Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8-80 compliant>
bl_info = {
"name": "IvyGen",
"author": "testscreenings, PKHG, TrumanBlending",
"version": (0, 1, 1),
"blender": (2, 5, 9),
"api": 39307,
"location": "View3D > Add > Curve",
"description": "Adds generated ivy to a mesh object starting at the 3D"\
"warning": "",
"wiki_url": "http://wiki.blender.org/index.php/Extensions:2.5/Py/"\
"Scripts/Curve/Ivy_Gen",
"tracker_url": "http://projects.blender.org/tracker/index.php?"\
"func=detail&aid=27234",
"category": "Add Curve"}
import bpy
from bpy.props import FloatProperty, IntProperty, BoolProperty
from mathutils import Vector, Matrix
from collections import deque
from math import pow, cos, pi, atan2
from random import random as rand_val, seed as rand_seed
import time
def createIvyGeometry(IVY, growLeaves):
'''Create the curve geometry for IVY'''
# Compute the local size and the gauss weight filter
#local_ivyBranchSize = IVY.ivyBranchSize # * radius * IVY.ivySize
Campbell Barton
committed
gaussWeight = (1.0, 2.0, 4.0, 7.0, 9.0, 10.0, 9.0, 7.0, 4.0, 2.0, 1.0)
# Create a new curve and intialise it
curve = bpy.data.curves.new("IVY", type='CURVE')
curve.dimensions = '3D'
curve.bevel_depth = 1
curve.fill_mode = 'FULL'
Campbell Barton
committed
curve.resolution_u = 4
if growLeaves:
# Create the ivy leaves
# Order location of the vertices
Campbell Barton
committed
signList = ((-1.0, +1.0),
(+1.0, +1.0),
(+1.0, -1.0),
(-1.0, -1.0),
)
# Get the local size
#local_ivyLeafSize = IVY.ivyLeafSize # * radius * IVY.ivySize
# Initialise the vertex and face lists
vertList = deque()
# Store the methods for faster calling
addV = vertList.extend
rotMat = Matrix.Rotation
# Loop over all roots to generate its nodes
for root in IVY.ivyRoots:
# Only grow if more than one node
numNodes = len(root.ivyNodes)
if numNodes > 1:
# Calculate the local radius
Campbell Barton
committed
local_ivyBranchRadius = 1.0 / (root.parents + 1) + 1.0
prevIvyLength = 1.0 / root.ivyNodes[-1].length
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
splineVerts = [ax for n in root.ivyNodes for ax in n.pos.to_4d()]
radiusConstant = local_ivyBranchRadius * IVY.ivyBranchSize
splineRadii = [radiusConstant * (1.3 - n.length * prevIvyLength)
for n in root.ivyNodes]
# Add the poly curve and set coords and radii
newSpline = curve.splines.new(type='POLY')
newSpline.points.add(len(splineVerts) // 4 - 1)
newSpline.points.foreach_set('co', splineVerts)
newSpline.points.foreach_set('radius', splineRadii)
# Loop over all nodes in the root
for i, n in enumerate(root.ivyNodes):
for k in range(len(gaussWeight)):
idx = max(0, min(i + k - 5, numNodes - 1))
n.smoothAdhesionVector += (gaussWeight[k] *
root.ivyNodes[idx].adhesionVector)
n.smoothAdhesionVector /= 56.0
n.adhesionLength = n.smoothAdhesionVector.length
n.smoothAdhesionVector.normalize()
if growLeaves and (i < numNodes - 1):
node = root.ivyNodes[i]
nodeNext = root.ivyNodes[i + 1]
# Find the weight and normalise the smooth adhesion vector
weight = pow(node.length * prevIvyLength, 0.7)
# Calculate the ground ivy and the new weight
groundIvy = max(0.0, -node.smoothAdhesionVector.z)
weight += groundIvy * pow(1 - node.length *
prevIvyLength, 2)
