in vert_verts:
if len(vert_verts[next_vert]) == 1:
del vert_verts[next_vert]
else:
vert_verts[next_vert].remove(loop[-1])
loop.append(next_vert)
extended = True
break
if not extended:
# found one end of the loop, continue with next
if not flipped:
loop.reverse()
flipped = True
# found both ends of the loop, stop growing
else:
growing = False
CoDEmanX
committed
# check if loop is circular
if loop[0] in vert_verts:
if loop[-1] in vert_verts[loop[0]]:
# is circular
if len(vert_verts[loop[0]]) == 1:
del vert_verts[loop[0]]
else:
vert_verts[loop[0]].remove(loop[-1])
if len(vert_verts[loop[-1]]) == 1:
del vert_verts[loop[-1]]
else:
vert_verts[loop[-1]].remove(loop[0])
loop = [loop, True]
else:
# not circular
loop = [loop, False]
else:
# not circular
loop = [loop, False]
CoDEmanX
committed
loops.append(loop)
CoDEmanX
committed
return(loops)
# get the derived mesh data, if there is a mirror modifier
Vladimir Spivak(cwolf3d)
committed
def get_derived_bmesh(object, bm, not_use_mirror):
# check for mirror modifiers
if 'MIRROR' in [mod.type for mod in object.modifiers if mod.show_viewport]:
derived = True
# disable other modifiers
show_viewport = [mod.name for mod in object.modifiers if mod.show_viewport]
merge = []
for mod in object.modifiers:
if mod.type != 'MIRROR':
mod.show_viewport = False
#leave the merge points untouched
if mod.type == 'MIRROR':
merge.append(mod.use_mirror_merge)
Vladimir Spivak(cwolf3d)
committed
if not_use_mirror:
mod.use_mirror_merge = False
# get derived mesh
bm_mod = bmesh.new()
depsgraph = bpy.context.evaluated_depsgraph_get()
object_eval = object.evaluated_get(depsgraph)
mesh_mod = object_eval.to_mesh()
bm_mod.from_mesh(mesh_mod)
# re-enable other modifiers
for mod_name in show_viewport:
object.modifiers[mod_name].show_viewport = True
merge.reverse()
for mod in object.modifiers:
mod.use_mirror_merge = merge.pop()
# no mirror modifiers, so no derived mesh necessary
else:
derived = False
bm_mod = bm
CoDEmanX
committed
bm_mod.verts.ensure_lookup_table()
bm_mod.edges.ensure_lookup_table()
bm_mod.faces.ensure_lookup_table()
beta-tester
committed
return(derived, bm_mod)
# return a mapping of derived indices to indices
def get_mapping(derived, bm, bm_mod, single_vertices, full_search, loops):
if not derived:
return(False)
CoDEmanX
committed
if full_search:
verts = [v for v in bm.verts if not v.hide]
else:
verts = [v for v in bm.verts if v.select and not v.hide]
CoDEmanX
committed
# non-selected vertices around single vertices also need to be mapped
if single_vertices:
mapping = dict([[vert, -1] for vert in single_vertices])
verts_mod = [bm_mod.verts[vert] for vert in single_vertices]
for v in verts:
for v_mod in verts_mod:
if (v.co - v_mod.co).length < 1e-6:
mapping[v_mod.index] = v.index
break
real_singles = [v_real for v_real in mapping.values() if v_real > -1]
CoDEmanX
committed
verts_indices = [vert.index for vert in verts]
for face in [face for face in bm.faces if not face.select and not face.hide]:
for vert in face.verts:
if vert.index in real_singles:
for v in face.verts:
if v not in verts:
verts.append(v)
break
CoDEmanX
committed
# create mapping of derived indices to indices
mapping = dict([[vert, -1] for loop in loops for vert in loop[0]])
if single_vertices:
for single in single_vertices:
mapping[single] = -1
verts_mod = [bm_mod.verts[i] for i in mapping.keys()]
for v in verts:
for v_mod in verts_mod:
if (v.co - v_mod.co).length < 1e-6:
mapping[v_mod.index] = v.index
verts_mod.remove(v_mod)
break
CoDEmanX
committed
return(mapping)
# calculate the determinant of a matrix
def matrix_determinant(m):
determinant = m[0][0] * m[1][1] * m[2][2] + m[0][1] * m[1][2] * m[2][0] \
+ m[0][2] * m[1][0] * m[2][1] - m[0][2] * m[1][1] * m[2][0] \
- m[0][1] * m[1][0] * m[2][2] - m[0][0] * m[1][2] * m[2][1]
return(determinant)
# custom matrix inversion, to provide higher precision than the built-in one
def matrix_invert(m):
r = mathutils.Matrix((
(m[1][1] * m[2][2] - m[1][2] * m[2][1], m[0][2] * m[2][1] - m[0][1] * m[2][2],
m[0][1] * m[1][2] - m[0][2] * m[1][1]),
(m[1][2] * m[2][0] - m[1][0] * m[2][2], m[0][0] * m[2][2] - m[0][2] * m[2][0],
m[0][2] * m[1][0] - m[0][0] * m[1][2]),
(m[1][0] * m[2][1] - m[1][1] * m[2][0], m[0][1] * m[2][0] - m[0][0] * m[2][1],
m[0][0] * m[1][1] - m[0][1] * m[1][0])))
CoDEmanX
committed
return (r * (1 / matrix_determinant(m)))
# returns a list of all loops parallel to the input, input included
def get_parallel_loops(bm_mod, loops):
# get required dictionaries
edge_faces = dict_edge_faces(bm_mod)
connected_faces = dict_face_faces(bm_mod, edge_faces)
# turn vertex loops into edge loops
edgeloops = []
for loop in loops:
edgeloop = [[sorted([loop[0][i], loop[0][i + 1]]) for i in
range(len(loop[0]) - 1)], loop[1]]
if loop[1]: # circular
edgeloop[0].append(sorted([loop[0][-1], loop[0][0]]))
edgeloops.append(edgeloop[:])
# variables to keep track while iterating
all_edgeloops = []
has_branches = False
CoDEmanX
committed
for loop in edgeloops:
# initialise with original loop
all_edgeloops.append(loop[0])
newloops = [loop[0]]
verts_used = []
for edge in loop[0]:
if edge[0] not in verts_used:
verts_used.append(edge[0])
if edge[1] not in verts_used:
verts_used.append(edge[1])
CoDEmanX
committed
# find parallel loops
while len(newloops) > 0:
side_a = []
side_b = []
for i in newloops[-1]:
i = tuple(i)
forbidden_side = False
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
# weird input with branches
has_branches = True
break
for face in edge_faces[i]:
if len(side_a) == 0 and forbidden_side != "a":
side_a.append(face)
if forbidden_side:
break
forbidden_side = "a"
continue
elif side_a[-1] in connected_faces[face] and \
forbidden_side != "a":
side_a.append(face)
if forbidden_side:
break
forbidden_side = "a"
continue
if len(side_b) == 0 and forbidden_side != "b":
side_b.append(face)
if forbidden_side:
break
forbidden_side = "b"
continue
elif side_b[-1] in connected_faces[face] and \
forbidden_side != "b":
side_b.append(face)
if forbidden_side:
break
forbidden_side = "b"
continue
CoDEmanX
committed
if has_branches:
# weird input with branches
break
CoDEmanX
committed
newloops.pop(-1)
sides = []
if side_a:
sides.append(side_a)
if side_b:
sides.append(side_b)
beta-tester
committed
for side in sides:
extraloop = []
for fi in side:
for key in face_edgekeys(bm_mod.faces[fi]):
if key[0] not in verts_used and key[1] not in \
verts_used:
extraloop.append(key)
break
if extraloop:
for key in extraloop:
for new_vert in key:
if new_vert not in verts_used:
verts_used.append(new_vert)
newloops.append(extraloop)
all_edgeloops.append(extraloop)
CoDEmanX
committed
# input contains branches, only return selected loop
if has_branches:
return(loops)
CoDEmanX
committed
# change edgeloops into normal loops
loops = []
for edgeloop in all_edgeloops:
loop = []
# grow loop by comparing vertices between consecutive edge-keys
for vert in range(2):
if edgeloop[i][vert] in edgeloop[i + 1]:
loop.append(edgeloop[i][vert])
break
if loop:
# add starting vertex
for vert in range(2):
if edgeloop[0][vert] != loop[0]:
loop = [edgeloop[0][vert]] + loop
break
# add ending vertex
for vert in range(2):
if edgeloop[-1][vert] != loop[-1]:
loop.append(edgeloop[-1][vert])
break
# check if loop is circular
if loop[0] == loop[-1]:
circular = True
loop = loop[:-1]
else:
circular = False
loops.append([loop, circular])
CoDEmanX
committed
return(loops)
# gather initial data
def initialise():
object = bpy.context.active_object
if 'MIRROR' in [mod.type for mod in object.modifiers if mod.show_viewport]:
# ensure that selection is synced for the derived mesh
bpy.ops.object.mode_set(mode='OBJECT')
bpy.ops.object.mode_set(mode='EDIT')
bm = bmesh.from_edit_mesh(object.data)
CoDEmanX
committed
bm.verts.ensure_lookup_table()
bm.edges.ensure_lookup_table()
bm.faces.ensure_lookup_table()
beta-tester
committed
return(object, bm)
# move the vertices to their new locations
def move_verts(object, bm, mapping, move, lock, influence):
if lock:
lock_x, lock_y, lock_z = lock
orient_slot = bpy.context.scene.transform_orientation_slots[0]
custom = orient_slot.custom_orientation
mat = custom.matrix.to_4x4().inverted() @ object.matrix_world.copy()
elif orient_slot.type == 'LOCAL':
elif orient_slot.type == 'VIEW':
mat = bpy.context.region_data.view_matrix.copy() @ \
mat = object.matrix_world.copy()
mat_inv = mat.inverted()
# get all mirror vectors
mirror_Vectors = []
if object.data.use_mirror_x:
mirror_Vectors.append(mathutils.Vector((-1, 1, 1)))
if object.data.use_mirror_y:
mirror_Vectors.append(mathutils.Vector((1, -1, 1)))
if object.data.use_mirror_x and object.data.use_mirror_y:
mirror_Vectors.append(mathutils.Vector((-1, -1, 1)))
z_mirror_Vectors = []
if object.data.use_mirror_z:
for v in mirror_Vectors:
z_mirror_Vectors.append(mathutils.Vector((1, 1, -1)) * v)
mirror_Vectors.extend(z_mirror_Vectors)
mirror_Vectors.append(mathutils.Vector((1, 1, -1)))
for loop in move:
for index, loc in loop:
if mapping:
if mapping[index] == -1:
continue
else:
index = mapping[index]
delta = (loc - bm.verts[index].co) @ mat_inv
if lock_x:
delta[0] = 0
if lock_y:
delta[1] = 0
if lock_z:
delta[2] = 0
delta = delta @ mat
loc = bm.verts[index].co + delta
if influence < 0:
new_loc = loc
new_loc = loc * (influence / 100) + \
bm.verts[index].co * ((100 - influence) / 100)
for mirror_Vector in mirror_Vectors:
for vert in bm.verts:
if vert.co == mirror_Vector * bm.verts[index].co:
vert.co = mirror_Vector * new_loc
bm.normal_update()
object.data.update()
bm.verts.ensure_lookup_table()
bm.edges.ensure_lookup_table()
bm.faces.ensure_lookup_table()
beta-tester
committed
CoDEmanX
committed
# load custom tool settings
def settings_load(self):
lt = bpy.context.window_manager.looptools
tool = self.name.split()[0].lower()
keys = self.as_keywords().keys()
for key in keys:
setattr(self, key, getattr(lt, tool + "_" + key))
# store custom tool settings
def settings_write(self):
lt = bpy.context.window_manager.looptools
tool = self.name.split()[0].lower()
keys = self.as_keywords().keys()
for key in keys:
setattr(lt, tool + "_" + key, getattr(self, key))
# clean up and set settings back to original state
def terminate():
# update editmesh cached data
obj = bpy.context.active_object
if obj.mode == 'EDIT':
bmesh.update_edit_mesh(obj.data, loop_triangles=True, destructive=True)
# ########################################
# ##### Bridge functions #################
# ########################################
# calculate a cubic spline through the middle section of 4 given coordinates
def bridge_calculate_cubic_spline(bm, coordinates):
result = []
x = [0, 1, 2, 3]
CoDEmanX
committed
for j in range(3):
a = []
for i in coordinates:
a.append(float(i[j]))
h = []
for i in range(3):
for i in range(1, 3):
q.append(3.0 / h[i] * (a[i + 1] - a[i]) - 3.0 / h[i - 1] * (a[i] - a[i - 1]))
l = [1.0]
u = [0.0]
z = [0.0]
for i in range(1, 3):
l.append(2.0 * (x[i + 1] - x[i - 1]) - h[i - 1] * u[i - 1])
u.append(h[i] / l[i])
z.append((q[i] - h[i - 1] * z[i - 1]) / l[i])
l.append(1.0)
z.append(0.0)
b = [False for i in range(3)]
c = [False for i in range(4)]
d = [False for i in range(3)]
c[3] = 0.0
for i in range(2, -1, -1):
c[i] = z[i] - u[i] * c[i + 1]
b[i] = (a[i + 1] - a[i]) / h[i] - h[i] * (c[i + 1] + 2.0 * c[i]) / 3.0
d[i] = (c[i + 1] - c[i]) / (3.0 * h[i])
for i in range(3):
result.append([a[i], b[i], c[i], d[i], x[i]])
spline = [result[1], result[4], result[7]]
return(spline)
CoDEmanX
committed
# return a list with new vertex location vectors, a list with face vertex
# integers, and the highest vertex integer in the virtual mesh
def bridge_calculate_geometry(bm, lines, vertex_normals, segments,
interpolation, cubic_strength, min_width, max_vert_index):
new_verts = []
faces = []
CoDEmanX
committed
# calculate location based on interpolation method
def get_location(line, segment, splines):
v1 = bm.verts[lines[line][0]].co
v2 = bm.verts[lines[line][1]].co
if interpolation == 'linear':
return v1 + (segment / segments) * (v2 - v1)
else: # interpolation == 'cubic'
m = (segment / segments)
ax, bx, cx, dx, tx = splines[line][0]
x = ax + bx * m + cx * m ** 2 + dx * m ** 3
ay, by, cy, dy, ty = splines[line][1]
y = ay + by * m + cy * m ** 2 + dy * m ** 3
az, bz, cz, dz, tz = splines[line][2]
z = az + bz * m + cz * m ** 2 + dz * m ** 3
return mathutils.Vector((x, y, z))
CoDEmanX
committed
# no interpolation needed
if segments == 1:
for i, line in enumerate(lines):
if i < len(lines) - 1:
faces.append([line[0], lines[i + 1][0], lines[i + 1][1], line[1]])
# more than 1 segment, interpolate
else:
# calculate splines (if necessary) once, so no recalculations needed
if interpolation == 'cubic':
splines = []
for line in lines:
v1 = bm.verts[line[0]].co
v2 = bm.verts[line[1]].co
size = (v2 - v1).length * cubic_strength
