Skip to content
Snippets Groups Projects
mesh_looptools.py 138 KiB
Newer Older
  • Learn to ignore specific revisions
  • Bart Crouch's avatar
    Bart Crouch committed
    3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
            # move vertices to new locations
            move_verts(mesh, mapping, move, self.influence)
            
            # cleaning up 
            if derived:
                bpy.context.blend_data.meshes.remove(mesh_mod)
            
            terminate(global_undo)
            return{'FINISHED'}
    
    
    # flatten operator
    class Flatten(bpy.types.Operator):
        bl_idname = "mesh.looptools_flatten"
        bl_label = "Flatten"
        bl_description = "Flatten vertices on a best-fitting plane"
        bl_options = {'REGISTER', 'UNDO'}
        
        influence = bpy.props.FloatProperty(name = "Influence",
            description = "Force of the tool",
            default = 100.0,
            min = 0.0,
            max = 100.0,
            precision = 1,
            subtype = 'PERCENTAGE')
        plane = bpy.props.EnumProperty(name = "Plane",
            items = (("best_fit", "Best fit", "Calculate a best fitting plane"),
                ("normal", "Normal", "Derive plane from averaging vertex "\
                "normals"),
                ("view", "View", "Flatten on a plane perpendicular to the "\
                "viewing angle")),
            description = "Plane on which vertices are flattened",
            default = 'best_fit')
        restriction = bpy.props.EnumProperty(name = "Restriction",
            items = (("none", "None", "No restrictions on vertex movement"),
                ("bounding_box", "Bounding box", "Vertices are restricted to "\
                "movement inside the bounding box of the selection")),
            description = "Restrictions on how the vertices can be moved",
            default = 'none')
        
        @classmethod
        def poll(cls, context):
            ob = context.active_object
            return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
        
        def draw(self, context):
            layout = self.layout
            col = layout.column()
            
            col.prop(self, "plane")
            #col.prop(self, "restriction")
            col.separator()
            
            col.prop(self, "influence")
        
        def invoke(self, context, event):
            # load custom settings
            settings_load(self)
            return self.execute(context)
        
        def execute(self, context):
            # initialise
            global_undo, object, mesh = initialise()
            settings_write(self)
            # check cache to see if we can save time
            cached, single_loops, loops, derived, mapping = cache_read("Flatten",
                object, mesh, False, False)
            if not cached:
                # order input into virtual loops
                loops = flatten_get_input(mesh)
                loops = check_loops(loops, mapping, mesh)
            
            # saving cache for faster execution next time
            if not cached:
                cache_write("Flatten", object, mesh, False, False, False, loops,
                    False, False)
            
            move = []
            for loop in loops:
                # calculate plane and position of vertices on them
                com, normal = calculate_plane(mesh, loop, method=self.plane,
                    object=object)
                to_move = flatten_project(mesh, loop, com, normal)
                if self.restriction == 'none':
                    move.append(to_move)
                else:
                    move.append(to_move)
            move_verts(mesh, False, move, self.influence)
            
            terminate(global_undo)
            return{'FINISHED'}
    
    
    # relax operator
    class Relax(bpy.types.Operator):
        bl_idname = "mesh.looptools_relax"
        bl_label = "Relax"
        bl_description = "Relax the loop, so it is smoother"
        bl_options = {'REGISTER', 'UNDO'}
        
        input = bpy.props.EnumProperty(name = "Input",
            items = (("all", "Parallel (all)", "Also use non-selected "\
                    "parallel loops as input"),
                ("selected", "Selection","Only use selected vertices as input")),
            description = "Loops that are relaxed",
            default = 'selected')
        interpolation = bpy.props.EnumProperty(name = "Interpolation",
            items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
                ("linear", "Linear", "Simple and fast linear algorithm")),
            description = "Algorithm used for interpolation",
            default = 'cubic')
        iterations = bpy.props.EnumProperty(name = "Iterations",
            items = (("1", "1", "One"),
                ("3", "3", "Three"),
                ("5", "5", "Five"),
                ("10", "10", "Ten"),
                ("25", "25", "Twenty-five")),
            description = "Number of times the loop is relaxed",
            default = "1")
        regular = bpy.props.BoolProperty(name = "Regular",
            description = "Distribute vertices at constant distances along the" \
                "loop",
            default = True)
        
