Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
"version": (0,1,1),
"blender": (2, 5, 6),
"location": "Add Mesh menu",
"description": "Adds a landscape primitive",
"warning": "", # used for warning icon and text in addons panel
"wiki_url": "http://wiki.blender.org/index.php/Extensions:2.5/Py/"\
"Scripts/Add_Mesh/ANT_Landscape",
"tracker_url": "https://projects.blender.org/tracker/index.php?"\
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
'''
Another Noise Tool: Landscape mesh generator
MESH OPTIONS:
Mesh update: Turn this on for interactive mesh update.
Sphere: Generate sphere or a grid mesh. (Turn height falloff off for sphere mesh)
Smooth: Generate smooth shaded mesh.
Subdivision: Number of mesh subdivisions, higher numbers gives more detail but also slows down the script.
Mesh size: X,Y size of the grid mesh (in blender units).
NOISE OPTIONS: ( Most of these options are the same as in blender textures. )
Random seed: Use this to randomise the origin of the noise function.
Noise size: Size of the noise.
Noise type: Available noise types: multiFractal, ridgedMFractal, hybridMFractal, heteroTerrain, Turbulence, Distorted Noise, Cellnoise, Shattered_hTerrain, Marble
Noise basis: Blender, Perlin, NewPerlin, Voronoi_F1, Voronoi_F2, Voronoi_F3, Voronoi_F4, Voronoi_F2-F1, Voronoi Crackle, Cellnoise
VLNoise basis: Blender, Perlin, NewPerlin, Voronoi_F1, Voronoi_F2, Voronoi_F3, Voronoi_F4, Voronoi_F2-F1, Voronoi Crackle, Cellnoise
Distortion: Distortion amount.
Hard: Hard/Soft turbulence noise.
Depth: Noise depth, number of frequencies in the fBm.
Dimension: Musgrave: Fractal dimension of the roughest areas.
Lacunarity: Musgrave: Gap between successive frequencies.
Offset: Musgrave: Raises the terrain from sea level.
Gain: Musgrave: Scale factor.
Marble Bias: Sin, Tri, Saw
Marble Sharpnes: Soft, Sharp, Sharper
Marble Shape: Shape of the marble function: Default, Ring, Swirl, X, Y
HEIGHT OPTIONS:
Invert: Invert terrain height.
Height: Scale terrain height.
Offset: Terrain height offset.
Falloff: Terrain height falloff: Type 1, Type 2, X, Y
Sealevel: Flattens terrain below sealevel.
Platlevel: Flattens terrain above plateau level.
Strata: Strata amount, number of strata/terrace layers.
Strata type: Strata types, Smooth, Sharp-sub, Sharp-add
'''
# import modules
import bpy
from bpy.props import *
from mathutils import *
from noise import *
from math import *
###------------------------------------------------------------
# calculates the matrix for the new object depending on user pref
def align_matrix(context):
loc = Matrix.Translation(context.scene.cursor_location)
obj_align = context.user_preferences.edit.object_align
if (context.space_data.type == 'VIEW_3D'
and obj_align == 'VIEW'):
rot = context.space_data.region_3d.view_matrix.rotation_part().invert().resize4x4()
else:
rot = Matrix()
align_matrix = loc * rot
return align_matrix
# Create a new mesh (object) from verts/edges/faces.
# verts/edges/faces ... List of vertices/edges/faces for the
# new mesh (as used in from_pydata).
# name ... Name of the new mesh (& object).
def create_mesh_object(context, verts, edges, faces, name, align_matrix):
scene = context.scene
obj_act = scene.objects.active
# Create new mesh
mesh = bpy.data.meshes.new(name)
# Make a mesh from a list of verts/edges/faces.
mesh.from_pydata(verts, edges, faces)
# Update mesh geometry after adding stuff.
mesh.update()
# Deselect all objects.
bpy.ops.object.select_all(action='DESELECT')
# Always create new object
ob_new = bpy.data.objects.new(name, mesh)
# Link new object to the given scene and select it.
scene.objects.link(ob_new)
ob_new.select = True
# Place the object at the 3D cursor location.
# apply viewRotaion
ob_new.matrix_world = align_matrix
# We are in EditMode, switch to ObjectMode.
bpy.ops.object.mode_set(mode='OBJECT')
# Select the active object as well.
obj_act.select = True
# Apply location of new object.
scene.update()
# Join new object into the active.
bpy.ops.object.join()
# Switching back to EditMode.
bpy.ops.object.mode_set(mode='EDIT')
ob_new = obj_act
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
else:
# We are in ObjectMode.
# Make the new object the active one.
scene.objects.active = ob_new
return ob_new
# A very simple "bridge" tool.
# Connects two equally long vertex rows with faces.
# Returns a list of the new faces (list of lists)
#
# vertIdx1 ... First vertex list (list of vertex indices).
# vertIdx2 ... Second vertex list (list of vertex indices).
# closed ... Creates a loop (first & last are closed).
# flipped ... Invert the normal of the face(s).
#
# Note: You can set vertIdx1 to a single vertex index to create
# a fan/star of faces.
# Note: If both vertex idx list are the same length they have
# to have at least 2 vertices.
def createFaces(vertIdx1, vertIdx2, closed=False, flipped=False):
faces = []
if not vertIdx1 or not vertIdx2:
return None
if len(vertIdx1) < 2 and len(vertIdx2) < 2:
return None
fan = False
if (len(vertIdx1) != len(vertIdx2)):
if (len(vertIdx1) == 1 and len(vertIdx2) > 1):
fan = True
else:
return None
total = len(vertIdx2)
if closed:
# Bridge the start with the end.
if flipped:
face = [
vertIdx1[0],
vertIdx2[0],
vertIdx2[total - 1]]
if not fan:
face.append(vertIdx1[total - 1])
faces.append(face)
else:
face = [vertIdx2[0], vertIdx1[0]]
if not fan:
face.append(vertIdx1[total - 1])
face.append(vertIdx2[total - 1])
faces.append(face)
# Bridge the rest of the faces.
for num in range(total - 1):
if flipped:
if fan:
face = [vertIdx2[num], vertIdx1[0], vertIdx2[num + 1]]
else:
face = [vertIdx2[num], vertIdx1[num],
vertIdx1[num + 1], vertIdx2[num + 1]]
faces.append(face)
else:
if fan:
face = [vertIdx1[0], vertIdx2[num], vertIdx2[num + 1]]
else:
face = [vertIdx1[num], vertIdx2[num],
vertIdx2[num + 1], vertIdx1[num + 1]]
faces.append(face)
return faces
###------------------------------------------------------------
###------------------------------------------------------------
# some functions for marble_noise
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
def sin_bias(a):
return 0.5 + 0.5 * sin(a)
def tri_bias(a):
b = 2 * pi
a = 1 - 2 * abs(floor((a * (1/b))+0.5) - (a*(1/b)))
return a
def saw_bias(a):
b = 2 * pi
n = int(a/b)
a -= n * b
if a < 0: a += b
return a / b
def soft(a):
return a
def sharp(a):
return a**0.5
def sharper(a):
return sharp(sharp(a))
def shapes(x,y,shape=0):
if shape == 1:
# ring
x = x*2
y = y*2
elif shape == 2:
# swirl
x = x*2
y = y*2
s = (( x*sin( x*x+y*y ) + y*cos( x*x+y*y ) ) / (x**2+y**2+0.5))
elif shape == 3:
# bumps
x = x*2
y = y*2
else:
# marble
s = ((x+y)*5)
return s
# marble_noise
def marble_noise(x,y,z, origin, size, shape, bias, sharpnes, turb, depth, hard, basis ):
s = shapes(x,y,shape)
x += origin[0]
y += origin[1]
z += origin[2]
value = s + turb * turbulence_vector((x,y,z), depth, hard, basis )[0]
if bias == 1:
value = tri_bias( value )
if sharpnes == 1:
value = sharp( value )
elif sharpnes == 2:
value = sharper( value )
else:
value = soft( value )
return value
###------------------------------------------------------------
# custom noise types
# shattered_hterrain:
def shattered_hterrain( x,y,z, H, lacunarity, octaves, offset, distort, basis ):
d = ( turbulence_vector( ( x, y, z ), 6, 0, 0 )[0] * 0.5 + 0.5 )*distort*0.5
t1 = ( turbulence_vector( ( x+d, y+d, z ), 0, 0, 7 )[0] + 0.5 )
t2 = ( hetero_terrain(( x*2, y*2, z*2 ), H, lacunarity, octaves, offset, basis )*0.5 )
return (( t1*t2 )+t2*0.5) * 0.5
# strata_hterrain
def strata_hterrain( x,y,z, H, lacunarity, octaves, offset, distort, basis ):
value = hetero_terrain(( x, y, z ), H, lacunarity, octaves, offset, basis )*0.5
steps = ( sin( value*(distort*5)*pi ) * ( 0.1/(distort*5)*pi ) )
return ( value * (1.0-0.5) + steps*0.5 )
