Newer
Older
bottom = min(min(seg.bottom for seg in self.boundary), min(vertex.co.y for vertex in phantoms))
top = max(max(seg.top for seg in self.boundary), max(vertex.co.y for vertex in phantoms))
bbox_width = right - left
bbox_height = top - bottom
if min(bbox_width, bbox_height)**2 > size_limit.x**2 + size_limit.y**2:
return False
if (bbox_width > size_limit.x or bbox_height > size_limit.y) and (bbox_height > size_limit.x or bbox_width > size_limit.y):
# further checks (TODO!)
# for the time being, just throw this piece away
return False
distance_limit = edge.vector.length_squared * epsilon
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
# try and merge UVVertices closer than sqrt(distance_limit)
merged_uvedges = set()
merged_uvedge_pairs = list()
# merge all uvvertices that are close enough using a union-find structure
# uvvertices will be merged only in cases other->self and self->self
# all resulting groups are merged together to a uvvertex of self
is_merged_mine = False
shared_vertices = self.uvverts_by_id.keys() & other.uvverts_by_id.keys()
for vertex_id in shared_vertices:
uvs = self.uvverts_by_id[vertex_id] + other.uvverts_by_id[vertex_id]
len_mine = len(self.uvverts_by_id[vertex_id])
merged = dict()
for i, a in enumerate(uvs[:len_mine]):
i = root_find(i, merged)
for j, b in enumerate(uvs[i+1:], i+1):
b = b if j < len_mine else phantoms[b]
j = root_find(j, merged)
if i == j:
continue
i, j = (j, i) if j < i else (i, j)
if (a.co - b.co).length_squared < distance_limit:
merged[j] = i
for source, target in merged.items():
target = root_find(target, merged)
phantoms[uvs[source]] = uvs[target]
is_merged_mine |= (source < len_mine) # remember that a vertex of this island has been merged
for uvedge in (chain(self.boundary, other.boundary) if is_merged_mine else other.boundary):
for partner in uvedge.edge.uvedges:
if partner is not uvedge:
paired_a, paired_b = phantoms.get(partner.vb, partner.vb), phantoms.get(partner.va, partner.va)
if (partner.uvface.flipped ^ flipped) != uvedge.uvface.flipped:
paired_a, paired_b = paired_b, paired_a
if phantoms.get(uvedge.va, uvedge.va) is paired_a and phantoms.get(uvedge.vb, uvedge.vb) is paired_b:
# if these two edges will get merged, add them both to the set
merged_uvedges.update((uvedge, partner))
merged_uvedge_pairs.append((uvedge, partner))
break
if uvedge_b not in merged_uvedges:
raise UnfoldError("Export failed. Please report this error, including the model if you can.")
boundary_other = [
PhantomUVEdge(phantoms[uvedge.va], phantoms[uvedge.vb], flipped ^ uvedge.uvface.flipped)
for uvedge in other.boundary if uvedge not in merged_uvedges]
# TODO: if is_merged_mine, it might make sense to create a similar list from self.boundary as well
incidence = {vertex.tup for vertex in phantoms.values()}.intersection(vertex.tup for vertex in self.vertices)
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
incidence = {position: list() for position in incidence} # from now on, 'incidence' is a dict
for uvedge in chain(boundary_other, self.boundary):
if uvedge.va.co == uvedge.vb.co:
continue
for vertex in (uvedge.va, uvedge.vb):
site = incidence.get(vertex.tup)
if site is not None:
site.append(uvedge)
for position, segments in incidence.items():
if len(segments) <= 2:
continue
segments.sort(key=slope_from(position))
for right, left in pairs(segments):
is_left_ccw = left.is_uvface_upwards() ^ (left.max.tup == position)
is_right_ccw = right.is_uvface_upwards() ^ (right.max.tup == position)
if is_right_ccw and not is_left_ccw and type(right) is not type(left) and right not in merged_uvedges and left not in merged_uvedges:
return False
if (not is_right_ccw and right not in merged_uvedges) ^ (is_left_ccw and left not in merged_uvedges):
return False
# check for self-intersections
try:
try:
sweepline = QuickSweepline() if self.has_safe_geometry and other.has_safe_geometry else BruteSweepline()
sweep(sweepline, (uvedge for uvedge in chain(boundary_other, self.boundary)))
self.has_safe_geometry &= other.has_safe_geometry
except GeometryError:
sweep(BruteSweepline(), (uvedge for uvedge in chain(boundary_other, self.boundary)))