        @classmethod
        def poll(cls, context):
            ob = context.active_object
            return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
        
        def draw(self, context):
            layout = self.layout
            col = layout.column()
            
            col.prop(self, "interpolation")
            col.prop(self, "input")
            col.prop(self, "iterations")
            col.prop(self, "regular")
        
        def invoke(self, context, event):
            # load custom settings
            settings_load(self)
            return self.execute(context)
        
        def execute(self, context):
            # initialise
            global_undo, object, mesh = initialise()
            settings_write(self)
            # check cache to see if we can save time
            cached, single_loops, loops, derived, mapping = cache_read("Relax",
                object, mesh, self.input, False)
            if cached:
                derived, mesh_mod = get_derived_mesh(object, mesh, context.scene)
            else:
                # find loops
                derived, mesh_mod, loops = get_connected_input(object, mesh,
                    context.scene, self.input)
                mapping = get_mapping(derived, mesh, mesh_mod, False, False, loops)
                loops = check_loops(loops, mapping, mesh_mod)
            knots, points = relax_calculate_knots(loops)
            
            # saving cache for faster execution next time
            if not cached:
                cache_write("Relax", object, mesh, self.input, False, False, loops,
                    derived, mapping)
            
            for iteration in range(int(self.iterations)):
                # calculate splines and new positions
                tknots, tpoints = relax_calculate_t(mesh_mod, knots, points,
                    self.regular)
                splines = []
                for i in range(len(knots)):
                    splines.append(calculate_splines(self.interpolation, mesh_mod,
                        tknots[i], knots[i]))
                move = [relax_calculate_verts(mesh_mod, self.interpolation,
                    tknots, knots, tpoints, points, splines)]
                move_verts(mesh, mapping, move, -1)
            
            # cleaning up 
            if derived:
                bpy.context.blend_data.meshes.remove(mesh_mod)
            terminate(global_undo)
            
            return{'FINISHED'}
    
    
    # space operator
    class Space(bpy.types.Operator):
        bl_idname = "mesh.looptools_space"
        bl_label = "Space"
        bl_description = "Space the vertices in a regular distrubtion on the loop"
        bl_options = {'REGISTER', 'UNDO'}
        
        influence = bpy.props.FloatProperty(name = "Influence",
            description = "Force of the tool",
            default = 100.0,
            min = 0.0,
            max = 100.0,
            precision = 1,
            subtype = 'PERCENTAGE')
        input = bpy.props.EnumProperty(name = "Input",
            items = (("all", "Parallel (all)", "Also use non-selected "\
                    "parallel loops as input"),
                ("selected", "Selection","Only use selected vertices as input")),
            description = "Loops that are spaced",
            default = 'selected')
        interpolation = bpy.props.EnumProperty(name = "Interpolation",
            items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
                ("linear", "Linear", "Vertices are projected on existing edges")),
            description = "Algorithm used for interpolation",
            default = 'cubic')
        
        @classmethod
        def poll(cls, context):
            ob = context.active_object
            return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
        
        def draw(self, context):
            layout = self.layout
            col = layout.column()
            
            col.prop(self, "interpolation")
            col.prop(self, "input")
            col.separator()
            
            col.prop(self, "influence")
        
        def invoke(self, context, event):
            # load custom settings
            settings_load(self)
            return self.execute(context)
        
        def execute(self, context):
            # initialise
            global_undo, object, mesh = initialise()
            settings_write(self)
            # check cache to see if we can save time
            cached, single_loops, loops, derived, mapping = cache_read("Space",
                object, mesh, self.input, False)
            if cached:
                derived, mesh_mod = get_derived_mesh(object, mesh, context.scene)
            else:
                # find loops
                derived, mesh_mod, loops = get_connected_input(object, mesh,
                    context.scene, self.input)
                mapping = get_mapping(derived, mesh, mesh_mod, False, False, loops)
                loops = check_loops(loops, mapping, mesh_mod)
            
            # saving cache for faster execution next time
            if not cached:
                cache_write("Space", object, mesh, self.input, False, False, loops,
                    derived, mapping)
            
            move = []
            for loop in loops:
                # calculate splines and new positions
                if loop[1]: # circular
                    loop[0].append(loop[0][0])
                tknots, tpoints = space_calculate_t(mesh_mod, loop[0][:])
                splines = calculate_splines(self.interpolation, mesh_mod,
                    tknots, loop[0][:])
                move.append(space_calculate_verts(mesh_mod, self.interpolation,
                    tknots, tpoints, loop[0][:-1], splines))
            