###------------------------------------------------------------
def landscape_gen(x,y,z,falloffsize,options=[0,1.0,1, 0,0,1.0,0,6,1.0,2.0,1.0,2.0,0,0,0, 1.0,0.0,1,0.0,1.0,0,0,0]):
# options
rseed = options[0]
nsize = options[1]
ntype = int( options[2][0] )
nbasis = int( options[3][0] )
vlbasis = int( options[4][0] )
distortion = options[5]
depth = options[7]
dimension = options[8]
lacunarity = options[9]
offset = options[10]
gain = options[11]
marblebias = int( options[12][0] )
marblesharpnes = int( options[13][0] )
marbleshape = int( options[14][0] )
invert = options[15]
height = options[16]
heightoffset = options[17]
falloff = int( options[18][0] )
sealevel = options[19]
platlevel = options[20]
strata = options[21]
stratatype = options[22]
sphere = options[23]
# origin
if rseed == 0:
origin = 0.0,0.0,0.0
origin_x = 0.0
origin_y = 0.0
else:
# randomise origin
seed_set( rseed )
origin = random_unit_vector()
origin_x = ( 0.5 - origin[0] ) * 1000.0
origin_y = ( 0.5 - origin[1] ) * 1000.0
origin_z = ( 0.5 - origin[2] ) * 1000.0
ncoords = ( x / nsize + origin_x, y / nsize + origin_y, z / nsize + origin_z )
if nbasis == 9: nbasis = 14 # to get cellnoise basis you must set 14 instead of 9
if vlbasis ==9: vlbasis = 14
# noise type's
if ntype == 0: value = multi_fractal( ncoords, dimension, lacunarity, depth, nbasis ) * 0.5
elif ntype == 1: value = ridged_multi_fractal( ncoords, dimension, lacunarity, depth, offset, gain, nbasis ) * 0.5
elif ntype == 2: value = hybrid_multi_fractal( ncoords, dimension, lacunarity, depth, offset, gain, nbasis ) * 0.5
elif ntype == 3: value = hetero_terrain( ncoords, dimension, lacunarity, depth, offset, nbasis ) * 0.25
elif ntype == 4: value = fractal( ncoords, dimension, lacunarity, depth, nbasis )
elif ntype == 5: value = turbulence_vector( ncoords, depth, hardnoise, nbasis )[0]
elif ntype == 6: value = vl_vector( ncoords, distortion, nbasis, vlbasis ) + 0.5
elif ntype == 7: value = marble_noise( x*2.0/falloffsize,y*2.0/falloffsize,z*2/falloffsize, origin, nsize, marbleshape, marblebias, marblesharpnes, distortion, depth, hardnoise, nbasis )
elif ntype == 8: value = shattered_hterrain( ncoords[0], ncoords[1], ncoords[2], dimension, lacunarity, depth, offset, distortion, nbasis )
elif ntype == 9: value = strata_hterrain( ncoords[0], ncoords[1], ncoords[2], dimension, lacunarity, depth, offset, distortion, nbasis )
else:
value = 0.0
# adjust height
if invert !=0:
value = (1-value) * height + heightoffset
else:
value = value * height + heightoffset
# edge falloff
if sphere == 0: # no edge falloff if spherical
if falloff != 0:
fallofftypes = [ 0, sqrt((x*x)**2+(y*y)**2), sqrt(x*x+y*y), sqrt(y*y), sqrt(x*x) ]
dist = fallofftypes[ falloff]
if falloff ==1:
radius = (falloffsize/2)**2
else:
radius = falloffsize/2
value = value - sealevel
if( dist < radius ):
dist = dist / radius
dist = ( (dist) * (dist) * ( 3-2*(dist) ) )
value = ( value - value * dist ) + sealevel
else:
value = sealevel
# strata / terrace / layered
if stratatype !='0':
strata = strata / height
if stratatype == '1':
strata *= 2
steps = ( sin( value*strata*pi ) * ( 0.1/strata*pi ) )
value = ( value * (1.0-0.5) + steps*0.5 ) * 2.0
elif stratatype == '2':
steps = -abs( sin( value*(strata)*pi ) * ( 0.1/(strata)*pi ) )
value =( value * (1.0-0.5) + steps*0.5 ) * 2.0
elif stratatype == '3':
steps = abs( sin( value*(strata)*pi ) * ( 0.1/(strata)*pi ) )
value =( value * (1.0-0.5) + steps*0.5 ) * 2.0
else:
value = value
# clamp height
if ( value < sealevel ): value = sealevel
if ( value > platlevel ): value = platlevel
return value
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
# generate grid
def grid_gen( sub_d, size_me, options ):