self.has_safe_geometry = False
except Intersection:
return False
# mark all edges that connect the islands as not cut
for uvedge in merged_uvedges:
uvedge.edge.is_main_cut = False
# include all trasformed vertices as mine
self.vertices.update(phantoms.values())
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
# update the uvverts_by_id dictionary
for source, target in phantoms.items():
present = self.uvverts_by_id.get(target.vertex.index)
if not present:
self.uvverts_by_id[target.vertex.index] = [target]
else:
# emulation of set behavior... sorry, it is faster
if source in present:
present.remove(source)
if target not in present:
present.append(target)
# re-link uvedges and uvfaces to their transformed locations
for uvedge in other.edges:
uvedge.island = self
uvedge.va = phantoms[uvedge.va]
uvedge.vb = phantoms[uvedge.vb]
uvedge.update()
if is_merged_mine:
for uvedge in self.edges:
uvedge.va = phantoms.get(uvedge.va, uvedge.va)
uvedge.vb = phantoms.get(uvedge.vb, uvedge.vb)
self.edges.update(other.edges)
for uvface in other.faces:
uvface.island = self
uvface.vertices = [phantoms[uvvertex] for uvvertex in uvface.vertices]
uvface.uvvertex_by_id = {
index: phantoms[uvvertex]
for index, uvvertex in uvface.uvvertex_by_id.items()}
uvface.flipped ^= flipped
if is_merged_mine:
# there may be own uvvertices that need to be replaced by phantoms
for uvface in self.faces:
if any(uvvertex in phantoms for uvvertex in uvface.vertices):
uvface.vertices = [phantoms.get(uvvertex, uvvertex) for uvvertex in uvface.vertices]
uvface.uvvertex_by_id = {
index: phantoms.get(uvvertex, uvvertex)
for index, uvvertex in uvface.uvvertex_by_id.items()}
self.faces.extend(other.faces)
self.boundary = [
uvedge for uvedge in chain(self.boundary, other.boundary)
if uvedge not in merged_uvedges]
for uvedge, partner in merged_uvedge_pairs:
# make sure that main faces are the ones actually merged (this changes nothing in most cases)
uvedge.edge.main_faces[:] = uvedge.uvface.face, partner.uvface.face
# everything seems to be OK
return True
def add_marker(self, marker):
self.fake_vertices.extend(marker.bounds)
self.markers.append(marker)
def generate_label(self, label=None, abbreviation=None):
"""Assign a name to this island automatically"""
abbr = abbreviation or self.abbreviation or str(self.number)
# TODO: dots should be added in the last instant when outputting any text
if is_upsidedown_wrong(abbr):
abbr += "."
self.label = label or self.label or "Island {}".format(self.number)
self.abbreviation = abbr
def save_uv(self, tex, cage_size):
"""Save UV Coordinates of all UVFaces to a given UV texture
tex: UV Texture layer to use (BPy MeshUVLoopLayer struct)
page_size: size of the page in pixels (vector)"""
texface = tex.data
for uvface in self.faces:
for i, uvvertex in enumerate(uvface.vertices):
uv = uvvertex.co + self.pos
texface[uvface.face.loop_start + i].uv[0] = uv.x / cage_size.x
texface[uvface.face.loop_start + i].uv[1] = uv.y / cage_size.y
def save_uv_separate(self, tex):
"""Save UV Coordinates of all UVFaces to a given UV texture, spanning from 0 to 1
tex: UV Texture layer to use (BPy MeshUVLoopLayer struct)
page_size: size of the page in pixels (vector)"""
texface = tex.data
scale_x, scale_y = 1 / self.bounding_box.x, 1 / self.bounding_box.y
for uvface in self.faces:
for i, uvvertex in enumerate(uvface.vertices):
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
texface[uvface.face.loop_start + i].uv[0] = uvvertex.co.x * scale_x
texface[uvface.face.loop_start + i].uv[1] = uvvertex.co.y * scale_y
class Page:
"""Container for several Islands"""
__slots__ = ('islands', 'name', 'image_path')
def __init__(self, num=1):
self.islands = list()
self.name = "page{}".format(num)
self.image_path = None
class UVVertex:
"""Vertex in 2D"""
__slots__ = ('co', 'vertex', 'tup')
def __init__(self, vector, vertex=None):
self.co = vector.xy
self.vertex = vertex
self.tup = tuple(self.co)
def __repr__(self):
if self.vertex:
return "UV {} [{:.3f}, {:.3f}]".format(self.vertex.index, self.co.x, self.co.y)
else:
return "UV * [{:.3f}, {:.3f}]".format(self.co.x, self.co.y)
class UVEdge:
"""Edge in 2D"""