            # move vertices to new locations
            move_verts(mesh, mapping, move, self.influence)
            
            # cleaning up 
            if derived:
                bpy.context.blend_data.meshes.remove(mesh_mod)
            terminate(global_undo)
            
            return{'FINISHED'}
    
    
    ##########################################
    ####### GUI and registration #############
    ##########################################
    
    # menu containing all tools
    class VIEW3D_MT_edit_mesh_looptools(bpy.types.Menu):
        bl_label = "LoopTools"
        
        def draw(self, context):
            layout = self.layout
            
            layout.operator("mesh.looptools_bridge", text="Bridge").loft = False
            layout.operator("mesh.looptools_circle")
            layout.operator("mesh.looptools_curve")
            layout.operator("mesh.looptools_flatten")
            layout.operator("mesh.looptools_bridge", text="Loft").loft = True
            layout.operator("mesh.looptools_relax")
            layout.operator("mesh.looptools_space")
    
    
    # panel containing all tools
    class VIEW3D_PT_tools_looptools(bpy.types.Panel):
        bl_space_type = 'VIEW_3D'
        bl_region_type = 'TOOLS'
        bl_context = "mesh_edit"
        bl_label = "LoopTools"
    
        def draw(self, context):
            layout = self.layout
            col = layout.column(align=True)
            lt = context.window_manager.looptools
            
            # bridge - first line
            split = col.split(percentage=0.15)
            if lt.display_bridge:
                split.prop(lt, "display_bridge", text="", icon='DOWNARROW_HLT')
            else:
                split.prop(lt, "display_bridge", text="", icon='RIGHTARROW')
            split.operator("mesh.looptools_bridge", text="Bridge").loft = False
            # bridge - settings
            if lt.display_bridge:
                box = col.column(align=True).box().column()
                #box.prop(self, "mode")
                
                # top row
                col_top = box.column(align=True)
                row = col_top.row(align=True)
                col_left = row.column(align=True)
                col_right = row.column(align=True)
                col_right.active = lt.bridge_segments != 1
                col_left.prop(lt, "bridge_segments")
                col_right.prop(lt, "bridge_min_width", text="")
                # bottom row
                bottom_left = col_left.row()
                bottom_left.active = lt.bridge_segments != 1
                bottom_left.prop(lt, "bridge_interpolation", text="")
                bottom_right = col_right.row()
                bottom_right.active = lt.bridge_interpolation == 'cubic'
                bottom_right.prop(lt, "bridge_cubic_strength")
                # boolean properties
                col_top.prop(lt, "bridge_remove_faces")
                
                # override properties
                col_top.separator()
                row = box.row(align = True)
                row.prop(lt, "bridge_twist")
                row.prop(lt, "bridge_reverse")
            
            # circle - first line
            split = col.split(percentage=0.15)
            if lt.display_circle:
                split.prop(lt, "display_circle", text="", icon='DOWNARROW_HLT')
            else:
                split.prop(lt, "display_circle", text="", icon='RIGHTARROW')
            split.operator("mesh.looptools_circle")
            # circle - settings
            if lt.display_circle:
                box = col.column(align=True).box().column()
                box.prop(lt, "circle_fit")
                box.separator()
                
                box.prop(lt, "circle_flatten")
                row = box.row(align=True)
                row.prop(lt, "circle_custom_radius")
                row_right = row.row(align=True)
                row_right.active = lt.circle_custom_radius
                row_right.prop(lt, "circle_radius", text="")
                box.prop(lt, "circle_regular")
                box.separator()
                
                box.prop(lt, "circle_influence")
            
            # curve - first line
            split = col.split(percentage=0.15)
            if lt.display_curve:
                split.prop(lt, "display_curve", text="", icon='DOWNARROW_HLT')
            else:
                split.prop(lt, "display_curve", text="", icon='RIGHTARROW')
            split.operator("mesh.looptools_curve")
            # curve - settings
            if lt.display_curve:
                box = col.column(align=True).box().column()
                box.prop(lt, "curve_interpolation")
                box.prop(lt, "curve_restriction")
                box.prop(lt, "curve_boundaries")
                box.prop(lt, "curve_regular")
                box.separator()
                
                box.prop(lt, "curve_influence")
            