# Find the alignment weight
alignmentWeight = node.adhesionLength
# Calculate the needed angles
phi = atan2(node.smoothAdhesionVector.y,
Campbell Barton
committed
node.smoothAdhesionVector.x) - pi / 2.0
theta = (0.5 *
node.smoothAdhesionVector.angle(Vector((0, 0, -1)), 0))
# Find the size weight
sizeWeight = 1.5 - (cos(2 * pi * weight) * 0.5 + 0.5)
# Randomise the angles
phi += (rand_val() - 0.5) * (1.3 - alignmentWeight)
theta += (rand_val() - 0.5) * (1.1 - alignmentWeight)
# Calculate the leaf size an append the face to the list
leafSize = IVY.ivyLeafSize * sizeWeight
for j in range(10):
# Generate the probability
probability = rand_val()
# If we need to grow a leaf, do so
if (probability * weight) > IVY.leafProbability:
# Generate the random vector
randomVector = Vector((rand_val() - 0.5,
Campbell Barton
committed
rand_val() - 0.5,
rand_val() - 0.5,
))
Campbell Barton
committed
center = (node.pos.lerp(nodeNext.pos, j / 10.0) +
IVY.ivyLeafSize * randomVector)
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# For each of the verts, rotate/scale and append
basisVecX = Vector((1, 0, 0))
basisVecY = Vector((0, 1, 0))
horiRot = rotMat(theta, 3, 'X')
vertRot = rotMat(phi, 3, 'Z')
basisVecX.rotate(horiRot)
basisVecY.rotate(horiRot)
basisVecX.rotate(vertRot)
basisVecY.rotate(vertRot)
basisVecX *= leafSize
basisVecY *= leafSize
addV([k1 * basisVecX + k2 * basisVecY + center for
k1, k2 in signList])
# Add the object and link to scene
newCurve = bpy.data.objects.new("IVY_Curve", curve)
bpy.context.scene.objects.link(newCurve)
if growLeaves:
faceList = [[4 * i + l for l in range(4)] for i in
range(len(vertList) // 4)]
# Generate the new leaf mesh and link
me = bpy.data.meshes.new('IvyLeaf')
me.from_pydata(vertList, [], faceList)
me.update(calc_edges=True)
ob = bpy.data.objects.new('IvyLeaf', me)
bpy.context.scene.objects.link(ob)
Campbell Barton
committed
# TODO, this is non-functional, default uvs are ok?
'''
Campbell Barton
committed
'''
Campbell Barton
committed
'''
def computeBoundingSphere(ob):
# Get the mesh data
me = ob.data
# Intialise the center
Campbell Barton
committed
center = Vector((0.0, 0.0, 0.0))
# Add all vertex coords
for v in me.vertices:
center += v.co
# Average over all verts
center /= len(me.vertices)
# Create the iterator and find its max
length_iter = ((center - v.co).length for v in me.vertices)
radius = max(length_iter)
return radius
Campbell Barton
committed
'''
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
class IvyNode:
""" The basic class used for each point on the ivy which is grown."""
__slots__ = ('pos', 'primaryDir', 'adhesionVector', 'adhesionLength',
'smoothAdhesionVector', 'length', 'floatingLength', 'climb')
def __init__(self):
self.pos = Vector((0, 0, 0))
self.primaryDir = Vector((0, 0, 1))
self.adhesionVector = Vector((0, 0, 0))
self.smoothAdhesionVector = Vector((0, 0, 0))
self.length = 0.0001
self.floatingLength = 0.0
self.climb = True
class IvyRoot:
""" The class used to hold all ivy nodes growing from this root point."""
__slots__ = ('ivyNodes', 'alive', 'parents')
def __init__(self):
self.ivyNodes = deque()
self.alive = True
self.parents = 0
class Ivy:
""" The class holding all parameters and ivy roots."""