# Every UVEdge is attached to only one UVFace
# UVEdges are doubled as needed because they both have to point clockwise around their faces
__slots__ = ('va', 'vb', 'island', 'uvface', 'edge',
'min', 'max', 'bottom', 'top',
'neighbor_left', 'neighbor_right', 'sticker')
def __init__(self, vertex1: UVVertex, vertex2: UVVertex, island: Island, uvface, edge):
self.va = vertex1
self.vb = vertex2
self.update()
self.island = island
self.uvface = uvface
self.sticker = None
self.edge = edge
def update(self):
"""Update data if UVVertices have moved"""
self.min, self.max = (self.va, self.vb) if (self.va.tup < self.vb.tup) else (self.vb, self.va)
y1, y2 = self.va.co.y, self.vb.co.y
self.bottom, self.top = (y1, y2) if y1 < y2 else (y2, y1)
def is_uvface_upwards(self):
return (self.va.tup < self.vb.tup) ^ self.uvface.flipped
def __repr__(self):
return "({0.va} - {0.vb})".format(self)
class PhantomUVEdge:
"""Temporary 2D Segment for calculations"""
__slots__ = ('va', 'vb', 'min', 'max', 'bottom', 'top')
def __init__(self, vertex1: UVVertex, vertex2: UVVertex, flip):
self.va, self.vb = (vertex2, vertex1) if flip else (vertex1, vertex2)
self.min, self.max = (self.va, self.vb) if (self.va.tup < self.vb.tup) else (self.vb, self.va)
y1, y2 = self.va.co.y, self.vb.co.y
self.bottom, self.top = (y1, y2) if y1 < y2 else (y2, y1)
def is_uvface_upwards(self):
return self.va.tup < self.vb.tup
def __repr__(self):
return "[{0.va} - {0.vb}]".format(self)
class UVFace:
"""Face in 2D"""
__slots__ = ('vertices', 'edges', 'face', 'island', 'flipped', 'uvvertex_by_id')
def __init__(self, face: Face, island: Island):
"""Creace an UVFace from a Face and a fixed edge.
face: Face to take coordinates from
island: Island to register itself in
fixed_edge: Edge to connect to (that already has UV coordinates)"""
self.face = face
face.uvface = self
self.island = island
self.flipped = False # a flipped UVFace has edges clockwise
rot = z_up_matrix(face.normal)
self.uvvertex_by_id = dict() # link vertex id -> UVVertex
for vertex in face.vertices:
uvvertex = UVVertex(rot * vertex.co, vertex)
self.vertices.append(uvvertex)
self.uvvertex_by_id[vertex.index] = uvvertex
self.edges = list()
edge_by_verts = dict()
for edge in face.edges:
edge_by_verts[(edge.va.index, edge.vb.index)] = edge
edge_by_verts[(edge.vb.index, edge.va.index)] = edge
for va, vb in pairs(self.vertices):
edge = edge_by_verts[(va.vertex.index, vb.vertex.index)]
uvedge = UVEdge(va, vb, island, self, edge)
self.edges.append(uvedge)
edge.uvedges.append(uvedge) # FIXME: editing foreign attribute
class Arrow:
"""Mark in the document: an arrow denoting the number of the edge it points to"""
__slots__ = ('bounds', 'center', 'rot', 'text', 'size')
def __init__(self, uvedge, size, index):
self.text = str(index)
edge = (uvedge.vb.co - uvedge.va.co) if not uvedge.uvface.flipped else (uvedge.va.co - uvedge.vb.co)
self.center = (uvedge.va.co + uvedge.vb.co) / 2
self.size = size
tangent = edge.normalized()
cos, sin = tangent
self.rot = M.Matrix(((cos, -sin), (sin, cos)))
normal = M.Vector((sin, -cos))
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
self.bounds = [self.center, self.center + (1.2*normal + tangent)*size, self.center + (1.2*normal - tangent)*size]
class Sticker:
"""Mark in the document: sticker tab"""
__slots__ = ('bounds', 'center', 'rot', 'text', 'width', 'vertices')
def __init__(self, uvedge, default_width=0.005, index=None, target_island=None):
"""Sticker is directly attached to the given UVEdge"""
first_vertex, second_vertex = (uvedge.va, uvedge.vb) if not uvedge.uvface.flipped else (uvedge.vb, uvedge.va)
edge = first_vertex.co - second_vertex.co
sticker_width = min(default_width, edge.length / 2)
other = uvedge.edge.other_uvedge(uvedge) # This is the other uvedge - the sticking target
other_first, other_second = (other.va, other.vb) if not other.uvface.flipped else (other.vb, other.va)
other_edge = other_second.co - other_first.co
# angle a is at vertex uvedge.va, b is at uvedge.vb
cos_a = cos_b = 0.5
sin_a = sin_b = 0.75**0.5
# len_a is length of the side adjacent to vertex a, len_b likewise
len_a = len_b = sticker_width / sin_a