verts = []
faces = []
edgeloop_prev = []
delta = size_me / float(sub_d - 1)
start = -(size_me / 2.0)
for row_x in range(sub_d):
edgeloop_cur = []
x = start + row_x * delta
for row_y in range(sub_d):
y = start + row_y * delta
z = landscape_gen(x,y,0.0,size_me,options)
edgeloop_cur.append(len(verts))
verts.append((x,y,z))
if len(edgeloop_prev) > 0:
faces_row = createFaces(edgeloop_prev, edgeloop_cur)
faces.extend(faces_row)
edgeloop_prev = edgeloop_cur
return verts, faces
# generate sphere
def sphere_gen( sub_d, size_me, options ):
verts = []
faces = []
edgeloop_prev = []
for row_x in range(sub_d):
edgeloop_cur = []
for row_y in range(sub_d):
u = sin(row_y*pi*2/(sub_d-1)) * cos(-pi/2+row_x*pi/(sub_d-1)) * size_me/2
v = cos(row_y*pi*2/(sub_d-1)) * cos(-pi/2+row_x*pi/(sub_d-1)) * size_me/2
w = sin(-pi/2+row_x*pi/(sub_d-1)) * size_me/2
h = landscape_gen(u,v,w,size_me,options) / size_me
u,v,w = u+u*h, v+v*h, w+w*h
edgeloop_cur.append(len(verts))
verts.append((u, v, w))
if len(edgeloop_prev) > 0:
faces_row = createFaces(edgeloop_prev, edgeloop_cur)
faces.extend(faces_row)
edgeloop_prev = edgeloop_cur
return verts, faces
###------------------------------------------------------------
# Add landscape
class landscape_add(bpy.types.Operator):
'''Add a landscape mesh'''
bl_idname = "mesh.landscape_add"
bl_label = "Landscape"
bl_options = {'REGISTER', 'UNDO'}
bl_description = "Add landscape mesh"
# align_matrix for the invoke
align_matrix = Matrix()
# properties
AutoUpdate = BoolProperty(name="Mesh update",
default=True,
description="Update mesh")
SphereMesh = BoolProperty(name="Sphere",
default=False,
description="Generate Sphere mesh")
SmoothMesh = BoolProperty(name="Smooth",
default=True,
description="Shade smooth")
Subdivision = IntProperty(name="Subdivisions",
default=64,
description="Mesh x y subdivisions")
MeshSize = FloatProperty(name="Mesh Size",
RandomSeed = IntProperty(name="Random Seed",
NoiseSize = FloatProperty(name="Noise Size",
default=1.0,
description="Noise size")
NoiseTypes = [
("0","multiFractal","multiFractal"),
("1","ridgedMFractal","ridgedMFractal"),
("2","hybridMFractal","hybridMFractal"),
("3","heteroTerrain","heteroTerrain"),
("4","fBm","fBm"),
("5","Turbulence","Turbulence"),
("6","Distorted Noise","Distorted Noise"),
("8","Shattered_hTerrain","Shattered_hTerrain"),
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
NoiseType = EnumProperty(name="Type",
description="Noise type",
items=NoiseTypes)
BasisTypes = [
("0","Blender","Blender"),
("1","Perlin","Perlin"),
("2","NewPerlin","NewPerlin"),
("3","Voronoi_F1","Voronoi_F1"),
("4","Voronoi_F2","Voronoi_F2"),
("5","Voronoi_F3","Voronoi_F3"),
("6","Voronoi_F4","Voronoi_F4"),
("7","Voronoi_F2-F1","Voronoi_F2-F1"),
("8","Voronoi Crackle","Voronoi Crackle"),
("9","Cellnoise","Cellnoise")]
BasisType = EnumProperty(name="Basis",
description="Noise basis",
items=BasisTypes)
VLBasisTypes = [
("0","Blender","Blender"),
("1","Perlin","Perlin"),
("2","NewPerlin","NewPerlin"),
("3","Voronoi_F1","Voronoi_F1"),
("4","Voronoi_F2","Voronoi_F2"),
("5","Voronoi_F3","Voronoi_F3"),
("6","Voronoi_F4","Voronoi_F4"),
("7","Voronoi_F2-F1","Voronoi_F2-F1"),
("8","Voronoi Crackle","Voronoi Crackle"),
("9","Cellnoise","Cellnoise")]
VLBasisType = EnumProperty(name="VLBasis",
description="VLNoise basis",
items=VLBasisTypes)
Distortion = FloatProperty(name="Distortion",
default=1.0,
description="Distortion amount")
HardNoise = BoolProperty(name="Hard",
default=True,
description="Hard noise")
NoiseDepth = IntProperty(name="Depth",
default=6,
description="Noise Depth - number of frequencies in the fBm.")