__slots__ = ('ivyRoots', 'primaryWeight', 'randomWeight',
'gravityWeight', 'adhesionWeight', 'branchingProbability',
'leafProbability', 'ivySize', 'ivyLeafSize', 'ivyBranchSize',
'maxFloatLength', 'maxAdhesionDistance', 'maxLength')
def __init__(self,
primaryWeight=0.5,
randomWeight=0.2,
gravityWeight=1.0,
adhesionWeight=0.1,
branchingProbability=0.05,
leafProbability=0.35,
ivySize=0.02,
ivyLeafSize=0.02,
ivyBranchSize=0.001,
maxFloatLength=0.5,
maxAdhesionDistance=1.0):
self.ivyRoots = deque()
self.primaryWeight = primaryWeight
self.randomWeight = randomWeight
self.gravityWeight = gravityWeight
self.adhesionWeight = adhesionWeight
self.branchingProbability = 1 - branchingProbability
self.leafProbability = 1 - leafProbability
self.ivySize = ivySize
self.ivyLeafSize = ivyLeafSize
self.ivyBranchSize = ivyBranchSize
self.maxFloatLength = maxFloatLength
self.maxAdhesionDistance = maxAdhesionDistance
self.maxLength = 0.0
# Normalise all the weights only on intialisation
sum = self.primaryWeight + self.randomWeight + self.adhesionWeight
self.primaryWeight /= sum
self.randomWeight /= sum
self.adhesionWeight /= sum
def seed(self, seedPos):
# Seed the Ivy by making a new root and first node
tmpRoot = IvyRoot()
tmpIvy = IvyNode()
tmpIvy.pos = seedPos
tmpRoot.ivyNodes.append(tmpIvy)
self.ivyRoots.append(tmpRoot)
def grow(self, ob):
# Determine the local sizes
#local_ivySize = self.ivySize # * radius
#local_maxFloatLength = self.maxFloatLength # * radius
#local_maxAdhesionDistance = self.maxAdhesionDistance # * radius
for root in self.ivyRoots:
# Make sure the root is alive, if not, skip
if not root.alive:
continue
# Get the last node in the current root
prevIvy = root.ivyNodes[-1]
# If the node is floating for too long, kill the root
if prevIvy.floatingLength > self.maxFloatLength:
root.alive = False
# Set the primary direction from the last node
primaryVector = prevIvy.primaryDir
# Make the random vector and normalise
randomVector = Vector((rand_val() - 0.5, rand_val() - 0.5,
rand_val() - 0.5)) + Vector((0, 0, 0.2))
randomVector.normalize()
# Calculate the adhesion vector
adhesionVector = adhesion(prevIvy.pos, ob,
self.maxAdhesionDistance)
# Calculate the growing vector
growVector = self.ivySize * (primaryVector * self.primaryWeight +
randomVector * self.randomWeight +
adhesionVector * self.adhesionWeight)
# Find the gravity vector
gravityVector = (self.ivySize * self.gravityWeight *
Vector((0, 0, -1)))
gravityVector *= pow(prevIvy.floatingLength / self.maxFloatLength,
0.7)
# Determine the new position vector
newPos = prevIvy.pos + growVector + gravityVector
# Check for collisions with the object
climbing = collision(ob, prevIvy.pos, newPos)
# Update the growing vector for any collisions
growVector = newPos - prevIvy.pos - gravityVector
growVector.normalize()
# Create a new IvyNode and set its properties
tmpNode = IvyNode()
tmpNode.climb = climbing
tmpNode.pos = newPos
tmpNode.primaryDir = prevIvy.primaryDir.lerp(growVector, 0.5)
tmpNode.primaryDir.normalize()
tmpNode.adhesionVector = adhesionVector
tmpNode.length = prevIvy.length + (newPos - prevIvy.pos).length
if tmpNode.length > self.maxLength:
self.maxLength = tmpNode.length
# If the node isn't climbing, update it's floating length
# Otherwise set it to 0
if not climbing:
tmpNode.floatingLength = prevIvy.floatingLength + (newPos -
prevIvy.pos).length
else:
tmpNode.floatingLength = 0.0
root.ivyNodes.append(tmpNode)
# Loop through all roots to check if a new root is generated
for root in self.ivyRoots:
# Check the root is alive and isn't at high level of recursion
if (root.parents > 3) or (not root.alive):
continue
# Check to make sure there's more than 1 node
if len(root.ivyNodes) > 1:
# Loop through all nodes in root to check if new root is grown
for node in root.ivyNodes:
# Set the last node of the root and find the weighting
prevIvy = root.ivyNodes[-1]
weight = 1.0 - (cos(2.0 * pi * node.length /
prevIvy.length) * 0.5 + 0.5)
probability = rand_val()
# Check if a new root is grown and if so, set its values
if (probability * weight > self.branchingProbability):
tmpNode = IvyNode()