splines.append(bridge_calculate_cubic_spline(bm,
[v1 + size * vertex_normals[line[0]], v1, v2,
v2 + size * vertex_normals[line[1]]]))
else:
splines = False
CoDEmanX
committed
# create starting situation
virtual_width = [(bm.verts[lines[i][0]].co -
bm.verts[lines[i + 1][0]].co).length for i
in range(len(lines) - 1)]
new_verts = [get_location(0, seg, splines) for seg in range(1,
segments)]
first_line_indices = [i for i in range(max_vert_index + 1,
max_vert_index + segments)]
CoDEmanX
committed
prev_verts = new_verts[:] # vertex locations of verts on previous line
prev_vert_indices = first_line_indices[:]
max_vert_index += segments - 1 # highest vertex index in virtual mesh
next_verts = [] # vertex locations of verts on current line
next_vert_indices = []
CoDEmanX
committed
for i, line in enumerate(lines):
end_face = True
for seg in range(1, segments):
loc1 = prev_verts[seg - 1]
loc2 = get_location(i + 1, seg, splines)
if (loc1 - loc2).length < (min_width / 100) * virtual_width[i] \
and line[1] == lines[i + 1][1]:
# triangle, no new vertex
faces.append([v1, v2, prev_vert_indices[seg - 1],
prev_vert_indices[seg - 1]])
next_verts += prev_verts[seg - 1:]
next_vert_indices += prev_vert_indices[seg - 1:]
end_face = False
break
else:
if i == len(lines) - 2 and lines[0] == lines[-1]:
# quad with first line, no new vertex
faces.append([v1, v2, first_line_indices[seg - 1],
prev_vert_indices[seg - 1]])
v2 = first_line_indices[seg - 1]
v1 = prev_vert_indices[seg - 1]
else:
# quad, add new vertex
max_vert_index += 1
faces.append([v1, v2, max_vert_index,
v2 = max_vert_index
new_verts.append(loc2)
next_verts.append(loc2)
next_vert_indices.append(max_vert_index)
if end_face:
faces.append([v1, v2, lines[i + 1][1], line[1]])
CoDEmanX
committed
prev_verts = next_verts[:]
prev_vert_indices = next_vert_indices[:]
next_verts = []
next_vert_indices = []
CoDEmanX
committed
return(new_verts, faces, max_vert_index)
# calculate lines (list of lists, vertex indices) that are used for bridging
def bridge_calculate_lines(bm, loops, mode, twist, reverse):
lines = []
loop1, loop2 = [i[0] for i in loops]
loop1_circular, loop2_circular = [i[1] for i in loops]
circular = loop1_circular or loop2_circular
circle_full = False
CoDEmanX
committed
# calculate loop centers
centers = []
for loop in [loop1, loop2]:
center = mathutils.Vector()
for vertex in loop:
center += bm.verts[vertex].co
center /= len(loop)
centers.append(center)
for i, loop in enumerate([loop1, loop2]):
for vertex in loop:
if bm.verts[vertex].co == centers[i]:
# prevent zero-length vectors in angle comparisons
centers[i] += mathutils.Vector((0.01, 0, 0))
break
center1, center2 = centers
CoDEmanX
committed
# calculate the normals of the virtual planes that the loops are on
normals = []
normal_plurity = False
for i, loop in enumerate([loop1, loop2]):
# covariance matrix
mat = mathutils.Matrix(((0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
(0.0, 0.0, 0.0)))
x, y, z = centers[i]
for loc in [bm.verts[vertex].co for vertex in loop]:
mat[0][0] += (loc[0] - x) ** 2
mat[1][0] += (loc[0] - x) * (loc[1] - y)
mat[2][0] += (loc[0] - x) * (loc[2] - z)
mat[0][1] += (loc[1] - y) * (loc[0] - x)
mat[1][1] += (loc[1] - y) ** 2
mat[2][1] += (loc[1] - y) * (loc[2] - z)
mat[0][2] += (loc[2] - z) * (loc[0] - x)
mat[1][2] += (loc[2] - z) * (loc[1] - y)
mat[2][2] += (loc[2] - z) ** 2
# plane normal
normal = False
if sum(mat[0]) < 1e-6 or sum(mat[1]) < 1e-6 or sum(mat[2]) < 1e-6:
normal_plurity = True
try:
mat.invert()
except:
if sum(mat[0]) == 0:
normal = mathutils.Vector((1.0, 0.0, 0.0))
elif sum(mat[1]) == 0:
normal = mathutils.Vector((0.0, 1.0, 0.0))
elif sum(mat[2]) == 0:
normal = mathutils.Vector((0.0, 0.0, 1.0))
if not normal:
# warning! this is different from .normalize()
itermax = 500
iter = 0
vec = mathutils.Vector((1.0, 1.0, 1.0))
while vec != vec2 and iter < itermax:
iter += 1
if vec2.length != 0:
vec2 /= vec2.length
if vec2.length == 0:
vec2 = mathutils.Vector((1.0, 1.0, 1.0))
normal = vec2
normals.append(normal)
# have plane normals face in the same direction (maximum angle: 90 degrees)
if ((center1 + normals[0]) - center2).length < \
((center1 - normals[0]) - center2).length:
normals[0].negate()
if ((center2 + normals[1]) - center1).length > \
((center2 - normals[1]) - center1).length:
normals[1].negate()
CoDEmanX
committed
# rotation matrix, representing the difference between the plane normals
axis = normals[0].cross(normals[1])
axis = mathutils.Vector([loc if abs(loc) > 1e-8 else 0 for loc in axis])
if axis.angle(mathutils.Vector((0, 0, 1)), 0) > 1.5707964:
axis.negate()
angle = normals[0].dot(normals[1])
rotation_matrix = mathutils.Matrix.Rotation(angle, 4, axis)
CoDEmanX
committed
# if circular, rotate loops so they are aligned
if circular:
# make sure loop1 is the circular one (or both are circular)
if loop2_circular and not loop1_circular:
loop1_circular, loop2_circular = True, False
loop1, loop2 = loop2, loop1
CoDEmanX
committed
# match start vertex of loop1 with loop2
target_vector = bm.verts[loop2[0]].co - center2
dif_angles = [[(rotation_matrix @ (bm.verts[vertex].co - center1)
).angle(target_vector, 0), False, i] for
i, vertex in enumerate(loop1)]
dif_angles.sort()
if len(loop1) != len(loop2):
angle_limit = dif_angles[0][0] * 1.2 # 20% margin
dif_angles = [
[(bm.verts[loop2[0]].co -
bm.verts[loop1[index]].co).length, angle, index] for
angle, distance, index in dif_angles if angle <= angle_limit
]
dif_angles.sort()
loop1 = loop1[dif_angles[0][2]:] + loop1[:dif_angles[0][2]]
CoDEmanX
committed
# have both loops face the same way
if normal_plurity and not circular:
second_to_first, second_to_second, second_to_last = [
(bm.verts[loop1[1]].co - center1).angle(
bm.verts[loop2[i]].co - center2) for i in [0, 1, -1]
]
last_to_first, last_to_second = [
(bm.verts[loop1[-1]].co -
center1).angle(bm.verts[loop2[i]].co - center2) for
i in [0, 1]
]
if (min(last_to_first, last_to_second) * 1.1 < min(second_to_first,
second_to_second)) or (loop2_circular and second_to_last * 1.1 <
min(second_to_first, second_to_second)):
loop1.reverse()
if circular:
loop1 = [loop1[-1]] + loop1[:-1]
else:
angle = (bm.verts[loop1[0]].co - center1).\
cross(bm.verts[loop1[1]].co - center1).angle(normals[0], 0)
target_angle = (bm.verts[loop2[0]].co - center2).\
cross(bm.verts[loop2[1]].co - center2).angle(normals[1], 0)
limit = 1.5707964 # 0.5*pi, 90 degrees
if not ((angle > limit and target_angle > limit) or
(angle < limit and target_angle < limit)):
loop1.reverse()
if circular:
loop1 = [loop1[-1]] + loop1[:-1]
elif normals[0].angle(normals[1]) > limit:
loop1.reverse()
if circular:
loop1 = [loop1[-1]] + loop1[:-1]
CoDEmanX
committed
# both loops have the same length
if len(loop1) == len(loop2):
# manual override
if twist:
if abs(twist) < len(loop1):
loop1 = loop1[twist:] + loop1[:twist]
if reverse:
loop1.reverse()
CoDEmanX
committed
lines.append([loop1[0], loop2[0]])
for i in range(1, len(loop1)):
lines.append([loop1[i], loop2[i]])
CoDEmanX
committed
# loops of different lengths
else:
# make loop1 longest loop
if len(loop2) > len(loop1):
loop1, loop2 = loop2, loop1
loop1_circular, loop2_circular = loop2_circular, loop1_circular
CoDEmanX
committed
# manual override
if twist:
if abs(twist) < len(loop1):
loop1 = loop1[twist:] + loop1[:twist]
if reverse:
loop1.reverse()
CoDEmanX
committed
# shortest angle difference doesn't always give correct start vertex
if loop1_circular and not loop2_circular:
shifting = 1
while shifting:
if len(loop1) - shifting < len(loop2):
shifting = False
break
(rotation_matrix @ (bm.verts[loop1[-1]].co - center1)).angle(
(bm.verts[loop2[i]].co - center2), 0) for i in [-1, 0]
]
if to_first < to_last:
loop1 = [loop1[-1]] + loop1[:-1]
shifting += 1
else:
shifting = False
break
CoDEmanX
committed
# basic shortest side first
if mode == 'basic':
lines.append([loop1[0], loop2[0]])
for i in range(1, len(loop1)):
if i >= len(loop2) - 1:
# triangles
lines.append([loop1[i], loop2[-1]])
else:
# quads
lines.append([loop1[i], loop2[i]])
CoDEmanX
committed
# shortest edge algorithm
lines.append([loop1[0], loop2[0]])
prev_vert2 = 0
if prev_vert2 == len(loop2) - 1 and not loop2_circular:
# force triangles, reached end of loop2
tri, quad = 0, 1
elif prev_vert2 == len(loop2) - 1 and loop2_circular:
# at end of loop2, but circular, so check with first vert
tri, quad = [(bm.verts[loop1[i + 1]].co -
bm.verts[loop2[j]].co).length
for j in [prev_vert2, 0]]
circle_full = 2
elif len(loop1) - 1 - i == len(loop2) - 1 - prev_vert2 and \
not circle_full:
# force quads, otherwise won't make it to end of loop2
tri, quad = 1, 0
else:
# calculate if tri or quad gives shortest edge
tri, quad = [(bm.verts[loop1[i + 1]].co -
bm.verts[loop2[j]].co).length
for j in range(prev_vert2, prev_vert2 + 2)]
CoDEmanX
committed
# triangle
if tri < quad:
lines.append([loop1[i + 1], loop2[prev_vert2]])
if circle_full == 2:
circle_full = False
# quad
elif not circle_full:
lines.append([loop1[i + 1], loop2[prev_vert2 + 1]])
prev_vert2 += 1
# quad to first vertex of loop2
else:
lines.append([loop1[i + 1], loop2[0]])
prev_vert2 = 0
circle_full = True
CoDEmanX
committed
# final face for circular loops
if loop1_circular and loop2_circular:
lines.append([loop1[0], loop2[0]])
CoDEmanX
committed
return(lines)
# calculate number of segments needed
def bridge_calculate_segments(bm, lines, loops, segments):
# return if amount of segments is set by user
if segments != 0:
return segments
CoDEmanX
committed
average_edge_length = [
(bm.verts[vertex].co -
bm.verts[loop[0][i + 1]].co).length for loop in loops for
i, vertex in enumerate(loop[0][:-1])
]
# closing edges of circular loops
average_edge_length += [
(bm.verts[loop[0][-1]].co -
bm.verts[loop[0][0]].co).length for loop in loops if loop[1]
]
CoDEmanX
committed
# average lengths
average_edge_length = sum(average_edge_length) / len(average_edge_length)
average_bridge_length = sum(
[(bm.verts[v1].co -
bm.verts[v2].co).length for v1, v2 in lines]
) / len(lines)
CoDEmanX
committed
segments = max(1, round(average_bridge_length / average_edge_length))
CoDEmanX
committed
return(segments)
# return dictionary with vertex index as key, and the normal vector as value
def bridge_calculate_virtual_vertex_normals(bm, lines, loops, edge_faces,
edgekey_to_edge):
if not edge_faces: # interpolation isn't set to cubic
CoDEmanX
committed
# pity reduce() isn't one of the basic functions in python anymore
def average_vector_dictionary(dic):
for key, vectors in dic.items():
# if type(vectors) == type([]) and len(vectors) > 1:
if len(vectors) > 1:
average = mathutils.Vector()
for vector in vectors:
average += vector
average /= len(vectors)
dic[key] = [average]
return dic
CoDEmanX
committed
# get all edges of the loop
edges = [
[edgekey_to_edge[tuple(sorted([loops[j][0][i],
loops[j][0][i + 1]]))] for i in range(len(loops[j][0]) - 1)] for
j in [0, 1]
]
edges = edges[0] + edges[1]
for j in [0, 1]:
edges.append(edgekey_to_edge[tuple(sorted([loops[j][0][0],
loops[j][0][-1]]))])
CoDEmanX
committed
"""
calculation based on face topology (assign edge-normals to vertices)
CoDEmanX
committed
edge_normal = face_normal x edge_vector
vertex_normal = average(edge_normals)
"""
vertex_normals = dict([(vertex, []) for vertex in loops[0][0] + loops[1][0]])
for edge in edges:
faces = edge_faces[edgekey(edge)] # valid faces connected to edge
CoDEmanX
committed
if faces:
# get edge coordinates
v1, v2 = [bm.verts[edgekey(edge)[i]].co for i in [0, 1]]
edge_vector = v1 - v2
if edge_vector.length < 1e-4:
# zero-length edge, vertices at same location
continue
edge_center = (v1 + v2) / 2
CoDEmanX
committed
# average face coordinates, if connected to more than 1 valid face
if len(faces) > 1:
face_normal = mathutils.Vector()
face_center = mathutils.Vector()
for face in faces:
face_normal += face.normal
face_center += face.calc_center_median()
face_normal /= len(faces)
face_center /= len(faces)
else:
face_normal = faces[0].normal
face_center = faces[0].calc_center_median()
if face_normal.length < 1e-4:
# faces with a surface of 0 have no face normal
continue
CoDEmanX
committed
# calculate virtual edge normal
edge_normal = edge_vector.cross(face_normal)
edge_normal.length = 0.01
if (face_center - (edge_center + edge_normal)).length > \
(face_center - (edge_center - edge_normal)).length:
# make normal face the correct way
edge_normal.negate()
edge_normal.normalize()
# add virtual edge normal as entry for both vertices it connects
for vertex in edgekey(edge):
vertex_normals[vertex].append(edge_normal)
CoDEmanX
committed
"""
calculation based on connection with other loop (vertex focused method)
- used for vertices that aren't connected to any valid faces
CoDEmanX
committed
plane_normal = edge_vector x connection_vector