mDimension = FloatProperty(name="Dimension",
default=1.0,
description="H - fractal dimension of the roughest areas.")
mLacunarity = FloatProperty(name="Lacunarity",
default=2.0,
description="Lacunarity - gap between successive frequencies.")
mOffset = FloatProperty(name="Offset",
description="Offset - raises the terrain from sea level.")
default=1.0,
description="Gain - scale factor.")
BiasTypes = [
("0","Sin","Sin"),
("1","Tri","Tri"),
("2","Saw","Saw")]
MarbleBias = EnumProperty(name="Bias",
description="Marble bias",
items=BiasTypes)
SharpTypes = [
("0","Soft","Soft"),
("1","Sharp","Sharp"),
("2","Sharper","Sharper")]
MarbleSharp = EnumProperty(name="Sharp",
description="Marble sharp",
items=SharpTypes)
ShapeTypes = [
("0","Default","Default"),
("1","Ring","Ring"),
("2","Swirl","Swirl"),
("3","Bump","Bump"),
("4","Y","Y"),
("5","X","X")]
MarbleShape = EnumProperty(name="Shape",
description="Marble shape",
items=ShapeTypes)
default=0.5,
description="Height scale")
Offset = FloatProperty(name="Offset",
default=0.0,
description="Height offset")
fallTypes = [
("0","None","None"),
("1","Type 1","Type 1"),
("2","Type 2","Type 2"),
("3","Y","Y"),
("4","X","X")]
Falloff = EnumProperty(name="Falloff",
description="Edge falloff",
default="1",
items=fallTypes)
Sealevel = FloatProperty(name="Sealevel",
default=0.0,
description="Sealevel")
Plateaulevel = FloatProperty(name="Plateau",
default=1.0,
description="Plateau level")
Strata = FloatProperty(name="Strata",
min=0.01,
max=1000.0,
default=3.0,
description="Strata amount")
StrataTypes = [
("0","None","None"),
("1","Type 1","Type 1"),
("2","Type 2","Type 2"),
("3","Type 3","Type 3")]
StrataType = EnumProperty(name="Strata",
description="Strata type",
default="0",
items=StrataTypes)
###------------------------------------------------------------
# Draw
def draw(self, context):
layout = self.layout
box = layout.box()
Campbell Barton
committed
box.prop(self, 'AutoUpdate')
box.prop(self, 'SphereMesh')
box.prop(self, 'SmoothMesh')
box.prop(self, 'Subdivision')
box.prop(self, 'MeshSize')
Campbell Barton
committed
box.prop(self, 'NoiseType')
Thomas Dinges
committed
if self.NoiseType != '7':
Campbell Barton
committed
box.prop(self, 'BasisType')
box.prop(self, 'RandomSeed')
box.prop(self, 'NoiseSize')
Thomas Dinges
committed
if self.NoiseType == '0':
Campbell Barton
committed
box.prop(self, 'NoiseDepth')
box.prop(self, 'mDimension')
box.prop(self, 'mLacunarity')
Thomas Dinges
committed
if self.NoiseType == '1':
Campbell Barton
committed
box.prop(self, 'NoiseDepth')
box.prop(self, 'mDimension')
box.prop(self, 'mLacunarity')
box.prop(self, 'mOffset')
box.prop(self, 'mGain')
Thomas Dinges
committed
if self.NoiseType == '2':
Campbell Barton
committed
box.prop(self, 'NoiseDepth')
box.prop(self, 'mDimension')
box.prop(self, 'mLacunarity')
box.prop(self, 'mOffset')
box.prop(self, 'mGain')
Thomas Dinges
committed
if self.NoiseType == '3':
Campbell Barton
committed
box.prop(self, 'NoiseDepth')
box.prop(self, 'mDimension')
box.prop(self, 'mLacunarity')
box.prop(self, 'mOffset')
Thomas Dinges
committed
if self.NoiseType == '4':
Campbell Barton
committed
box.prop(self, 'NoiseDepth')
box.prop(self, 'mDimension')
box.prop(self, 'mLacunarity')
Thomas Dinges
committed
if self.NoiseType == '5':
Campbell Barton
committed
box.prop(self, 'NoiseDepth')