tmpNode.pos = node.pos
tmpNode.floatingLength = node.floatingLength
tmpRoot = IvyRoot()
tmpRoot.parents = root.parents + 1
tmpRoot.ivyNodes.append(tmpNode)
self.ivyRoots.append(tmpRoot)
return
def adhesion(loc, ob, max_l):
# Get transfor vector and transformed loc
tran_mat = ob.matrix_world.inverted()
tran_loc = tran_mat * loc
# Compute the adhesion vector by finding the nearest point
nearest_result = ob.closest_point_on_mesh(tran_loc, max_l)
Campbell Barton
committed
adhesion_vector = Vector((0.0, 0.0, 0.0))
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
if nearest_result[2] != -1:
# Compute the distance to the nearest point
adhesion_vector = ob.matrix_world * nearest_result[0] - loc
distance = adhesion_vector.length
# If it's less than the maximum allowed and not 0, continue
if distance:
# Compute the direction vector between the closest point and loc
adhesion_vector.normalize()
adhesion_vector *= 1.0 - distance / max_l
#adhesion_vector *= getFaceWeight(ob.data, nearest_result[2])
return adhesion_vector
def collision(ob, pos, new_pos):
# Check for collision with the object
climbing = False
# Transform vecs
tran_mat = ob.matrix_world.inverted()
tran_pos = tran_mat * pos
tran_new_pos = tran_mat * new_pos
ray_result = ob.ray_cast(tran_pos, tran_new_pos)
# If there's a collision we need to check it
if ray_result[2] != -1:
# Check whether the collision is going into the object
if (tran_new_pos - tran_pos).dot(ray_result[1]) < 0.0:
# Find projection of the piont onto the plane
p0 = tran_new_pos - (tran_new_pos -
ray_result[0]).project(ray_result[1])
# Reflect in the plane
tran_new_pos += 2 * (p0 - tran_new_pos)
new_pos *= 0
new_pos += ob.matrix_world * tran_new_pos
climbing = True
return climbing
class IvyGen(bpy.types.Operator):
bl_idname = "curve.ivy_gen"
bl_label = "IvyGen"
bl_options = {'REGISTER', 'UNDO'}
maxIvyLength = FloatProperty(name="Max Ivy Length",
description="Maximum ivy length in Blender Units",
default=1.0,
min=0.0,
soft_max=3.0,
subtype='DISTANCE',
unit='LENGTH')
primaryWeight = FloatProperty(name="Primary Weight",
description="Weighting given to the current direction",
default=0.5,
min=0.0,
soft_max=1.0)
randomWeight = FloatProperty(name="Random Weight",
description="Weighting given to the random direction",
default=0.2,
min=0.0,
soft_max=1.0)
gravityWeight = FloatProperty(name="Gravity Weight",
description="Weighting given to the gravity direction",
default=1.0,
min=0.0,
soft_max=1.0)
adhesionWeight = FloatProperty(name="Adhesion Weight",
description="Weighting given to the adhesion direction",
default=0.1,
min=0.0,
soft_max=1.0)
branchingProbability = FloatProperty(name="Branching Probability",
description="Probability of a new branch forming",
default=0.05,
min=0.0,
soft_max=1.0)
leafProbability = FloatProperty(name="Leaf Probability",
description="Probability of a leaf forming",
default=0.35,
min=0.0,
soft_max=1.0)
ivySize = FloatProperty(name="Ivy Size",
Campbell Barton
committed
description=("The length of an ivy segment in Blender"
default=0.02,
min=0.0,
soft_max=1.0,
precision=3)
ivyLeafSize = FloatProperty(name="Ivy Leaf Size",
description="The size of the ivy leaves",
default=0.02,
min=0.0,
soft_max=0.5,
precision=3)
ivyBranchSize = FloatProperty(name="Ivy Branch Size",
description="The size of the ivy branches",
default=0.001,
min=0.0,
soft_max=0.1,
precision=4)
maxFloatLength = FloatProperty(name="Max Float Length",
Campbell Barton
committed
description=("The maximum distance that a branch "
"can live while floating"),
default=0.5,
min=0.0,
soft_max=1.0)
maxAdhesionDistance = FloatProperty(name="Max Adhesion Length",
Campbell Barton
committed
description=("The maximum distance that a branch "
"will feel the effects of adhesion"),
default=1.0,
min=0.0,
soft_max=2.0,
precision=2)
randomSeed = IntProperty(name="Random Seed",
description="The seed governing random generation",
Campbell Barton
committed
description=("The maximum time to run the generation for "
"in seconds generation (0.0 = Disabled)"),
default=0.0,
min=0.0,
soft_max=10)
growLeaves = BoolProperty(name="Grow Leaves",
description="Grow leaves or not",