vertex_normal = plane_normal x edge_vector
"""
vertices = [
vertex for vertex, normal in vertex_normals.items() if not normal
]
CoDEmanX
committed
if vertices:
# edge vectors connected to vertices
edge_vectors = dict([[vertex, []] for vertex in vertices])
for edge in edges:
for v in edgekey(edge):
if v in edge_vectors:
edge_vector = bm.verts[edgekey(edge)[0]].co - \
bm.verts[edgekey(edge)[1]].co
if edge_vector.length < 1e-4:
# zero-length edge, vertices at same location
continue
edge_vectors[v].append(edge_vector)
CoDEmanX
committed
# connection vectors between vertices of both loops
connection_vectors = dict([[vertex, []] for vertex in vertices])
connections = dict([[vertex, []] for vertex in vertices])
for v1, v2 in lines:
if v1 in connection_vectors or v2 in connection_vectors:
new_vector = bm.verts[v1].co - bm.verts[v2].co
if new_vector.length < 1e-4:
# zero-length connection vector,
# vertices in different loops at same location
continue
if v1 in connection_vectors:
connection_vectors[v1].append(new_vector)
connections[v1].append(v2)
if v2 in connection_vectors:
connection_vectors[v2].append(new_vector)
connections[v2].append(v1)
connection_vectors = average_vector_dictionary(connection_vectors)
connection_vectors = dict(
[[vertex, vector[0]] if vector else
[vertex, []] for vertex, vector in connection_vectors.items()]
)
CoDEmanX
committed
for vertex, values in edge_vectors.items():
# vertex normal doesn't matter, just assign a random vector to it
if not connection_vectors[vertex]:
vertex_normals[vertex] = [mathutils.Vector((1, 0, 0))]
continue
CoDEmanX
committed
# calculate to what location the vertex is connected,
# used to determine what way to flip the normal
connected_center = mathutils.Vector()
for v in connections[vertex]:
connected_center += bm.verts[v].co
if len(connections[vertex]) > 1:
connected_center /= len(connections[vertex])
if len(connections[vertex]) == 0:
# shouldn't be possible, but better safe than sorry
vertex_normals[vertex] = [mathutils.Vector((1, 0, 0))]
continue
CoDEmanX
committed
# can't do proper calculations, because of zero-length vector
if not values:
if (connected_center - (bm.verts[vertex].co +
connection_vectors[vertex])).length < (connected_center -
(bm.verts[vertex].co - connection_vectors[vertex])).length:
connection_vectors[vertex].negate()
vertex_normals[vertex] = [connection_vectors[vertex].normalized()]
CoDEmanX
committed
# calculate vertex normals using edge-vectors,
# connection-vectors and the derived plane normal
for edge_vector in values:
plane_normal = edge_vector.cross(connection_vectors[vertex])
vertex_normal = edge_vector.cross(plane_normal)
vertex_normal.length = 0.1
if (connected_center - (bm.verts[vertex].co +
vertex_normal)).length < (connected_center -
(bm.verts[vertex].co - vertex_normal)).length:
# make normal face the correct way
vertex_normal.negate()
vertex_normal.normalize()
vertex_normals[vertex].append(vertex_normal)
CoDEmanX
committed
# average virtual vertex normals, based on all edges it's connected to
vertex_normals = average_vector_dictionary(vertex_normals)
vertex_normals = dict([[vertex, vector[0]] for vertex, vector in vertex_normals.items()])
CoDEmanX
committed
return(vertex_normals)
# add vertices to mesh
def bridge_create_vertices(bm, vertices):
for i in range(len(vertices)):
bm.verts.new(vertices[i])
# add faces to mesh
def bridge_create_faces(object, bm, faces, twist):
# have the normal point the correct way
if twist < 0:
[face.reverse() for face in faces]
faces = [face[2:] + face[:2] if face[0] == face[1] else face for face in faces]
CoDEmanX
committed
# eekadoodle prevention
for i in range(len(faces)):
if not faces[i][-1]:
if faces[i][0] == faces[i][-1]:
faces[i] = [faces[i][1], faces[i][2], faces[i][3], faces[i][1]]
else:
faces[i] = [faces[i][-1]] + faces[i][:-1]
# result of converting from pre-bmesh period
if faces[i][-1] == faces[i][-2]:
faces[i] = faces[i][:-1]
CoDEmanX
committed
for i in range(len(faces)):
Vladimir Spivak(cwolf3d)
committed
try:
new_faces.append(bm.faces.new([bm.verts[v] for v in faces[i]]))
except:
# face already exists
pass
bm.normal_update()
object.data.update(calc_edges=True) # calc_edges prevents memory-corruption
bm.verts.ensure_lookup_table()
bm.edges.ensure_lookup_table()
bm.faces.ensure_lookup_table()
beta-tester
committed
# calculate input loops
def bridge_get_input(bm):
# create list of internal edges, which should be skipped
eks_of_selected_faces = [
item for sublist in [face_edgekeys(face) for
face in bm.faces if face.select and not face.hide] for item in sublist
]
edge_count = {}
for ek in eks_of_selected_faces:
if ek in edge_count:
edge_count[ek] += 1
else:
edge_count[ek] = 1
internal_edges = [ek for ek in edge_count if edge_count[ek] > 1]
CoDEmanX
committed
# sort correct edges into loops
selected_edges = [
edgekey(edge) for edge in bm.edges if edge.select and
not edge.hide and edgekey(edge) not in internal_edges
]
loops = get_connected_selections(selected_edges)
CoDEmanX
committed
return(loops)
# return values needed by the bridge operator
def bridge_initialise(bm, interpolation):
if interpolation == 'cubic':
# dict with edge-key as key and list of connected valid faces as value
face_blacklist = [
face.index for face in bm.faces if face.select or
face.hide
]
edge_faces = dict(
[[edgekey(edge), []] for edge in bm.edges if not edge.hide]
)
for face in bm.faces:
if face.index in face_blacklist:
continue
for key in face_edgekeys(face):
edge_faces[key].append(face)
# dictionary with the edge-key as key and edge as value
edgekey_to_edge = dict(
[[edgekey(edge), edge] for edge in bm.edges if edge.select and not edge.hide]
)
else:
edge_faces = False
edgekey_to_edge = False
CoDEmanX
committed
# selected faces input
old_selected_faces = [
face.index for face in bm.faces if face.select and not face.hide
]
CoDEmanX
committed
# find out if faces created by bridging should be smoothed
smooth = False
if bm.faces:
if sum([face.smooth for face in bm.faces]) / len(bm.faces) >= 0.5:
CoDEmanX
committed
return(edge_faces, edgekey_to_edge, old_selected_faces, smooth)
# return a string with the input method
def bridge_input_method(loft, loft_loop):
method = ""
if loft:
if loft_loop:
method = "Loft loop"
else:
method = "Loft no-loop"
else:
method = "Bridge"
CoDEmanX
committed
return(method)
# match up loops in pairs, used for multi-input bridging
def bridge_match_loops(bm, loops):
# calculate average loop normals and centers
normals = []
centers = []
for vertices, circular in loops:
normal = mathutils.Vector()
center = mathutils.Vector()
for vertex in vertices:
normal += bm.verts[vertex].normal
center += bm.verts[vertex].co
normals.append(normal / len(vertices) / 10)
centers.append(center / len(vertices))
CoDEmanX
committed
# possible matches if loop normals are faced towards the center
# of the other loop
matches = dict([[i, []] for i in range(len(loops))])
matches_amount = 0
for i in range(len(loops) + 1):
for j in range(i + 1, len(loops)):
if (centers[i] - centers[j]).length > \
(centers[i] - (centers[j] + normals[j])).length and \
(centers[j] - centers[i]).length > \
(centers[j] - (centers[i] + normals[i])).length:
matches_amount += 1
matches[i].append([(centers[i] - centers[j]).length, i, j])
matches[j].append([(centers[i] - centers[j]).length, j, i])
# if no loops face each other, just make matches between all the loops
if matches_amount == 0:
for i in range(len(loops) + 1):
for j in range(i + 1, len(loops)):
matches[i].append([(centers[i] - centers[j]).length, i, j])
matches[j].append([(centers[i] - centers[j]).length, j, i])
for key, value in matches.items():
value.sort()
CoDEmanX
committed
# matches based on distance between centers and number of vertices in loops
new_order = []
for loop_index in range(len(loops)):
if loop_index in new_order:
continue
loop_matches = matches[loop_index]
if not loop_matches:
continue
shortest_distance = loop_matches[0][0]
shortest_distance *= 1.1
loop_matches = [
[abs(len(loops[loop_index][0]) -
len(loops[loop[2]][0])), loop[0], loop[1], loop[2]] for loop in
loop_matches if loop[0] < shortest_distance
]
loop_matches.sort()
for match in loop_matches:
if match[3] not in new_order:
new_order += [loop_index, match[3]]
break
CoDEmanX
committed
# reorder loops based on matches
if len(new_order) >= 2:
loops = [loops[i] for i in new_order]
CoDEmanX
committed
return(loops)
# remove old_selected_faces
def bridge_remove_internal_faces(bm, old_selected_faces):
# collect bmesh faces and internal bmesh edges
remove_faces = [bm.faces[face] for face in old_selected_faces]
edges = collections.Counter(
[edge.index for face in remove_faces for edge in face.edges]
)
remove_edges = [bm.edges[edge] for edge in edges if edges[edge] > 1]
CoDEmanX
committed
# remove internal faces and edges
for face in remove_faces:
bm.faces.remove(face)
for edge in remove_edges:
bm.edges.remove(edge)
bm.faces.ensure_lookup_table()
bm.edges.ensure_lookup_table()
bm.verts.ensure_lookup_table()
beta-tester
committed
# update list of internal faces that are flagged for removal
def bridge_save_unused_faces(bm, old_selected_faces, loops):
# key: vertex index, value: lists of selected faces using it
vertex_to_face = dict([[i, []] for i in range(len(bm.verts))])
[[vertex_to_face[vertex.index].append(face) for vertex in
bm.faces[face].verts] for face in old_selected_faces]
CoDEmanX
committed
# group selected faces that are connected
groups = []
grouped_faces = []
for face in old_selected_faces:
if face in grouped_faces:
continue
grouped_faces.append(face)
group = [face]
new_faces = [face]
while new_faces:
grow_face = new_faces[0]
for vertex in bm.faces[grow_face].verts:
vertex_face_group = [
face for face in vertex_to_face[vertex.index] if
face not in grouped_faces
]
new_faces += vertex_face_group
grouped_faces += vertex_face_group
group += vertex_face_group
new_faces.pop(0)
groups.append(group)
CoDEmanX
committed
# key: vertex index, value: True/False (is it in a loop that is used)
used_vertices = dict([[i, 0] for i in range(len(bm.verts))])
for loop in loops:
for vertex in loop[0]:
used_vertices[vertex] = True
CoDEmanX
committed
# check if group is bridged, if not remove faces from internal faces list
for group in groups:
used = False
for face in group:
if used:
break
for vertex in bm.faces[face].verts:
if used_vertices[vertex.index]:
used = True
break
if not used:
for face in group:
old_selected_faces.remove(face)
# add the newly created faces to the selection
def bridge_select_new_faces(new_faces, smooth):
for face in new_faces:
face.select_set(True)
face.smooth = smooth
# sort loops, so they are connected in the correct order when lofting
def bridge_sort_loops(bm, loops, loft_loop):
# simplify loops to single points, and prepare for pathfinding
x, y, z = [
[sum([bm.verts[i].co[j] for i in loop[0]]) /
len(loop[0]) for loop in loops] for j in range(3)
]
nodes = [mathutils.Vector((x[i], y[i], z[i])) for i in range(len(loops))]
CoDEmanX
committed
active_node = 0
open = [i for i in range(1, len(loops))]
# connect node to path, that is shortest to active_node
while len(open) > 0:
distances = [(nodes[active_node] - nodes[i]).length for i in open]
active_node = open[distances.index(min(distances))]
open.remove(active_node)
path.append([active_node, min(distances)])
# check if we didn't start in the middle of the path
for i in range(2, len(path)):
if (nodes[path[i][0]] - nodes[0]).length < path[i][1]:
temp = path[:i]
path.reverse()
path = path[:-i] + temp
break
CoDEmanX
committed
# reorder loops
loops = [loops[i[0]] for i in path]
# if requested, duplicate first loop at last position, so loft can loop
if loft_loop:
loops = loops + [loops[0]]
CoDEmanX
committed
return(loops)
# remapping old indices to new position in list
def bridge_update_old_selection(bm, old_selected_faces):
"""
old_indices = old_selected_faces[:]
old_selected_faces = []
for i, face in enumerate(bm.faces):
if face.index in old_indices:
old_selected_faces.append(i)
"""
old_selected_faces = [
i for i, face in enumerate(bm.faces) if face.index in old_selected_faces
]
CoDEmanX
committed
return(old_selected_faces)
# ########################################
# ##### Circle functions #################
# ########################################
# convert 3d coordinates to 2d coordinates on plane
def circle_3d_to_2d(bm_mod, loop, com, normal):
# project vertices onto the plane
verts = [bm_mod.verts[v] for v in loop[0]]
verts_projected = [[v.co - (v.co - com).dot(normal) * normal, v.index]
for v in verts]
# calculate two vectors (p and q) along the plane
m = mathutils.Vector((normal[0] + 1.0, normal[1], normal[2]))
p = m - (m.dot(normal) * normal)
m = mathutils.Vector((normal[0], normal[1] + 1.0, normal[2]))
p = m - (m.dot(normal) * normal)
q = p.cross(normal)