            # flatten - first line
            split = col.split(percentage=0.15)
            if lt.display_flatten:
                split.prop(lt, "display_flatten", text="", icon='DOWNARROW_HLT')
            else:
                split.prop(lt, "display_flatten", text="", icon='RIGHTARROW')
            split.operator("mesh.looptools_flatten")
            # flatten - settings
            if lt.display_flatten:
                box = col.column(align=True).box().column()
                box.prop(lt, "flatten_plane")
                #box.prop(lt, "flatten_restriction")
                box.separator()
                
                box.prop(lt, "flatten_influence")
            
            # loft - first line
            split = col.split(percentage=0.15)
            if lt.display_loft:
                split.prop(lt, "display_loft", text="", icon='DOWNARROW_HLT')
            else:
                split.prop(lt, "display_loft", text="", icon='RIGHTARROW')
            split.operator("mesh.looptools_bridge", text="Loft").loft = True
            # loft - settings
            if lt.display_loft:
                box = col.column(align=True).box().column()
                #box.prop(self, "mode")
                
                # top row
                col_top = box.column(align=True)
                row = col_top.row(align=True)
                col_left = row.column(align=True)
                col_right = row.column(align=True)
                col_right.active = lt.bridge_segments != 1
                col_left.prop(lt, "bridge_segments")
                col_right.prop(lt, "bridge_min_width", text="")
                # bottom row
                bottom_left = col_left.row()
                bottom_left.active = lt.bridge_segments != 1
                bottom_left.prop(lt, "bridge_interpolation", text="")
                bottom_right = col_right.row()
                bottom_right.active = lt.bridge_interpolation == 'cubic'
                bottom_right.prop(lt, "bridge_cubic_strength")
                # boolean properties
                col_top.prop(lt, "bridge_remove_faces")
                col_top.prop(lt, "bridge_loft_loop")
                
                # override properties
                col_top.separator()
                row = box.row(align = True)
                row.prop(lt, "bridge_twist")
                row.prop(lt, "bridge_reverse")
            
            # relax - first line
            split = col.split(percentage=0.15)
            if lt.display_relax:
                split.prop(lt, "display_relax", text="", icon='DOWNARROW_HLT')
            else:
                split.prop(lt, "display_relax", text="", icon='RIGHTARROW')
            split.operator("mesh.looptools_relax")
            # relax - settings
            if lt.display_relax:
                box = col.column(align=True).box().column()
                box.prop(lt, "relax_interpolation")
                box.prop(lt, "relax_input")
                box.prop(lt, "relax_iterations")
                box.prop(lt, "relax_regular")
            
            # space - first line
            split = col.split(percentage=0.15)
            if lt.display_space:
                split.prop(lt, "display_space", text="", icon='DOWNARROW_HLT')
            else:
                split.prop(lt, "display_space", text="", icon='RIGHTARROW')
            split.operator("mesh.looptools_space")
            # space - settings
            if lt.display_space:
                box = col.column(align=True).box().column()
                box.prop(lt, "space_interpolation")
                box.prop(lt, "space_input")
                box.separator()
                
                box.prop(lt, "space_influence")
    
    
    # property group containing all properties for the gui in the panel
    class LoopToolsProps(bpy.types.PropertyGroup):
        """
        Fake module like class
        bpy.context.window_manager.looptools
        """
        
        # general display properties
        display_bridge = bpy.props.BoolProperty(name = "Bridge settings",
            description = "Display settings of the Bridge tool",
            default = False)
        display_circle = bpy.props.BoolProperty(name = "Circle settings",
            description = "Display settings of the Circle tool",
            default = False)
        display_curve = bpy.props.BoolProperty(name = "Curve settings",
            description = "Display settings of the Curve tool",
            default = False)
        display_flatten = bpy.props.BoolProperty(name = "Flatten settings",
            description = "Display settings of the Flatten tool",
            default = False)
        display_loft = bpy.props.BoolProperty(name = "Loft settings",
            description = "Display settings of the Loft tool",
            default = False)
        display_relax = bpy.props.BoolProperty(name = "Relax settings",
            description = "Display settings of the Relax tool",
            default = False)
        display_space = bpy.props.BoolProperty(name = "Space settings",
            description = "Display settings of the Space tool",
            default = False)
        