default=True)
updateIvy = BoolProperty(name="Update Ivy", default=False)
@classmethod
def poll(self, context):
# Check if there's an object and whether it's a mesh
ob = context.active_object
Campbell Barton
committed
return ((ob is not None) and
(ob.type == 'MESH') and
(context.mode == 'OBJECT'))
Campbell Barton
committed
if not self.updateIvy:
return {'PASS_THROUGH'}
bpy.ops.object.mode_set(mode='EDIT', toggle=False)
bpy.ops.object.mode_set(mode='OBJECT', toggle=False)
Campbell Barton
committed
# Get the selected object
ob = context.active_object
Campbell Barton
committed
# Compute bounding sphere radius
#radius = computeBoundingSphere(ob) # Not needed anymore
Campbell Barton
committed
# Get the seeding point
seedPoint = context.scene.cursor_location
Campbell Barton
committed
# Fix the random seed
rand_seed(self.randomSeed)
Campbell Barton
committed
# Make the new ivy
IVY = Ivy(**self.as_keywords(ignore=('randomSeed', 'growLeaves',
'maxIvyLength', 'maxTime', 'updateIvy')))
Campbell Barton
committed
# Generate first root and node
IVY.seed(seedPoint)
Campbell Barton
committed
checkTime = False
maxLength = self.maxIvyLength # * radius
Campbell Barton
committed
# If we need to check time set the flag
if self.maxTime != 0.0:
checkTime = True
Campbell Barton
committed
t = time.time()
startPercent = 0.0
checkAliveIter = [True, ]
Campbell Barton
committed
# Grow until 200 roots is reached or backup counter exceeds limit
while (any(checkAliveIter) and
(IVY.maxLength < maxLength) and
(not checkTime or (time.time() - t < self.maxTime))):
# Grow the ivy for this iteration
IVY.grow(ob)
Campbell Barton
committed
# Print the proportion of ivy growth to console
if (IVY.maxLength / maxLength * 100) > 10 * startPercent // 10:
print('%0.2f%% of Ivy nodes have grown' %
(IVY.maxLength / maxLength * 100))
startPercent += 10
if IVY.maxLength / maxLength > 1:
print("Halting Growth")
Campbell Barton
committed
# Make an iterator to check if all are alive
checkAliveIter = (r.alive for r in IVY.ivyRoots)
Campbell Barton
committed
# Create the curve and leaf geometry
createIvyGeometry(IVY, self.growLeaves)
print("Geometry Generation Complete")
Campbell Barton
committed
print("Ivy generated in %0.2f s" % (time.time() - t))
Campbell Barton
committed
self.updateIvy = False
Campbell Barton
committed
return {'FINISHED'}
layout.prop(self, 'updateIvy', icon='CURVE_DATA')
properties = layout.operator('curve.ivy_gen', text="Add New Ivy")
properties.randomSeed = self.randomSeed
properties.maxTime = self.maxTime
properties.maxIvyLength = self.maxIvyLength
properties.ivySize = self.ivySize
properties.maxFloatLength = self.maxFloatLength
properties.maxAdhesionDistance = self.maxAdhesionDistance
properties.primaryWeight = self.primaryWeight
properties.randomWeight = self.randomWeight
properties.gravityWeight = self.gravityWeight
properties.adhesionWeight = self.adhesionWeight
properties.branchingProbability = self.branchingProbability
properties.leafProbability = self.leafProbability
properties.ivyBranchSize = self.ivyBranchSize
properties.ivyLeafSize = self.ivyLeafSize
prop_def = layout.operator('curve.ivy_gen', text="Add New Default Ivy")
box.label("Generation Settings:")
box.prop(self, 'randomSeed')
box.prop(self, 'maxTime')
box.label("Size Settings:")
box.prop(self, 'maxIvyLength')
box.prop(self, 'ivySize')
box.prop(self, 'maxFloatLength')
box.prop(self, 'maxAdhesionDistance')
box.label("Weight Settings:")
box.prop(self, 'primaryWeight')
box.prop(self, 'randomWeight')
box.prop(self, 'gravityWeight')
box.prop(self, 'adhesionWeight')
box.label("Branch Settings:")
box.prop(self, 'branchingProbability')
box.prop(self, 'ivyBranchSize')
box.label("Leaf Settings:")
box.prop(self, 'ivyLeafSize')
box.prop(self, 'leafProbability')
def menu_func(self, context):
self.layout.operator(IvyGen.bl_idname, text="Add Ivy to Mesh",
icon='PLUGIN').updateIvy = True
def register():
bpy.utils.register_module(__name__)
bpy.types.INFO_MT_curve_add.append(menu_func)
def unregister():
bpy.types.INFO_MT_curve_add.remove(menu_func)
bpy.utils.unregister_module(__name__)
if __name__ == "__main__":