CoDEmanX
committed
# change to 2d coordinates using perpendicular projection
locs_2d = []
for loc, vert in verts_projected:
vloc = loc - com
x = p.dot(vloc) / p.dot(p)
y = q.dot(vloc) / q.dot(q)
locs_2d.append([x, y, vert])
CoDEmanX
committed
return(locs_2d, p, q)
# calculate a best-fit circle to the 2d locations on the plane
def circle_calculate_best_fit(locs_2d):
# initial guess
x0 = 0.0
y0 = 0.0
r = 1.0
CoDEmanX
committed
# calculate center and radius (non-linear least squares solution)
for iter in range(500):
jmat = []
k = []
for v in locs_2d:
d = (v[0] ** 2 - 2.0 * x0 * v[0] + v[1] ** 2 - 2.0 * y0 * v[1] + x0 ** 2 + y0 ** 2) ** 0.5
jmat.append([(x0 - v[0]) / d, (y0 - v[1]) / d, -1.0])
k.append(-(((v[0] - x0) ** 2 + (v[1] - y0) ** 2) ** 0.5 - r))
jmat2 = mathutils.Matrix(((0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
))
k2 = mathutils.Vector((0.0, 0.0, 0.0))
for i in range(len(jmat)):
k2 += mathutils.Vector(jmat[i]) * k[i]
jmat2[0][0] += jmat[i][0] ** 2
jmat2[1][0] += jmat[i][0] * jmat[i][1]
jmat2[2][0] += jmat[i][0] * jmat[i][2]
jmat2[1][1] += jmat[i][1] ** 2
jmat2[2][1] += jmat[i][1] * jmat[i][2]
jmat2[2][2] += jmat[i][2] ** 2
jmat2[0][1] = jmat2[1][0]
jmat2[0][2] = jmat2[2][0]
jmat2[1][2] = jmat2[2][1]
try:
jmat2.invert()
except:
pass
x0 += dx0
y0 += dy0
r += dr
# stop iterating if we're close enough to optimal solution
if abs(dx0) < 1e-6 and abs(dy0) < 1e-6 and abs(dr) < 1e-6:
CoDEmanX
committed
# return center of circle and radius
return(x0, y0, r)
# calculate circle so no vertices have to be moved away from the center
def circle_calculate_min_fit(locs_2d):
# center of circle
x0 = (min([i[0] for i in locs_2d]) + max([i[0] for i in locs_2d])) / 2.0
y0 = (min([i[1] for i in locs_2d]) + max([i[1] for i in locs_2d])) / 2.0
center = mathutils.Vector([x0, y0])
# radius of circle
r = min([(mathutils.Vector([i[0], i[1]]) - center).length for i in locs_2d])
CoDEmanX
committed
# return center of circle and radius
return(x0, y0, r)
# calculate the new locations of the vertices that need to be moved
def circle_calculate_verts(flatten, bm_mod, locs_2d, com, p, q, normal):
# changing 2d coordinates back to 3d coordinates
locs_3d = []
for loc in locs_2d:
locs_3d.append([loc[2], loc[0] * p + loc[1] * q + com])
CoDEmanX
committed
CoDEmanX
committed
else: # project the locations on the existing mesh
vert_edges = dict_vert_edges(bm_mod)
vert_faces = dict_vert_faces(bm_mod)
faces = [f for f in bm_mod.faces if not f.hide]
rays = [normal, -normal]
new_locs = []
for loc in locs_3d:
projection = False
if bm_mod.verts[loc[0]].co == loc[1]: # vertex hasn't moved
projection = loc[1]
else:
dif = normal.angle(loc[1] - bm_mod.verts[loc[0]].co)
if -1e-6 < dif < 1e-6 or math.pi - 1e-6 < dif < math.pi + 1e-6:
# original location is already along projection normal
projection = bm_mod.verts[loc[0]].co
else:
# quick search through adjacent faces
for face in vert_faces[loc[0]]:
verts = [v.co for v in bm_mod.faces[face].verts]
v1, v2, v3 = verts
v4 = False
v1, v2, v3, v4 = verts[:4]
for ray in rays:
intersect = mathutils.geometry.\
intersect_ray_tri(v1, v2, v3, ray, loc[1])
if intersect:
projection = intersect
break
elif v4:
intersect = mathutils.geometry.\
intersect_ray_tri(v1, v3, v4, ray, loc[1])
if intersect:
projection = intersect
break
if projection:
break
if not projection:
# check if projection is on adjacent edges
for edgekey in vert_edges[loc[0]]:
line1 = bm_mod.verts[edgekey[0]].co
line2 = bm_mod.verts[edgekey[1]].co
intersect, dist = mathutils.geometry.intersect_point_line(
loc[1], line1, line2
)
if 1e-6 < dist < 1 - 1e-6:
projection = intersect
break
if not projection:
# full search through the entire mesh
hits = []
for face in faces:
verts = [v.co for v in face.verts]
v1, v2, v3 = verts
v4 = False
v1, v2, v3, v4 = verts[:4]
for ray in rays:
intersect = mathutils.geometry.intersect_ray_tri(
v1, v2, v3, ray, loc[1]
)
if intersect:
hits.append([(loc[1] - intersect).length,
intersect])
break
elif v4:
intersect = mathutils.geometry.intersect_ray_tri(
v1, v3, v4, ray, loc[1]
)
if intersect:
hits.append([(loc[1] - intersect).length,
intersect])
break
if len(hits) >= 1:
# if more than 1 hit with mesh, closest hit is new loc
hits.sort()
projection = hits[0][1]
if not projection:
# nothing to project on, remain at flat location
projection = loc[1]
new_locs.append([loc[0], projection])
CoDEmanX
committed
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
# return new positions of projected circle
return(new_locs)
# check loops and only return valid ones
def circle_check_loops(single_loops, loops, mapping, bm_mod):
valid_single_loops = {}
valid_loops = []
for i, [loop, circular] in enumerate(loops):
# loop needs to have at least 3 vertices
if len(loop) < 3:
continue
# loop needs at least 1 vertex in the original, non-mirrored mesh
if mapping:
all_virtual = True
for vert in loop:
if mapping[vert] > -1:
all_virtual = False
break
if all_virtual:
continue
# loop has to be non-collinear
collinear = True
loc0 = mathutils.Vector(bm_mod.verts[loop[0]].co[:])
loc1 = mathutils.Vector(bm_mod.verts[loop[1]].co[:])
for v in loop[2:]:
locn = mathutils.Vector(bm_mod.verts[v].co[:])
if loc0 == loc1 or loc1 == locn:
loc0 = loc1
loc1 = locn
continue
d1 = loc1 - loc0
d2 = locn - loc1
if -1e-6 < d1.angle(d2, 0) < 1e-6:
loc0 = loc1
loc1 = locn
continue
collinear = False
break
if collinear:
continue
# passed all tests, loop is valid
valid_loops.append([loop, circular])
valid_single_loops[len(valid_loops) - 1] = single_loops[i]
CoDEmanX
committed
return(valid_single_loops, valid_loops)
# calculate the location of single input vertices that need to be flattened
def circle_flatten_singles(bm_mod, com, p, q, normal, single_loop):
new_locs = []
for vert in single_loop:
loc = mathutils.Vector(bm_mod.verts[vert].co[:])
new_locs.append([vert, loc - (loc - com).dot(normal) * normal])
CoDEmanX
committed
return(new_locs)
# calculate input loops
def circle_get_input(object, bm):
# get mesh with modifiers applied
Vladimir Spivak(cwolf3d)
committed
derived, bm_mod = get_derived_bmesh(object, bm, False)
CoDEmanX
committed
# create list of edge-keys based on selection state
faces = False
for face in bm.faces:
if face.select and not face.hide:
faces = True
break
if faces:
# get selected, non-hidden , non-internal edge-keys
eks_selected = [
key for keys in [face_edgekeys(face) for face in
bm_mod.faces if face.select and not face.hide] for key in keys
]
edge_count = {}
for ek in eks_selected:
if ek in edge_count:
edge_count[ek] += 1
else:
edge_count[ek] = 1
edge_keys = [
edgekey(edge) for edge in bm_mod.edges if edge.select and
not edge.hide and edge_count.get(edgekey(edge), 1) == 1
]
else:
# no faces, so no internal edges either
edge_keys = [
edgekey(edge) for edge in bm_mod.edges if edge.select and not edge.hide
]
CoDEmanX
committed
# add edge-keys around single vertices
verts_connected = dict(
[[vert, 1] for edge in [edge for edge in
bm_mod.edges if edge.select and not edge.hide] for vert in
edgekey(edge)]
)
single_vertices = [
vert.index for vert in bm_mod.verts if
vert.select and not vert.hide and
not verts_connected.get(vert.index, False)
]
if single_vertices and len(bm.faces) > 0:
vert_to_single = dict(
[[v.index, []] for v in bm_mod.verts if not v.hide]
)
for face in [face for face in bm_mod.faces if not face.select and not face.hide]:
for vert in face.verts:
vert = vert.index
if vert in single_vertices:
for ek in face_edgekeys(face):
edge_keys.append(ek)
if vert not in vert_to_single[ek[0]]:
vert_to_single[ek[0]].append(vert)
if vert not in vert_to_single[ek[1]]:
vert_to_single[ek[1]].append(vert)
break
CoDEmanX
committed
# sort edge-keys into loops
loops = get_connected_selections(edge_keys)
CoDEmanX
committed
# find out to which loops the single vertices belong
single_loops = dict([[i, []] for i in range(len(loops))])
if single_vertices and len(bm.faces) > 0:
for i, [loop, circular] in enumerate(loops):
for vert in loop:
if vert_to_single[vert]:
for single in vert_to_single[vert]:
if single not in single_loops[i]:
single_loops[i].append(single)
CoDEmanX
committed
return(derived, bm_mod, single_vertices, single_loops, loops)
# recalculate positions based on the influence of the circle shape
def circle_influence_locs(locs_2d, new_locs_2d, influence):
for i in range(len(locs_2d)):
oldx, oldy, j = locs_2d[i]
newx, newy, k = new_locs_2d[i]
altx = newx * (influence / 100) + oldx * ((100 - influence) / 100)
alty = newy * (influence / 100) + oldy * ((100 - influence) / 100)
locs_2d[i] = [altx, alty, j]
CoDEmanX
committed
return(locs_2d)
# project 2d locations on circle, respecting distance relations between verts
Vladimir Spivak(cwolf3d)
committed
def circle_project_non_regular(locs_2d, x0, y0, r, angle):
for i in range(len(locs_2d)):
x, y, j = locs_2d[i]
loc = mathutils.Vector([x - x0, y - y0])
Vladimir Spivak(cwolf3d)
committed
mat_rot = mathutils.Matrix.Rotation(angle, 2, 'X')
loc.rotate(mat_rot)
loc.length = r
locs_2d[i] = [loc[0], loc[1], j]
CoDEmanX
committed
return(locs_2d)
# project 2d locations on circle, with equal distance between all vertices
Vladimir Spivak(cwolf3d)
committed
def circle_project_regular(locs_2d, x0, y0, r, angle):
# find offset angle and circling direction
x, y, i = locs_2d[0]
loc = mathutils.Vector([x - x0, y - y0])
loc.length = r
offset_angle = loc.angle(mathutils.Vector([1.0, 0.0]), 0.0)
loca = mathutils.Vector([x - x0, y - y0, 0.0])
if loc[1] < -1e-6:
offset_angle *= -1
x, y, j = locs_2d[1]
locb = mathutils.Vector([x - x0, y - y0, 0.0])
if loca.cross(locb)[2] >= 0:
ccw = 1
else:
ccw = -1
# distribute vertices along the circle
for i in range(len(locs_2d)):
t = offset_angle + ccw * (i / len(locs_2d) * 2 * math.pi)
Vladimir Spivak(cwolf3d)
committed
x = math.cos(t + angle) * r
y = math.sin(t + angle) * r
locs_2d[i] = [x, y, locs_2d[i][2]]
CoDEmanX
committed
return(locs_2d)
# shift loop, so the first vertex is closest to the center
def circle_shift_loop(bm_mod, loop, com):
verts, circular = loop
distances = [
[(bm_mod.verts[vert].co - com).length, i] for i, vert in enumerate(verts)
]
distances.sort()
shift = distances[0][1]
loop = [verts[shift:] + verts[:shift], circular]
CoDEmanX
committed
return(loop)
# ########################################
# ##### Curve functions ##################
# ########################################
# create lists with knots and points, all correctly sorted
def curve_calculate_knots(loop, verts_selected):
knots = [v for v in loop[0] if v in verts_selected]
points = loop[0][:]
# circular loop, potential for weird splines
if loop[1]:
offset = int(len(loop[0]) / 4)
kpos = []
for k in knots:
kpos.append(loop[0].index(k))
kdif = []
for i in range(len(kpos) - 1):
kdif.append(kpos[i + 1] - kpos[i])
kdif.append(len(loop[0]) - kpos[-1] + kpos[0])
kadd = []
for k in kdif:
if k > 2 * offset:
kadd.append([kdif.index(k), True])
# next 2 lines are optional, they insert
# an extra control point in small gaps
# kadd.append([kdif.index(k), False])
kins = []
krot = False
for k in kadd: # extra knots to be added
if k[1]: # big gap (break circular spline)
kpos = loop[0].index(knots[k[0]]) + offset
if kpos > len(loop[0]) - 1:
kpos -= len(loop[0])
kins.append([knots[k[0]], loop[0][kpos]])
kpos2 = k[0] + 1
kpos2 -= len(knots)
kpos2 = loop[0].index(knots[kpos2]) - offset
if kpos2 < 0:
kpos2 += len(loop[0])
kins.append([loop[0][kpos], loop[0][kpos2]])
krot = loop[0][kpos2]
else: # small gap (keep circular spline)
k1 = loop[0].index(knots[k[0]])
k2 = k[0] + 1
k2 -= len(knots)
k2 = loop[0].index(knots[k2])
if k2 < k1:
dif = len(loop[0]) - 1 - k1 + k2
else:
dif = k2 - k1
if kn > len(loop[0]) - 1:
kn -= len(loop[0])
kins.append([loop[0][k1], loop[0][kn]])
knots.insert(knots.index(j[0]) + 1, j[1])
knots.append(knots[0])
points = loop[0][loop[0].index(knots[0]):]
points += loop[0][0:loop[0].index(knots[0]) + 1]
else: # non-circular loop (broken by script)
krot = knots.index(krot)
knots = knots[krot:] + knots[0:krot]
if loop[0].index(knots[0]) > loop[0].index(knots[-1]):
points = loop[0][loop[0].index(knots[0]):]
points += loop[0][0:loop[0].index(knots[-1]) + 1]
points = loop[0][loop[0].index(knots[0]):loop[0].index(knots[-1]) + 1]
# non-circular loop, add first and last point as knots
else:
if loop[0][0] not in knots:
knots.insert(0, loop[0][0])
if loop[0][-1] not in knots:
knots.append(loop[0][-1])
CoDEmanX
committed
return(knots, points)
# calculate relative positions compared to first knot
def curve_calculate_t(bm_mod, knots, points, pknots, regular, circular):
tpoints = []
loc_prev = False
len_total = 0
CoDEmanX
committed
for p in points:
if p in knots:
loc = pknots[knots.index(p)] # use projected knot location
else:
loc = mathutils.Vector(bm_mod.verts[p].co[:])
if not loc_prev:
loc_prev = loc