        # bridge properties
        bridge_cubic_strength = bpy.props.FloatProperty(name = "Strength",
            description = "Higher strength results in more fluid curves",
            default = 1.0,
            soft_min = -3.0,
            soft_max = 3.0)
        bridge_interpolation = bpy.props.EnumProperty(name = "Interpolation mode",
            items = (('cubic', "Cubic", "Gives curved results"),
                ('linear', "Linear", "Basic, fast, straight interpolation")),
            description = "Interpolation mode: algorithm used when creating "\
                "segments",
            default = 'cubic')
        bridge_loft = bpy.props.BoolProperty(name = "Loft",
            description = "Loft multiple loops, instead of considering them as "\
                "a multi-input for bridging",
            default = False)
        bridge_loft_loop = bpy.props.BoolProperty(name = "Loop",
            description = "Connect the first and the last loop with each other",
            default = False)
        bridge_min_width = bpy.props.IntProperty(name = "Minimum width",
            description = "Segments with an edge smaller than this are merged "\
                "(compared to base edge)",
            default = 0,
            min = 0,
            max = 100,
            subtype = 'PERCENTAGE')
        bridge_mode = bpy.props.EnumProperty(name = "Mode",
            items = (('basic', "Basic", "Fast algorithm"), ('shortest',
                "Shortest edge", "Slower algorithm with better vertex matching")),
            description = "Algorithm used for bridging",
            default = 'shortest')
        bridge_remove_faces = bpy.props.BoolProperty(name = "Remove faces",
            description = "Remove faces that are internal after bridging",
            default = True)
        bridge_reverse = bpy.props.BoolProperty(name = "Reverse",
            description = "Manually override the direction in which the loops "\
                "are bridged. Only use if the tool gives the wrong result.",
            default = False)
        bridge_segments = bpy.props.IntProperty(name = "Segments",
            description = "Number of segments used to bridge the gap "\
                "(0 = automatic)",
            default = 1,
            min = 0,
            soft_max = 20)
        bridge_twist = bpy.props.IntProperty(name = "Twist",
            description = "Twist what vertices are connected to each other",
            default = 0)
        
        # circle properties
        circle_custom_radius = bpy.props.BoolProperty(name = "Radius",
            description = "Force a custom radius",
            default = False)
        circle_fit = bpy.props.EnumProperty(name = "Method",
            items = (("best", "Best fit", "Non-linear least squares"),
                ("inside", "Fit inside","Only move vertices towards the center")),
            description = "Method used for fitting a circle to the vertices",
            default = 'best')
        circle_flatten = bpy.props.BoolProperty(name = "Flatten",
            description = "Flatten the circle, instead of projecting it on the " \
                "mesh",
            default = True)
        circle_influence = bpy.props.FloatProperty(name = "Influence",
            description = "Force of the tool",
            default = 100.0,
            min = 0.0,
            max = 100.0,
            precision = 1,
            subtype = 'PERCENTAGE')
        circle_radius = bpy.props.FloatProperty(name = "Radius",
            description = "Custom radius for circle",
            default = 1.0,
            min = 0.0,
            soft_max = 1000.0)
        circle_regular = bpy.props.BoolProperty(name = "Regular",
            description = "Distribute vertices at constant distances along the " \
                "circle",
            default = True)
        
        # curve properties
        curve_boundaries = bpy.props.BoolProperty(name = "Boundaries",
            description = "Limit the tool to work within the boundaries of the "\
                "selected vertices",
            default = False)
        curve_influence = bpy.props.FloatProperty(name = "Influence",
            description = "Force of the tool",
            default = 100.0,
            min = 0.0,
            max = 100.0,
            precision = 1,
            subtype = 'PERCENTAGE')
        curve_interpolation = bpy.props.EnumProperty(name = "Interpolation",
            items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
                ("linear", "Linear", "Simple and fast linear algorithm")),
            description = "Algorithm used for interpolation",
            default = 'cubic')
        curve_regular = bpy.props.BoolProperty(name = "Regular",
            description = "Distribute vertices at constant distances along the" \
                "curve",
            default = True)
        curve_restriction = bpy.props.EnumProperty(name = "Restriction",
            items = (("none", "None", "No restrictions on vertex movement"),
                ("extrude", "Extrude only","Only allow extrusions (no "\
                    "indentations)"),
                ("indent", "Indent only", "Only allow indentation (no "\
                    "extrusions)")),
            description = "Restrictions on how the vertices can be moved",
            default = 'none')
        