box.prop(self, 'HardNoise')
Thomas Dinges
committed
if self.NoiseType == '6':
Campbell Barton
committed
box.prop(self, 'VLBasisType')
box.prop(self, 'Distortion')
Thomas Dinges
committed
if self.NoiseType == '7':
Campbell Barton
committed
box.prop(self, 'MarbleShape')
box.prop(self, 'MarbleBias')
box.prop(self, 'MarbleSharp')
box.prop(self, 'Distortion')
box.prop(self, 'NoiseDepth')
box.prop(self, 'HardNoise')
Thomas Dinges
committed
if self.NoiseType == '8':
Campbell Barton
committed
box.prop(self, 'NoiseDepth')
box.prop(self, 'mDimension')
box.prop(self, 'mLacunarity')
box.prop(self, 'mOffset')
box.prop(self, 'Distortion')
Thomas Dinges
committed
if self.NoiseType == '9':
Campbell Barton
committed
box.prop(self, 'NoiseDepth')
box.prop(self, 'mDimension')
box.prop(self, 'mLacunarity')
box.prop(self, 'mOffset')
box.prop(self, 'Distortion')
Campbell Barton
committed
box.prop(self, 'Invert')
box.prop(self, 'Height')
box.prop(self, 'Offset')
box.prop(self, 'Plateaulevel')
box.prop(self, 'Sealevel')
Thomas Dinges
committed
if self.SphereMesh == False:
Campbell Barton
committed
box.prop(self, 'Falloff')
box.prop(self, 'StrataType')
Thomas Dinges
committed
if self.StrataType != '0':
Campbell Barton
committed
box.prop(self, 'Strata')
###------------------------------------------------------------
# Execute
def execute(self, context):
Thomas Dinges
committed
if self.AutoUpdate != 0:
# turn off undo
undo = bpy.context.user_preferences.edit.use_global_undo
bpy.context.user_preferences.edit.use_global_undo = False
# deselect all objects
bpy.ops.object.select_all(action='DESELECT')
# options
options = [
Thomas Dinges
committed
self.RandomSeed, #0
self.NoiseSize, #1
self.NoiseType, #2
self.BasisType, #3
self.VLBasisType, #4
self.Distortion, #5
self.HardNoise, #6
self.NoiseDepth, #7
self.mDimension, #8
self.mLacunarity, #9
self.mOffset, #10
self.mGain, #11
self.MarbleBias, #12
self.MarbleSharp, #13
self.MarbleShape, #14
self.Invert, #15
self.Height, #16
self.Offset, #17
self.Falloff, #18
self.Sealevel, #19
self.Plateaulevel, #20
self.Strata, #21
self.StrataType, #22
self.SphereMesh #23
Thomas Dinges
committed
if self.SphereMesh !=0:
Thomas Dinges
committed
verts, faces = sphere_gen( self.Subdivision, self.MeshSize, options )
Thomas Dinges
committed
verts, faces = grid_gen( self.Subdivision, self.MeshSize, options )
obj = create_mesh_object(context, verts, [], faces, "Landscape", self.align_matrix)
Thomas Dinges
committed
if self.SphereMesh !=0:
bpy.ops.object.mode_set(mode='EDIT')
bpy.ops.mesh.remove_doubles(limit=0.0001)
bpy.ops.object.mode_set(mode='OBJECT')
# Shade smooth
Thomas Dinges
committed
if self.SmoothMesh !=0:
bpy.ops.object.shade_smooth()
# restore pre operator undo state
bpy.context.user_preferences.edit.use_global_undo = undo
return {'FINISHED'}
else:
return {'PASS_THROUGH'}
def invoke(self, context, event):
self.align_matrix = align_matrix(context)
self.execute(context)
return {'FINISHED'}
###------------------------------------------------------------
# Register
import space_info
def menu_func_landscape(self, context):
self.layout.operator(landscape_add.bl_idname, text="Landscape", icon="PLUGIN")
def register():
space_info.INFO_MT_mesh_add.append(menu_func_landscape)
def unregister():
space_info.INFO_MT_mesh_add.remove(menu_func_landscape)
if __name__ == "__main__":