len_total += (loc - loc_prev).length
tpoints.append(len_total)
loc_prev = loc
tknots = []
for p in points:
if p in knots:
tknots.append(tpoints[points.index(p)])
if circular:
tknots[-1] = tpoints[-1]
CoDEmanX
committed
# regular option
if regular:
tpoints_average = tpoints[-1] / (len(tpoints) - 1)
for i in range(1, len(tpoints) - 1):
tpoints[i] = i * tpoints_average
for i in range(len(knots)):
tknots[i] = tpoints[points.index(knots[i])]
if circular:
tknots[-1] = tpoints[-1]
CoDEmanX
committed
return(tknots, tpoints)
# change the location of non-selected points to their place on the spline
def curve_calculate_vertices(bm_mod, knots, tknots, points, tpoints, splines,
interpolation, restriction):
newlocs = {}
move = []
CoDEmanX
committed
for p in points:
if p in knots:
continue
m = tpoints[points.index(p)]
if m in tknots:
n = tknots.index(m)
else:
t = tknots[:]
t.append(m)
t.sort()
n = t.index(m) - 1
if n > len(splines) - 1:
n = len(splines) - 1
elif n < 0:
n = 0
CoDEmanX
committed
if interpolation == 'cubic':
ax, bx, cx, dx, tx = splines[n][0]
x = ax + bx * (m - tx) + cx * (m - tx) ** 2 + dx * (m - tx) ** 3
ay, by, cy, dy, ty = splines[n][1]
y = ay + by * (m - ty) + cy * (m - ty) ** 2 + dy * (m - ty) ** 3
az, bz, cz, dz, tz = splines[n][2]
z = az + bz * (m - tz) + cz * (m - tz) ** 2 + dz * (m - tz) ** 3
newloc = mathutils.Vector([x, y, z])
else: # interpolation == 'linear'
a, d, t, u = splines[n]
if restriction != 'none': # vertex movement is restricted
newlocs[p] = newloc
else: # set the vertex to its new location
move.append([p, newloc])
CoDEmanX
committed
if restriction != 'none': # vertex movement is restricted
for p in points:
if p in newlocs:
newloc = newlocs[p]
else:
move.append([p, bm_mod.verts[p].co])
continue
oldloc = bm_mod.verts[p].co
normal = bm_mod.verts[p].normal
dloc = newloc - oldloc
if dloc.length < 1e-6:
move.append([p, newloc])
elif restriction == 'extrude': # only extrusions
if dloc.angle(normal, 0) < 0.5 * math.pi + 1e-6:
move.append([p, newloc])
else: # restriction == 'indent' only indentations
if dloc.angle(normal) > 0.5 * math.pi - 1e-6:
move.append([p, newloc])
return(move)
# trim loops to part between first and last selected vertices (including)
def curve_cut_boundaries(bm_mod, loops):
cut_loops = []
for loop, circular in loops:
if circular:
Spivak Vladimir (cwolf3d)
committed
selected = [bm_mod.verts[v].select for v in loop]
first = selected.index(True)
selected.reverse()
last = -selected.index(True)
if last == 0:
if len(loop[first:]) < len(loop)/2:
cut_loops.append([loop[first:], False])
else:
if len(loop[first:last]) < len(loop)/2:
cut_loops.append([loop[first:last], False])
continue
selected = [bm_mod.verts[v].select for v in loop]
first = selected.index(True)
selected.reverse()
last = -selected.index(True)
if last == 0:
cut_loops.append([loop[first:], circular])
else:
cut_loops.append([loop[first:last], circular])
CoDEmanX
committed
return(cut_loops)
# calculate input loops
def curve_get_input(object, bm, boundaries):
# get mesh with modifiers applied
Vladimir Spivak(cwolf3d)
committed
derived, bm_mod = get_derived_bmesh(object, bm, False)
CoDEmanX
committed
# vertices that still need a loop to run through it
verts_unsorted = [
v.index for v in bm_mod.verts if v.select and not v.hide
]
# necessary dictionaries
vert_edges = dict_vert_edges(bm_mod)
edge_faces = dict_edge_faces(bm_mod)
correct_loops = []
# find loops through each selected vertex
while len(verts_unsorted) > 0:
loops = curve_vertex_loops(bm_mod, verts_unsorted[0], vert_edges,
edge_faces)
verts_unsorted.pop(0)
CoDEmanX
committed
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
# check if loop is fully selected
search_perpendicular = False
i = -1
for loop, circular in loops:
i += 1
selected = [v for v in loop if bm_mod.verts[v].select]
if len(selected) < 2:
# only one selected vertex on loop, don't use
loops.pop(i)
continue
elif len(selected) == len(loop):
search_perpendicular = loop
break
# entire loop is selected, find perpendicular loops
if search_perpendicular:
for vert in loop:
if vert in verts_unsorted:
verts_unsorted.remove(vert)
perp_loops = curve_perpendicular_loops(bm_mod, loop,
vert_edges, edge_faces)
for perp_loop in perp_loops:
correct_loops.append(perp_loop)
# normal input
else:
for loop, circular in loops:
correct_loops.append([loop, circular])
CoDEmanX
committed
# boundaries option
if boundaries:
correct_loops = curve_cut_boundaries(bm_mod, correct_loops)
CoDEmanX
committed
return(derived, bm_mod, correct_loops)
# return all loops that are perpendicular to the given one
def curve_perpendicular_loops(bm_mod, start_loop, vert_edges, edge_faces):
# find perpendicular loops
perp_loops = []
for start_vert in start_loop:
loops = curve_vertex_loops(bm_mod, start_vert, vert_edges,
edge_faces)
for loop, circular in loops:
selected = [v for v in loop if bm_mod.verts[v].select]
if len(selected) == len(loop):
continue
else:
perp_loops.append([loop, circular, loop.index(start_vert)])
CoDEmanX
committed
# trim loops to same lengths
shortest = [
[len(loop[0]), i] for i, loop in enumerate(perp_loops) if not loop[1]
]
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
if not shortest:
# all loops are circular, not trimming
return([[loop[0], loop[1]] for loop in perp_loops])
else:
shortest = min(shortest)
shortest_start = perp_loops[shortest[1]][2]
before_start = shortest_start
after_start = shortest[0] - shortest_start - 1
bigger_before = before_start > after_start
trimmed_loops = []
for loop in perp_loops:
# have the loop face the same direction as the shortest one
if bigger_before:
if loop[2] < len(loop[0]) / 2:
loop[0].reverse()
loop[2] = len(loop[0]) - loop[2] - 1
else:
if loop[2] > len(loop[0]) / 2:
loop[0].reverse()
loop[2] = len(loop[0]) - loop[2] - 1
# circular loops can shift, to prevent wrong trimming
if loop[1]:
shift = shortest_start - loop[2]
if loop[2] + shift > 0 and loop[2] + shift < len(loop[0]):
loop[0] = loop[0][-shift:] + loop[0][:-shift]
loop[2] += shift
if loop[2] < 0:
loop[2] += len(loop[0])
loop[2] -= len(loop[0])
# trim
start = max(0, loop[2] - before_start)
end = min(len(loop[0]), loop[2] + after_start + 1)
trimmed_loops.append([loop[0][start:end], False])
CoDEmanX
committed
return(trimmed_loops)
# project knots on non-selected geometry
def curve_project_knots(bm_mod, verts_selected, knots, points, circular):
# function to project vertex on edge
def project(v1, v2, v3):
# v1 and v2 are part of a line
# v3 is projected onto it
v2 -= v1
v3 -= v1
p = v3.project(v2)
return(p + v1)
CoDEmanX
committed
start = 0
end = len(knots)
pknots = []
else: # first and last knot shouldn't be projected
start = 1
end = -1
pknots = [mathutils.Vector(bm_mod.verts[knots[0]].co[:])]
for knot in knots[start:end]:
if knot in verts_selected:
knot_left = knot_right = False
for i in range(points.index(knot) - 1, -1 * len(points), -1):
if points[i] not in knots:
knot_left = points[i]
break
for i in range(points.index(knot) + 1, 2 * len(points)):
if i > len(points) - 1:
i -= len(points)
if points[i] not in knots:
knot_right = points[i]
break
if knot_left and knot_right and knot_left != knot_right:
knot_left = mathutils.Vector(bm_mod.verts[knot_left].co[:])
knot_right = mathutils.Vector(bm_mod.verts[knot_right].co[:])
knot = mathutils.Vector(bm_mod.verts[knot].co[:])
pknots.append(project(knot_left, knot_right, knot))
else:
pknots.append(mathutils.Vector(bm_mod.verts[knot].co[:]))
else: # knot isn't selected, so shouldn't be changed
pknots.append(mathutils.Vector(bm_mod.verts[knot].co[:]))
if not circular:
pknots.append(mathutils.Vector(bm_mod.verts[knots[-1]].co[:]))
CoDEmanX
committed
return(pknots)
# find all loops through a given vertex
def curve_vertex_loops(bm_mod, start_vert, vert_edges, edge_faces):
edges_used = []
loops = []
CoDEmanX
committed
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
for edge in vert_edges[start_vert]:
if edge in edges_used:
continue
loop = []
circular = False
for vert in edge:
active_faces = edge_faces[edge]
new_vert = vert
growing = True
while growing:
growing = False
new_edges = vert_edges[new_vert]
loop.append(new_vert)
if len(loop) > 1:
edges_used.append(tuple(sorted([loop[-1], loop[-2]])))
if len(new_edges) < 3 or len(new_edges) > 4:
# pole
break
else:
# find next edge
for new_edge in new_edges:
if new_edge in edges_used:
continue
eliminate = False
for new_face in edge_faces[new_edge]:
if new_face in active_faces:
eliminate = True
break
if eliminate:
continue
# found correct new edge
active_faces = edge_faces[new_edge]
v1, v2 = new_edge
if v1 != new_vert:
new_vert = v1
else:
new_vert = v2
if new_vert == loop[0]:
circular = True
else:
growing = True
break
if circular:
break
loop.reverse()
loops.append([loop, circular])
CoDEmanX
committed
return(loops)
# ########################################
# ##### Flatten functions ################
# ########################################
# sort input into loops
def flatten_get_input(bm):
vert_verts = dict_vert_verts(
[edgekey(edge) for edge in bm.edges if edge.select and not edge.hide]
)
verts = [v.index for v in bm.verts if v.select and not v.hide]
CoDEmanX
committed
# no connected verts, consider all selected verts as a single input
if not vert_verts:
return([[verts, False]])
CoDEmanX
committed
loops = []
while len(verts) > 0:
# start of loop
loop = [verts[0]]
verts.pop(0)
if loop[-1] in vert_verts:
to_grow = vert_verts[loop[-1]]
else:
to_grow = []
# grow loop
while len(to_grow) > 0:
new_vert = to_grow[0]
to_grow.pop(0)
if new_vert in loop:
continue
loop.append(new_vert)
verts.remove(new_vert)
to_grow += vert_verts[new_vert]
# add loop to loops
loops.append([loop, False])
CoDEmanX
committed
return(loops)
# calculate position of vertex projections on plane
def flatten_project(bm, loop, com, normal):
verts = [bm.verts[v] for v in loop[0]]
verts_projected = [
[v.index, mathutils.Vector(v.co[:]) -
(mathutils.Vector(v.co[:]) - com).dot(normal) * normal] for v in verts
]
CoDEmanX
committed
return(verts_projected)
# ########################################
# ##### Gstretch functions ###############
# ########################################
# fake stroke class, used to create custom strokes if no GP data is found
class gstretch_fake_stroke():
def __init__(self, points):
self.points = [gstretch_fake_stroke_point(p) for p in points]
# fake stroke point class, used in fake strokes
class gstretch_fake_stroke_point():
def __init__(self, loc):
self.co = loc
# flips loops, if necessary, to obtain maximum alignment to stroke
CoDEmanX
committed
def gstretch_align_pairs(ls_pairs, object, bm_mod, method):
# returns total distance between all verts in loop and corresponding stroke
def distance_loop_stroke(loop, stroke, object, bm_mod, method):
stroke_lengths_cache = False
loop_length = len(loop[0])
total_distance = 0
CoDEmanX
committed
if method != 'regular':
relative_lengths = gstretch_relative_lengths(loop, bm_mod)
CoDEmanX
committed
for i, v_index in enumerate(loop[0]):
if method == 'regular':
relative_distance = i / (loop_length - 1)
else:
relative_distance = relative_lengths[i]
CoDEmanX
committed
loc1 = object.matrix_world @ bm_mod.verts[v_index].co
loc2, stroke_lengths_cache = gstretch_eval_stroke(stroke,
relative_distance, stroke_lengths_cache)
total_distance += (loc2 - loc1).length
CoDEmanX
committed
CoDEmanX
committed
if ls_pairs:
for (loop, stroke) in ls_pairs:
total_dist = distance_loop_stroke(loop, stroke, object, bm_mod,
method)
loop[0].reverse()
total_dist_rev = distance_loop_stroke(loop, stroke, object, bm_mod,
method)
if total_dist_rev > total_dist:
loop[0].reverse()
CoDEmanX
committed
return(ls_pairs)
# calculate vertex positions on stroke
def gstretch_calculate_verts(loop, stroke, object, bm_mod, method):
move = []
stroke_lengths_cache = False
loop_length = len(loop[0])
matrix_inverse = object.matrix_world.inverted()
CoDEmanX
committed
# return intersection of line with stroke, or None
def intersect_line_stroke(vec1, vec2, stroke):
for i, p in enumerate(stroke.points[1:]):
intersections = mathutils.geometry.intersect_line_line(vec1, vec2,
p.co, stroke.points[i].co)
if intersections and \
(intersections[0] - intersections[1]).length < 1e-2:
x, dist = mathutils.geometry.intersect_point_line(
intersections[0], p.co, stroke.points[i].co)
if -1 < dist < 1:
return(intersections[0])
return(None)
CoDEmanX
committed
if method == 'project':
vert_edges = dict_vert_edges(bm_mod)
CoDEmanX
committed
for ek in vert_edges[v_index]:
v1, v2 = ek
v1 = bm_mod.verts[v1]
v2 = bm_mod.verts[v2]
if v1.select + v2.select == 1 and not v1.hide and not v2.hide:
vec1 = object.matrix_world @ v1.co
vec2 = object.matrix_world @ v2.co
intersection = intersect_line_stroke(vec1, vec2, stroke)
if intersection:
break
if not intersection:
v = bm_mod.verts[v_index]