        # flatten properties
        flatten_influence = bpy.props.FloatProperty(name = "Influence",
            description = "Force of the tool",
            default = 100.0,
            min = 0.0,
            max = 100.0,
            precision = 1,
            subtype = 'PERCENTAGE')
        flatten_plane = bpy.props.EnumProperty(name = "Plane",
            items = (("best_fit", "Best fit", "Calculate a best fitting plane"),
                ("normal", "Normal", "Derive plane from averaging vertex "\
                "normals"),
                ("view", "View", "Flatten on a plane perpendicular to the "\
                "viewing angle")),
            description = "Plane on which vertices are flattened",
            default = 'best_fit')
        flatten_restriction = bpy.props.EnumProperty(name = "Restriction",
            items = (("none", "None", "No restrictions on vertex movement"),
                ("bounding_box", "Bounding box", "Vertices are restricted to "\
                "movement inside the bounding box of the selection")),
            description = "Restrictions on how the vertices can be moved",
            default = 'none')
        
        # relax properties
        relax_input = bpy.props.EnumProperty(name = "Input",
            items = (("all", "Parallel (all)", "Also use non-selected "\
                    "parallel loops as input"),
                ("selected", "Selection","Only use selected vertices as input")),
            description = "Loops that are relaxed",
            default = 'selected')
        relax_interpolation = bpy.props.EnumProperty(name = "Interpolation",
            items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
                ("linear", "Linear", "Simple and fast linear algorithm")),
            description = "Algorithm used for interpolation",
            default = 'cubic')
        relax_iterations = bpy.props.EnumProperty(name = "Iterations",
            items = (("1", "1", "One"),
                ("3", "3", "Three"),
                ("5", "5", "Five"),
                ("10", "10", "Ten"),
                ("25", "25", "Twenty-five")),
            description = "Number of times the loop is relaxed",
            default = "1")
        relax_regular = bpy.props.BoolProperty(name = "Regular",
            description = "Distribute vertices at constant distances along the" \
                "loop",
            default = True)
        
        # space properties
        space_influence = bpy.props.FloatProperty(name = "Influence",
            description = "Force of the tool",
            default = 100.0,
            min = 0.0,
            max = 100.0,
            precision = 1,
            subtype = 'PERCENTAGE')
        space_input = bpy.props.EnumProperty(name = "Input",
            items = (("all", "Parallel (all)", "Also use non-selected "\
                    "parallel loops as input"),
                ("selected", "Selection","Only use selected vertices as input")),
            description = "Loops that are spaced",
            default = 'selected')
        space_interpolation = bpy.props.EnumProperty(name = "Interpolation",
            items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
                ("linear", "Linear", "Vertices are projected on existing edges")),
            description = "Algorithm used for interpolation",
            default = 'cubic')
    
    
    # draw function for integration in menus
    def menu_func(self, context):
        self.layout.menu("VIEW3D_MT_edit_mesh_looptools")
        self.layout.separator()
    
    
    # define classes for registration
    classes = [VIEW3D_MT_edit_mesh_looptools,
        VIEW3D_PT_tools_looptools,
        LoopToolsProps,
        Bridge,
        Circle,
        Curve,
        Flatten,
        Relax,
        Space]
    
    
    # registering and menu integration
    def register():
        for c in classes:
            bpy.utils.register_class(c)
        bpy.types.VIEW3D_MT_edit_mesh_specials.prepend(menu_func)
        bpy.types.WindowManager.looptools = bpy.props.PointerProperty(\
            type = LoopToolsProps)
    
    
    # unregistering and removing menus
    def unregister():
        for c in classes:
            bpy.utils.unregister_class(c)
        bpy.types.VIEW3D_MT_edit_mesh_specials.remove(menu_func)
        try:
            del bpy.types.WindowManager.looptools
        except:
            pass
    
    
    if __name__ == "__main__":
        register()