intersection = intersect_line_stroke(v.co, v.co + v.normal,
stroke)
if intersection:
move.append([v_index, matrix_inverse @ intersection])
CoDEmanX
committed
else:
if method == 'irregular':
relative_lengths = gstretch_relative_lengths(loop, bm_mod)
CoDEmanX
committed
for i, v_index in enumerate(loop[0]):
if method == 'regular':
relative_distance = i / (loop_length - 1)
relative_distance = relative_lengths[i]
loc, stroke_lengths_cache = gstretch_eval_stroke(stroke,
relative_distance, stroke_lengths_cache)
CoDEmanX
committed
# create new vertices, based on GP strokes
def gstretch_create_verts(object, bm_mod, strokes, method, conversion,
conversion_distance, conversion_max, conversion_min, conversion_vertices):
move = []
stroke_verts = []
mat_world = object.matrix_world.inverted()
singles = gstretch_match_single_verts(bm_mod, strokes, mat_world)
CoDEmanX
committed
for stroke in strokes:
stroke_verts.append([stroke, []])
min_end_point = 0
if conversion == 'vertices':
min_end_point = conversion_vertices
end_point = conversion_vertices
elif conversion == 'limit_vertices':
min_end_point = conversion_min
end_point = conversion_max
else:
end_point = len(stroke.points)
# creation of new vertices at fixed user-defined distances
if conversion == 'distance':
method = 'project'
prev_point = stroke.points[0]
stroke_verts[-1][1].append(bm_mod.verts.new(mat_world @ prev_point.co))
distance = 0
limit = conversion_distance
for point in stroke.points:
new_distance = distance + (point.co - prev_point.co).length
iteration = 0
while new_distance > limit:
to_cover = limit - distance + (limit * iteration)
new_loc = prev_point.co + to_cover * \
(point.co - prev_point.co).normalized()
stroke_verts[-1][1].append(bm_mod.verts.new(mat_world * new_loc))
new_distance -= limit
iteration += 1
distance = new_distance
prev_point = point
# creation of new vertices for other methods
else:
# add vertices at stroke points
for point in stroke.points[:end_point]:
stroke_verts[-1][1].append(bm_mod.verts.new(mat_world @ point.co))
# add more vertices, beyond the points that are available
if min_end_point > min(len(stroke.points), end_point):
for i in range(min_end_point -
(min(len(stroke.points), end_point))):
stroke_verts[-1][1].append(bm_mod.verts.new(mat_world @ point.co))
# force even spreading of points, so they are placed on stroke
method = 'regular'
bm_mod.verts.index_update()
for stroke, verts_seq in stroke_verts:
if len(verts_seq) < 2:
continue
# spread vertices evenly over the stroke
if method == 'regular':
loop = [[vert.index for vert in verts_seq], False]
move += gstretch_calculate_verts(loop, stroke, object, bm_mod,
method)
# create edges
for i, vert in enumerate(verts_seq):
if i > 0:
bm_mod.edges.new((verts_seq[i - 1], verts_seq[i]))
vert.select = True
# connect single vertices to the closest stroke
if singles:
for vert, m_stroke, point in singles:
if m_stroke != stroke:
continue
bm_mod.edges.new((vert, verts_seq[point]))
bmesh.update_edit_mesh(object.data)
return(move)
# erases the grease pencil stroke
def gstretch_erase_stroke(stroke, context):
# change 3d coordinate into a stroke-point
def sp(loc, context):
lib = {'name': "",
'pen_flip': False,
'is_start': False,
'location': (0, 0, 0),
'mouse': (
view3d_utils.location_3d_to_region_2d(
context.region, context.space_data.region_3d, loc)
),
if type(stroke) != bpy.types.GPencilStroke:
# fake stroke, there is nothing to delete
return
erase_stroke = [sp(p.co, context) for p in stroke.points]
if erase_stroke:
erase_stroke[0]['is_start'] = True
#bpy.ops.gpencil.draw(mode='ERASER', stroke=erase_stroke)
bpy.ops.gpencil.data_unlink()
# get point on stroke, given by relative distance (0.0 - 1.0)
def gstretch_eval_stroke(stroke, distance, stroke_lengths_cache=False):
# use cache if available
if not stroke_lengths_cache:
lengths = [0]
for i, p in enumerate(stroke.points[1:]):
lengths.append((p.co - stroke.points[i].co).length + lengths[-1])
total_length = max(lengths[-1], 1e-7)
stroke_lengths_cache = [length / total_length for length in
lengths]
stroke_lengths = stroke_lengths_cache[:]
CoDEmanX
committed
if distance in stroke_lengths:
loc = stroke.points[stroke_lengths.index(distance)].co
elif distance > stroke_lengths[-1]:
# should be impossible, but better safe than sorry
loc = stroke.points[-1].co
else:
stroke_lengths.append(distance)
stroke_lengths.sort()
stroke_index = stroke_lengths.index(distance)
interval_length = stroke_lengths[
stroke_index + 1] - stroke_lengths[stroke_index - 1
]
distance_relative = (distance - stroke_lengths[stroke_index - 1]) / interval_length
interval_vector = stroke.points[stroke_index].co - stroke.points[stroke_index - 1].co
loc = stroke.points[stroke_index - 1].co + distance_relative * interval_vector
CoDEmanX
committed
# create fake grease pencil strokes for the active object
def gstretch_get_fake_strokes(object, bm_mod, loops):
strokes = []
for loop in loops:
p1 = object.matrix_world @ bm_mod.verts[loop[0][0]].co
p2 = object.matrix_world @ bm_mod.verts[loop[0][-1]].co
strokes.append(gstretch_fake_stroke([p1, p2]))
return(strokes)
# get strokes
def gstretch_get_strokes(self, context):
looptools = context.window_manager.looptools
gp = get_strokes(self, context)
if looptools.gstretch_use_guide == "Annotation":
layer = bpy.data.grease_pencils[0].layers.active
if looptools.gstretch_use_guide == "GPencil" and not looptools.gstretch_guide == None:
layer = looptools.gstretch_guide.data.layers.active
frame = layer.active_frame
CoDEmanX
committed
return(strokes)
# returns a list with loop-stroke pairs
def gstretch_match_loops_strokes(loops, strokes, object, bm_mod):
if not loops or not strokes:
return(None)
CoDEmanX
committed
bm_mod.verts.ensure_lookup_table()
for loop in loops:
center = mathutils.Vector()
for v_index in loop[0]:
center += bm_mod.verts[v_index].co
center /= len(loop[0])
CoDEmanX
committed
# calculate stroke centers
stroke_centers = []
for stroke in strokes:
center = mathutils.Vector()
for p in stroke.points:
center += p.co
center /= len(stroke.points)
stroke_centers.append([center, stroke, 0])
CoDEmanX
committed
# match, first by stroke use count, then by distance
ls_pairs = []
for lc in loop_centers:
distances = []
for i, sc in enumerate(stroke_centers):
distances.append([sc[2], (lc[0] - sc[0]).length, i])
distances.sort()
best_stroke = distances[0][2]
ls_pairs.append([lc[1], stroke_centers[best_stroke][1]])
stroke_centers[best_stroke][2] += 1 # increase stroke use count
CoDEmanX
committed
# match single selected vertices to the closest stroke endpoint
# returns a list of tuples, constructed as: (vertex, stroke, stroke point index)
def gstretch_match_single_verts(bm_mod, strokes, mat_world):
# calculate stroke endpoints in object space
endpoints = []
for stroke in strokes:
endpoints.append((mat_world @ stroke.points[0].co, stroke, 0))
endpoints.append((mat_world @ stroke.points[-1].co, stroke, -1))
CoDEmanX
committed
distances = []
# find single vertices (not connected to other selected verts)
for vert in bm_mod.verts:
if not vert.select:
continue
single = True
for edge in vert.link_edges:
if edge.other_vert(vert).select:
single = False
break
if not single:
continue
# calculate distances from vertex to endpoints
distance = [((vert.co - loc).length, vert, stroke, stroke_point,
CoDEmanX
committed
endpoint_index) for endpoint_index, (loc, stroke, stroke_point) in
enumerate(endpoints)]
distance.sort()
distances.append(distance[0])
CoDEmanX
committed
# create matches, based on shortest distance first
singles = []
while distances:
distances.sort()
singles.append((distances[0][1], distances[0][2], distances[0][3]))
endpoints.pop(distances[0][4])
distances.pop(0)
distances_new = []
for (i, vert, j, k, l) in distances:
distance_new = [((vert.co - loc).length, vert, stroke, stroke_point,
endpoint_index) for endpoint_index, (loc, stroke,
stroke_point) in enumerate(endpoints)]
distance_new.sort()
distances_new.append(distance_new[0])
distances = distances_new
CoDEmanX
committed
return(singles)
# returns list with a relative distance (0.0 - 1.0) of each vertex on the loop
def gstretch_relative_lengths(loop, bm_mod):
lengths = [0]
for i, v_index in enumerate(loop[0][1:]):
lengths.append(
(bm_mod.verts[v_index].co -
bm_mod.verts[loop[0][i]].co).length + lengths[-1]
)
total_length = max(lengths[-1], 1e-7)
relative_lengths = [length / total_length for length in
lengths]
CoDEmanX
committed
# convert cache-stored strokes into usable (fake) GP strokes
def gstretch_safe_to_true_strokes(safe_strokes):
strokes = []
for safe_stroke in safe_strokes:
strokes.append(gstretch_fake_stroke(safe_stroke))
CoDEmanX
committed
return(strokes)
# convert a GP stroke into a list of points which can be stored in cache
def gstretch_true_to_safe_strokes(strokes):
safe_strokes = []
for stroke in strokes:
safe_strokes.append([p.co.copy() for p in stroke.points])
CoDEmanX
committed
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
return(safe_strokes)
# force consistency in GUI, max value can never be lower than min value
def gstretch_update_max(self, context):
# called from operator settings (after execution)
if 'conversion_min' in self.keys():
if self.conversion_min > self.conversion_max:
self.conversion_max = self.conversion_min
# called from toolbar
else:
lt = context.window_manager.looptools
if lt.gstretch_conversion_min > lt.gstretch_conversion_max:
lt.gstretch_conversion_max = lt.gstretch_conversion_min
# force consistency in GUI, min value can never be higher than max value
def gstretch_update_min(self, context):
# called from operator settings (after execution)
if 'conversion_max' in self.keys():
if self.conversion_max < self.conversion_min:
self.conversion_min = self.conversion_max
# called from toolbar
else:
lt = context.window_manager.looptools
if lt.gstretch_conversion_max < lt.gstretch_conversion_min:
lt.gstretch_conversion_min = lt.gstretch_conversion_max
# ########################################
# ##### Relax functions ##################
# ########################################
# create lists with knots and points, all correctly sorted
def relax_calculate_knots(loops):
all_knots = []
all_points = []
for loop, circular in loops:
knots = [[], []]
points = [[], []]
if circular:
extend = [False, True, 0, 1, 0, 1]
extend = [True, False, 0, 1, 1, 2]
else:
extend = [False, False, 0, 1, 1, 2]
extend = [False, False, 0, 1, 1, 2]
for j in range(2):
if extend[j]:
loop = [loop[-1]] + loop + [loop[0]]
for i in range(extend[2 + 2 * j], len(loop), 2):
knots[j].append(loop[i])
for i in range(extend[3 + 2 * j], len(loop), 2):
if loop[i] == loop[-1] and not circular:
continue
if len(points[j]) == 0:
points[j].append(loop[i])
elif loop[i] != points[j][0]:
points[j].append(loop[i])
if circular:
if knots[j][0] != knots[j][-1]:
knots[j].append(knots[j][0])
if len(points[1]) == 0:
knots.pop(1)
points.pop(1)
for k in knots:
all_knots.append(k)
for p in points:
all_points.append(p)
CoDEmanX
committed
return(all_knots, all_points)
# calculate relative positions compared to first knot
def relax_calculate_t(bm_mod, knots, points, regular):
all_tknots = []
all_tpoints = []
for i in range(len(knots)):
amount = len(knots[i]) + len(points[i])
for j in range(amount):
if j % 2 == 0:
mix.append([True, knots[i][round(j / 2)]])
elif j == amount - 1:
mix.append([True, knots[i][-1]])
else:
mix.append([False, points[i][int(j / 2)]])
len_total = 0
loc_prev = False
tknots = []
tpoints = []
for m in mix:
loc = mathutils.Vector(bm_mod.verts[m[1]].co[:])
if not loc_prev:
loc_prev = loc
len_total += (loc - loc_prev).length
if m[0]:
tknots.append(len_total)
else:
tpoints.append(len_total)
loc_prev = loc
if regular:
tpoints = []
for p in range(len(points[i])):
tpoints.append((tknots[p] + tknots[p + 1]) / 2)
all_tknots.append(tknots)
all_tpoints.append(tpoints)
CoDEmanX
committed
return(all_tknots, all_tpoints)
# change the location of the points to their place on the spline
def relax_calculate_verts(bm_mod, interpolation, tknots, knots, tpoints,
points, splines):
change = []
move = []
for i in range(len(knots)):
for p in points[i]:
m = tpoints[i][points[i].index(p)]
if m in tknots[i]:
n = tknots[i].index(m)
else:
t = tknots[i][:]
t.append(m)
t.sort()
if n > len(splines[i]) - 1:
n = len(splines[i]) - 1
elif n < 0:
n = 0
CoDEmanX
committed
if interpolation == 'cubic':
ax, bx, cx, dx, tx = splines[i][n][0]
x = ax + bx * (m - tx) + cx * (m - tx) ** 2 + dx * (m - tx) ** 3
ay, by, cy, dy, ty = splines[i][n][1]
y = ay + by * (m - ty) + cy * (m - ty) ** 2 + dy * (m - ty) ** 3
az, bz, cz, dz, tz = splines[i][n][2]
z = az + bz * (m - tz) + cz * (m - tz) ** 2 + dz * (m - tz) ** 3
change.append([p, mathutils.Vector([x, y, z])])
else: # interpolation == 'linear'
a, d, t, u = splines[i][n]
if u == 0:
u = 1e-8
change.append([p, ((m - t) / u) * d + a])
for c in change:
move.append([c[0], (bm_mod.verts[c[0]].co + c[1]) / 2])
CoDEmanX
committed
return(move)
# ########################################
# ##### Space functions ##################
# ########################################
# calculate relative positions compared to first knot
def space_calculate_t(bm_mod, knots):
tknots = []
loc_prev = False
len_total = 0
for k in knots:
loc = mathutils.Vector(bm_mod.verts[k].co[:])
if not loc_prev:
loc_prev = loc
len_total += (loc - loc_prev).length
tknots.append(len_total)
loc_prev = loc
amount = len(knots)
t_per_segment = len_total / (amount - 1)
tpoints = [i * t_per_segment for i in range(amount)]
CoDEmanX
committed
return(tknots, tpoints)
# change the location of the points to their place on the spline
def space_calculate_verts(bm_mod, interpolation, tknots, tpoints, points,
splines):
move = []
for p in points:
m = tpoints[points.index(p)]
if m in tknots:
n = tknots.index(m)
else:
t = tknots[:]
t.append(m)
t.sort()
n = t.index(m) - 1
if n > len(splines) - 1:
n = len(splines) - 1
elif n < 0:
n = 0
CoDEmanX
committed
if interpolation == 'cubic':
ax, bx, cx, dx, tx = splines[n][0]
x = ax + bx * (m - tx) + cx * (m - tx) ** 2 + dx * (m - tx) ** 3
ay, by, cy, dy, ty = splines[n][1]
y = ay + by * (m - ty) + cy * (m - ty) ** 2 + dy * (m - ty) ** 3
az, bz, cz, dz, tz = splines[n][2]
z = az + bz * (m - tz) + cz * (m - tz) ** 2 + dz * (m - tz) ** 3
move.append([p, mathutils.Vector([x, y, z])])
else: # interpolation == 'linear'
a, d, t, u = splines[n]
move.append([p, ((m - t) / u) * d + a])
CoDEmanX
committed
return(move)
# ########################################
# ##### Operators ########################
# ########################################
# bridge operator
bl_idname = 'mesh.looptools_bridge'
bl_label = "Bridge / Loft"
bl_description = "Bridge two, or loft several, loops of vertices"
bl_options = {'REGISTER', 'UNDO'}
CoDEmanX
committed
name="Strength",
description="Higher strength results in more fluid curves",
default=1.0,
soft_min=-3.0,
soft_max=3.0
)
name="Interpolation mode",
items=(('cubic', "Cubic", "Gives curved results"),
('linear', "Linear", "Basic, fast, straight interpolation")),
description="Interpolation mode: algorithm used when creating "
"segments",
default='cubic'
)
name="Loft",
description="Loft multiple loops, instead of considering them as "
"a multi-input for bridging",
default=False
)
name="Loop",
description="Connect the first and the last loop with each other",
default=False
)
name="Minimum width",
description="Segments with an edge smaller than this are merged "
"(compared to base edge)",
default=0,
min=0,
max=100,
subtype='PERCENTAGE'
)
name="Mode",
items=(('basic', "Basic", "Fast algorithm"),
('shortest', "Shortest edge", "Slower algorithm with better vertex matching")),
description="Algorithm used for bridging",
default='shortest'
)
name="Remove faces",
description="Remove faces that are internal after bridging",
default=True
)
name="Reverse",
description="Manually override the direction in which the loops "
"are bridged. Only use if the tool gives the wrong result",
default=False
)
name="Segments",
description="Number of segments used to bridge the gap (0=automatic)",
default=1,
min=0,
soft_max=20
)
name="Twist",
description="Twist what vertices are connected to each other",
default=0
)
CoDEmanX
committed
@classmethod
def poll(cls, context):
ob = context.active_object
return (ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
CoDEmanX
committed
def draw(self, context):
layout = self.layout
# layout.prop(self, "mode") # no cases yet where 'basic' mode is needed
CoDEmanX
committed
# top row
col_top = layout.column(align=True)
row = col_top.row(align=True)
col_left = row.column(align=True)
col_right = row.column(align=True)
col_right.active = self.segments != 1
col_left.prop(self, "segments")
col_right.prop(self, "min_width", text="")
# bottom row
bottom_left = col_left.row()
bottom_left.active = self.segments != 1
bottom_left.prop(self, "interpolation", text="")
bottom_right = col_right.row()
bottom_right.active = self.interpolation == 'cubic'
bottom_right.prop(self, "cubic_strength")
# boolean properties
col_top.prop(self, "remove_faces")
if self.loft:
col_top.prop(self, "loft_loop")
CoDEmanX
committed
# override properties
col_top.separator()
row.prop(self, "twist")
row.prop(self, "reverse")
CoDEmanX
committed
def invoke(self, context, event):
# load custom settings
context.window_manager.looptools.bridge_loft = self.loft
settings_load(self)
return self.execute(context)
CoDEmanX
committed
def execute(self, context):
# initialise
object, bm = initialise()
edge_faces, edgekey_to_edge, old_selected_faces, smooth = \
bridge_initialise(bm, self.interpolation)
settings_write(self)
CoDEmanX
committed
# check cache to see if we can save time
input_method = bridge_input_method(self.loft, self.loft_loop)
cached, single_loops, loops, derived, mapping = cache_read("Bridge",
object, bm, input_method, False)
if not cached:
# get loops
loops = bridge_get_input(bm)
if loops:
# reorder loops if there are more than 2
if len(loops) > 2:
if self.loft:
loops = bridge_sort_loops(bm, loops, self.loft_loop)
else:
loops = bridge_match_loops(bm, loops)
CoDEmanX
committed
# saving cache for faster execution next time
if not cached:
cache_write("Bridge", object, bm, input_method, False, False,
loops, False, False)
if loops:
# calculate new geometry
vertices = []
faces = []
max_vert_index = len(bm.verts) - 1
for i in range(1, len(loops)):
lines = bridge_calculate_lines(bm, loops[i - 1:i + 1],
self.mode, self.twist, self.reverse)
vertex_normals = bridge_calculate_virtual_vertex_normals(bm,
lines, loops[i - 1:i + 1], edge_faces, edgekey_to_edge)
segments = bridge_calculate_segments(bm, lines,
loops[i - 1:i + 1], self.segments)
new_verts, new_faces, max_vert_index = \
bridge_calculate_geometry(
bm, lines, vertex_normals,
segments, self.interpolation, self.cubic_strength,
self.min_width, max_vert_index
)
if new_verts:
vertices += new_verts
if new_faces:
faces += new_faces
# make sure faces in loops that aren't used, aren't removed
if self.remove_faces and old_selected_faces:
bridge_save_unused_faces(bm, old_selected_faces, loops)
# create vertices
if vertices:
bridge_create_vertices(bm, vertices)
Vladimir Spivak(cwolf3d)
committed
# delete internal faces
if self.remove_faces and old_selected_faces:
bridge_remove_internal_faces(bm, old_selected_faces)
# create faces
if faces:
new_faces = bridge_create_faces(object, bm, faces, self.twist)
bridge_select_new_faces(new_faces, smooth)
# edge-data could have changed, can't use cache next run
if faces and not vertices:
cache_delete("Bridge")
# make sure normals are facing outside
bmesh.update_edit_mesh(object.data, loop_triangles=False, destructive=True)
bpy.ops.mesh.normals_make_consistent()
CoDEmanX
committed
CoDEmanX
committed
return{'FINISHED'}
# circle operator
bl_idname = "mesh.looptools_circle"
bl_label = "Circle"
bl_description = "Move selected vertices into a circle shape"
bl_options = {'REGISTER', 'UNDO'}
CoDEmanX
committed
name="Radius",
description="Force a custom radius",
default=False
)
name="Method",
items=(("best", "Best fit", "Non-linear least squares"),
("inside", "Fit inside", "Only move vertices towards the center")),
description="Method used for fitting a circle to the vertices",
default='best'
)
name="Flatten",
description="Flatten the circle, instead of projecting it on the mesh",
default=True
)
name="Influence",
description="Force of the tool",
default=100.0,
min=0.0,
max=100.0,
precision=1,
subtype='PERCENTAGE'
)
name="Lock X",
description="Lock editing of the x-coordinate",
default=False
)
name="Lock Y",
description="Lock editing of the y-coordinate",
default=False
)
description="Lock editing of the z-coordinate",
default=False
)
name="Radius",
description="Custom radius for circle",
default=1.0,
min=0.0,
soft_max=1000.0
)
Vladimir Spivak(cwolf3d)
committed
angle: FloatProperty(
name="Angle",
description="Rotate a circle by an angle",
unit='ROTATION',
default=math.radians(0.0),
soft_min=math.radians(-360.0),
soft_max=math.radians(360.0)
)
name="Regular",
description="Distribute vertices at constant distances along the circle",
default=True
)
CoDEmanX
committed
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
CoDEmanX
committed
def draw(self, context):
layout = self.layout
col = layout.column()
CoDEmanX
committed
col.prop(self, "fit")
col.separator()
CoDEmanX
committed
col.prop(self, "flatten")
row = col.row(align=True)
row.prop(self, "custom_radius")
row_right = row.row(align=True)
row_right.active = self.custom_radius
row_right.prop(self, "radius", text="")
col.prop(self, "regular")
Vladimir Spivak(cwolf3d)
committed
col.prop(self, "angle")
CoDEmanX
committed
col_move = col.column(align=True)
row = col_move.row(align=True)
if self.lock_x:
row.prop(self, "lock_x", text="X", icon='LOCKED')
row.prop(self, "lock_x", text="X", icon='UNLOCKED')
row.prop(self, "lock_y", text="Y", icon='LOCKED')
row.prop(self, "lock_y", text="Y", icon='UNLOCKED')
row.prop(self, "lock_z", text="Z", icon='LOCKED')
row.prop(self, "lock_z", text="Z", icon='UNLOCKED')
CoDEmanX
committed
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
CoDEmanX
committed
def execute(self, context):
# initialise
object, bm = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Circle",
object, bm, False, False)
if cached:
Vladimir Spivak(cwolf3d)
committed
derived, bm_mod = get_derived_bmesh(object, bm, False)
else:
# find loops
derived, bm_mod, single_vertices, single_loops, loops = \
circle_get_input(object, bm)
mapping = get_mapping(derived, bm, bm_mod, single_vertices,
False, loops)
single_loops, loops = circle_check_loops(single_loops, loops,
mapping, bm_mod)
CoDEmanX
committed
# saving cache for faster execution next time
if not cached:
cache_write("Circle", object, bm, False, False, single_loops,
loops, derived, mapping)
CoDEmanX
committed
move = []
for i, loop in enumerate(loops):
# best fitting flat plane
com, normal = calculate_plane(bm_mod, loop)
# if circular, shift loop so we get a good starting vertex
if loop[1]:
loop = circle_shift_loop(bm_mod, loop, com)
# flatten vertices on plane
locs_2d, p, q = circle_3d_to_2d(bm_mod, loop, com, normal)
# calculate circle
if self.fit == 'best':
x0, y0, r = circle_calculate_best_fit(locs_2d)
x0, y0, r = circle_calculate_min_fit(locs_2d)
# radius override
if self.custom_radius:
r = self.radius / p.length
# calculate positions on circle
if self.regular:
Vladimir Spivak(cwolf3d)
committed
new_locs_2d = circle_project_regular(locs_2d[:], x0, y0, r, self.angle)
Vladimir Spivak(cwolf3d)
committed
new_locs_2d = circle_project_non_regular(locs_2d[:], x0, y0, r, self.angle)
# take influence into account
locs_2d = circle_influence_locs(locs_2d, new_locs_2d,
self.influence)
# calculate 3d positions of the created 2d input
move.append(circle_calculate_verts(self.flatten, bm_mod,
locs_2d, com, p, q, normal))
# flatten single input vertices on plane defined by loop
if self.flatten and single_loops:
move.append(circle_flatten_singles(bm_mod, com, p, q,
normal, single_loops[i]))
CoDEmanX
committed
# move vertices to new locations
if self.lock_x or self.lock_y or self.lock_z:
lock = [self.lock_x, self.lock_y, self.lock_z]
else:
lock = False
move_verts(object, bm, mapping, move, lock, -1)
CoDEmanX
committed
# cleaning up
if derived:
bm_mod.free()
CoDEmanX
committed
return{'FINISHED'}
# curve operator
bl_idname = "mesh.looptools_curve"
bl_label = "Curve"
bl_description = "Turn a loop into a smooth curve"
bl_options = {'REGISTER', 'UNDO'}
CoDEmanX
committed
name="Boundaries",
description="Limit the tool to work within the boundaries of the selected vertices",
default=False
)
name="Influence",
description="Force of the tool",
default=100.0,
min=0.0,
max=100.0,
precision=1,
subtype='PERCENTAGE'
)
name="Interpolation",
items=(("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Simple and fast linear algorithm")),
description="Algorithm used for interpolation",
default='cubic'
)
name="Lock X",
description="Lock editing of the x-coordinate",
default=False
)
name="Lock Y",
description="Lock editing of the y-coordinate",
default=False
)
name="Lock Z",
description="Lock editing of the z-coordinate",
default=False
)
name="Regular",
description="Distribute vertices at constant distances along the curve",
default=True
)
name="Restriction",
items=(("none", "None", "No restrictions on vertex movement"),
("extrude", "Extrude only", "Only allow extrusions (no indentations)"),
("indent", "Indent only", "Only allow indentation (no extrusions)")),
description="Restrictions on how the vertices can be moved",
default='none'
)
CoDEmanX
committed
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
CoDEmanX
committed
def draw(self, context):
layout = self.layout
col = layout.column()
CoDEmanX
committed
col.prop(self, "interpolation")
col.prop(self, "restriction")
col.prop(self, "boundaries")
col.prop(self, "regular")
col.separator()
CoDEmanX
committed
col_move = col.column(align=True)
row = col_move.row(align=True)
if self.lock_x:
row.prop(self, "lock_x", text="X", icon='LOCKED')
row.prop(self, "lock_x", text="X", icon='UNLOCKED')
row.prop(self, "lock_y", text="Y", icon='LOCKED')
row.prop(self, "lock_y", text="Y", icon='UNLOCKED')
row.prop(self, "lock_z", text="Z", icon='LOCKED')
row.prop(self, "lock_z", text="Z", icon='UNLOCKED')
CoDEmanX
committed
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
CoDEmanX
committed
def execute(self, context):
# initialise
object, bm = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Curve",
object, bm, False, self.boundaries)
if cached:
Vladimir Spivak(cwolf3d)
committed
derived, bm_mod = get_derived_bmesh(object, bm, False)
else:
# find loops
derived, bm_mod, loops = curve_get_input(object, bm, self.boundaries)
mapping = get_mapping(derived, bm, bm_mod, False, True, loops)
loops = check_loops(loops, mapping, bm_mod)
verts_selected = [
v.index for v in bm_mod.verts if v.select and not v.hide
]
CoDEmanX
committed
# saving cache for faster execution next time
if not cached:
cache_write("Curve", object, bm, False, self.boundaries, False,
loops, derived, mapping)
CoDEmanX
committed
move = []
for loop in loops:
knots, points = curve_calculate_knots(loop, verts_selected)
pknots = curve_project_knots(bm_mod, verts_selected, knots,
points, loop[1])
tknots, tpoints = curve_calculate_t(bm_mod, knots, points,
pknots, self.regular, loop[1])
splines = calculate_splines(self.interpolation, bm_mod,
tknots, knots)
move.append(curve_calculate_vertices(bm_mod, knots, tknots,
points, tpoints, splines, self.interpolation,
self.restriction))
CoDEmanX
committed
# move vertices to new locations
if self.lock_x or self.lock_y or self.lock_z:
lock = [self.lock_x, self.lock_y, self.lock_z]
else:
lock = False
move_verts(object, bm, mapping, move, lock, self.influence)
CoDEmanX
committed
# cleaning up
if derived:
bm_mod.free()
return{'FINISHED'}
# flatten operator
bl_idname = "mesh.looptools_flatten"
bl_label = "Flatten"
bl_description = "Flatten vertices on a best-fitting plane"
bl_options = {'REGISTER', 'UNDO'}
CoDEmanX
committed
name="Influence",
description="Force of the tool",
default=100.0,
min=0.0,
max=100.0,
precision=1,
subtype='PERCENTAGE'
)
name="Lock X",
description="Lock editing of the x-coordinate",
default=False
)
name="Lock Y",
description="Lock editing of the y-coordinate",
default=False
)
description="Lock editing of the z-coordinate",
default=False
)
name="Plane",
items=(("best_fit", "Best fit", "Calculate a best fitting plane"),
("normal", "Normal", "Derive plane from averaging vertex normals"),
("view", "View", "Flatten on a plane perpendicular to the viewing angle")),
description="Plane on which vertices are flattened",
default='best_fit'
)
name="Restriction",
items=(("none", "None", "No restrictions on vertex movement"),
("bounding_box", "Bounding box", "Vertices are restricted to "
"movement inside the bounding box of the selection")),
description="Restrictions on how the vertices can be moved",
default='none'
)
CoDEmanX
committed
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
CoDEmanX
committed
def draw(self, context):
layout = self.layout
col = layout.column()
CoDEmanX
committed
col.prop(self, "plane")
CoDEmanX
committed
col_move = col.column(align=True)
row = col_move.row(align=True)
if self.lock_x:
row.prop(self, "lock_x", text="X", icon='LOCKED')
row.prop(self, "lock_x", text="X", icon='UNLOCKED')
row.prop(self, "lock_y", text="Y", icon='LOCKED')
row.prop(self, "lock_y", text="Y", icon='UNLOCKED')
row.prop(self, "lock_z", text="Z", icon='LOCKED')
row.prop(self, "lock_z", text="Z", icon='UNLOCKED')
CoDEmanX
committed
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
CoDEmanX
committed
def execute(self, context):
# initialise
object, bm = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Flatten",
object, bm, False, False)
if not cached:
# order input into virtual loops
loops = flatten_get_input(bm)
loops = check_loops(loops, mapping, bm)
CoDEmanX
committed
# saving cache for faster execution next time
if not cached:
cache_write("Flatten", object, bm, False, False, False, loops,
False, False)
CoDEmanX
committed
move = []
for loop in loops:
# calculate plane and position of vertices on them
com, normal = calculate_plane(bm, loop, method=self.plane,
object=object)
to_move = flatten_project(bm, loop, com, normal)
if self.restriction == 'none':
move.append(to_move)
else:
move.append(to_move)
# move vertices to new locations
if self.lock_x or self.lock_y or self.lock_z:
lock = [self.lock_x, self.lock_y, self.lock_z]
else:
lock = False
move_verts(object, bm, False, move, lock, self.influence)
CoDEmanX
committed
CoDEmanX
committed
return{'FINISHED'}
# Annotation operator
class RemoveAnnotation(Operator):
bl_idname = "remove.annotation"
bl_label = "Remove Annotation"
bl_description = "Remove all Annotation Strokes"
try:
bpy.data.grease_pencils[0].layers.active.clear()
except:
self.report({'INFO'}, "No Annotation data to Unlink")
# GPencil operator
class RemoveGPencil(Operator):
bl_idname = "remove.gp"
bl_label = "Remove GPencil"
bl_description = "Remove all GPencil Strokes"
bl_options = {'REGISTER', 'UNDO'}
def execute(self, context):
try:
looptools = context.window_manager.looptools
looptools.gstretch_guide.data.layers.data.clear()
looptools.gstretch_guide.data.update_tag()
except:
self.report({'INFO'}, "No GPencil data to Unlink")
return {'CANCELLED'}
return{'FINISHED'}
bl_idname = "mesh.looptools_gstretch"
bl_label = "Gstretch"
bl_description = "Stretch selected vertices to active stroke"
CoDEmanX
committed
name="Conversion",
items=(("distance", "Distance", "Set the distance between vertices "
"of the converted stroke"),
("limit_vertices", "Limit vertices", "Set the minimum and maximum "
"number of vertices that converted strokes will have"),
("vertices", "Exact vertices", "Set the exact number of vertices "
"that converted strokes will have. Short strokes "
"with few points may contain less vertices than this number."),
("none", "No simplification", "Convert each point "
description="If strokes are converted to geometry, "
"use this simplification method",
default='limit_vertices'
)
name="Distance",
description="Absolute distance between vertices along the converted "
" stroke",
default=0.1,
min=0.000001,
soft_min=0.01,
soft_max=100
)
description="Maximum number of vertices strokes will "
"have, when they are converted to geomtery",
default=32,
min=3,
soft_max=500,
update=gstretch_update_min
)
description="Minimum number of vertices strokes will "
"have, when they are converted to geomtery",
default=8,
min=3,
soft_max=500,
update=gstretch_update_max
)
description="Number of vertices strokes will "
"have, when they are converted to geometry. If strokes have less "
"points than required, the 'Spread evenly' method is used",
default=32,
min=3,
soft_max=500
)
description="Remove strokes if they have been used."
"WARNING: DOES NOT SUPPORT UNDO",
name="Influence",
description="Force of the tool",
default=100.0,
min=0.0,
max=100.0,
precision=1,
subtype='PERCENTAGE'
)
name="Lock X",
description="Lock editing of the x-coordinate",
default=False
)
name="Lock Y",
description="Lock editing of the y-coordinate",
default=False
)
name="Lock Z",
description="Lock editing of the z-coordinate",
default=False
)
name="Method",
items=(("project", "Project", "Project vertices onto the stroke, "
"using vertex normals and connected edges"),
("irregular", "Spread", "Distribute vertices along the full "
"stroke, retaining relative distances between the vertices"),
("regular", "Spread evenly", "Distribute vertices at regular "
"distances along the full stroke")),
description="Method of distributing the vertices over the "
"stroke",
CoDEmanX
committed
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
CoDEmanX
committed
looptools = context.window_manager.looptools
CoDEmanX
committed
col_conv = col.column(align=True)
col_conv.prop(self, "conversion", text="")
if self.conversion == 'distance':
col_conv.prop(self, "conversion_distance")
elif self.conversion == 'limit_vertices':
row = col_conv.row(align=True)
row.prop(self, "conversion_min", text="Min")
row.prop(self, "conversion_max", text="Max")
elif self.conversion == 'vertices':
col_conv.prop(self, "conversion_vertices")
CoDEmanX
committed
col_move = col.column(align=True)
row = col_move.row(align=True)
if self.lock_x:
row.prop(self, "lock_x", text="X", icon='LOCKED')
row.prop(self, "lock_x", text="X", icon='UNLOCKED')
row.prop(self, "lock_y", text="Y", icon='LOCKED')
row.prop(self, "lock_y", text="Y", icon='UNLOCKED')
row.prop(self, "lock_z", text="Z", icon='LOCKED')
row.prop(self, "lock_z", text="Z", icon='UNLOCKED')
if looptools.gstretch_use_guide == "Annotation":
col.operator("remove.annotation", text="Delete annotation strokes")
if looptools.gstretch_use_guide == "GPencil":
col.operator("remove.gp", text="Delete GPencil strokes")
CoDEmanX
committed
# flush cached strokes
if 'Gstretch' in looptools_cache:
looptools_cache['Gstretch']['single_loops'] = []
# load custom settings
settings_load(self)
return self.execute(context)
CoDEmanX
committed
object, bm = initialise()
CoDEmanX
committed
cached, safe_strokes, loops, derived, mapping = cache_read("Gstretch",
if safe_strokes:
strokes = gstretch_safe_to_true_strokes(safe_strokes)
# cached strokes were flushed (see operator's invoke function)
elif get_strokes(self, context):
strokes = gstretch_get_strokes(self, context)
# straightening function (no GP) -> loops ignore modifiers
straightening = True
derived = False
bm_mod = bm.copy()
bm_mod.verts.ensure_lookup_table()
bm_mod.edges.ensure_lookup_table()
bm_mod.faces.ensure_lookup_table()
strokes = gstretch_get_fake_strokes(object, bm_mod, loops)
Vladimir Spivak(cwolf3d)
committed
derived, bm_mod = get_derived_bmesh(object, bm, False)
if get_strokes(self, context):
Vladimir Spivak(cwolf3d)
committed
derived, bm_mod, loops = get_connected_input(object, bm, False, input='selected')
mapping = get_mapping(derived, bm, bm_mod, False, False, loops)
loops = check_loops(loops, mapping, bm_mod)
# get strokes
strokes = gstretch_get_strokes(self, context)
# straightening function (no GP) -> loops ignore modifiers
derived = False
mapping = False
bm_mod = bm.copy()
bm_mod.verts.ensure_lookup_table()
bm_mod.edges.ensure_lookup_table()
bm_mod.faces.ensure_lookup_table()
edge_keys = [
edgekey(edge) for edge in bm_mod.edges if
edge.select and not edge.hide
]
loops = get_connected_selections(edge_keys)
loops = check_loops(loops, mapping, bm_mod)
# create fake strokes
strokes = gstretch_get_fake_strokes(object, bm_mod, loops)
CoDEmanX
committed
# saving cache for faster execution next time
if not cached:
if strokes:
safe_strokes = gstretch_true_to_safe_strokes(strokes)
else:
safe_strokes = []
cache_write("Gstretch", object, bm, False, False,
safe_strokes, loops, derived, mapping)
# pair loops and strokes
ls_pairs = gstretch_match_loops_strokes(loops, strokes, object, bm_mod)
ls_pairs = gstretch_align_pairs(ls_pairs, object, bm_mod, self.method)
CoDEmanX
committed
if not loops:
# no selected geometry, convert GP to verts
if strokes:
move.append(gstretch_create_verts(object, bm, strokes,
self.method, self.conversion, self.conversion_distance,
self.conversion_max, self.conversion_min,
self.conversion_vertices))
for stroke in strokes:
gstretch_erase_stroke(stroke, context)
elif ls_pairs:
for (loop, stroke) in ls_pairs:
move.append(gstretch_calculate_verts(loop, stroke, object,
bm_mod, self.method))
if self.delete_strokes:
if type(stroke) != bpy.types.GPencilStroke:
# in case of cached fake stroke, get the real one
if get_strokes(self, context):
strokes = gstretch_get_strokes(self, context)
if loops and strokes:
ls_pairs = gstretch_match_loops_strokes(loops,
strokes, object, bm_mod)
ls_pairs = gstretch_align_pairs(ls_pairs,
object, bm_mod, self.method)
for (l, s) in ls_pairs:
if l == loop:
stroke = s
break
if self.lock_x or self.lock_y or self.lock_z:
lock = [self.lock_x, self.lock_y, self.lock_z]
else:
lock = False
bmesh.update_edit_mesh(object.data, loop_triangles=True, destructive=True)
move_verts(object, bm, mapping, move, lock, self.influence)
CoDEmanX
committed
# cleaning up
CoDEmanX
committed
bl_idname = "mesh.looptools_relax"
bl_label = "Relax"
bl_description = "Relax the loop, so it is smoother"
bl_options = {'REGISTER', 'UNDO'}
CoDEmanX
committed
Loading
Loading full blame...