# fix overlaps with the most often neighbour - its sticking target
if first_vertex == other_second:
cos_a = max(cos_a, (edge*other_edge) / (edge.length**2)) # angles between pi/3 and 0
elif second_vertex == other_first:
cos_b = max(cos_b, (edge*other_edge) / (edge.length**2)) # angles between pi/3 and 0
# Fix tabs for sticking targets with small angles
# Index of other uvedge in its face (not in its island)
other_idx = other.uvface.edges.index(other)
# Left and right neighbors in the face
other_face_neighbor_left = other.uvface.edges[(other_idx+1) % len(other.uvface.edges)]
other_face_neighbor_right = other.uvface.edges[(other_idx-1) % len(other.uvface.edges)]
other_edge_neighbor_a = other_face_neighbor_left.vb.co - other.vb.co
other_edge_neighbor_b = other_face_neighbor_right.va.co - other.va.co
# Adjacent angles in the face
cos_a = max(cos_a, (-other_edge*other_edge_neighbor_a) / (other_edge.length*other_edge_neighbor_a.length))
cos_b = max(cos_b, (other_edge*other_edge_neighbor_b) / (other_edge.length*other_edge_neighbor_b.length))
# Calculate the lengths of the glue tab edges using the possibly smaller angles
sin_a = abs(1 - cos_a**2)**0.5
len_b = min(len_a, (edge.length * sin_a) / (sin_a * cos_b + sin_b * cos_a))
len_a = 0 if sin_a == 0 else min(sticker_width / sin_a, (edge.length - len_b*cos_b) / cos_a)
sin_b = abs(1 - cos_b**2)**0.5
len_a = min(len_a, (edge.length * sin_b) / (sin_a * cos_b + sin_b * cos_a))
len_b = 0 if sin_b == 0 else min(sticker_width / sin_b, (edge.length - len_a * cos_a) / cos_b)
v3 = UVVertex(second_vertex.co + M.Matrix(((cos_b, -sin_b), (sin_b, cos_b))) * edge * len_b / edge.length)
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
v4 = UVVertex(first_vertex.co + M.Matrix(((-cos_a, -sin_a), (sin_a, -cos_a))) * edge * len_a / edge.length)
if v3.co != v4.co:
self.vertices = [second_vertex, v3, v4, first_vertex]
else:
self.vertices = [second_vertex, v3, first_vertex]
sin, cos = edge.y / edge.length, edge.x / edge.length
self.rot = M.Matrix(((cos, -sin), (sin, cos)))
self.width = sticker_width * 0.9
if index and target_island is not uvedge.island:
self.text = "{}:{}".format(target_island.abbreviation, index)
else:
self.text = index
self.center = (uvedge.va.co + uvedge.vb.co) / 2 + self.rot*M.Vector((0, self.width*0.2))
self.bounds = [v3.co, v4.co, self.center] if v3.co != v4.co else [v3.co, self.center]
class NumberAlone:
"""Mark in the document: numbering inside the island denoting edges to be sticked"""
__slots__ = ('bounds', 'center', 'rot', 'text', 'size')
def __init__(self, uvedge, index, default_size=0.005):
"""Sticker is directly attached to the given UVEdge"""
edge = (uvedge.va.co - uvedge.vb.co) if not uvedge.uvface.flipped else (uvedge.vb.co - uvedge.va.co)
self.size = default_size
sin, cos = edge.y / edge.length, edge.x / edge.length
self.rot = M.Matrix(((cos, -sin), (sin, cos)))
self.text = index
self.center = (uvedge.va.co + uvedge.vb.co) / 2 - self.rot*M.Vector((0, self.size*1.2))
self.bounds = [self.center]
class SVG:
"""Simple SVG exporter"""
def __init__(self, page_size: M.Vector, style, margin, pure_net=True, angle_epsilon=0.01):
"""Initialize document settings.
page_size: document dimensions in meters
pure_net: if True, do not use image"""
self.page_size = page_size
self.pure_net = pure_net
self.style = style
self.margin = margin
self.text_size = 12
self.angle_epsilon = angle_epsilon
@classmethod
def encode_image(cls, bpy_image):
import tempfile
import base64
with tempfile.TemporaryDirectory() as directory:
filename = directory + "/i.png"
bpy_image.filepath_raw = filename
bpy_image.save()
return base64.encodebytes(open(filename, "rb").read()).decode('ascii')
def format_vertex(self, vector, pos=M.Vector((0, 0))):
"""Return a string with both coordinates of the given vertex."""
x, y = vector + pos
return "{:.6f} {:.6f}".format((x + self.margin) * 1000, (self.page_size.y - y - self.margin) * 1000)
def write(self, mesh, filename):
"""Write data to a file given by its name."""
line_through = " L ".join # used for formatting of SVG path data
rows = "\n".join
dl = ["{:.2f}".format(length * self.style.line_width * 1000) for length in (2, 5, 10)]
format_style = {
'SOLID': "none", 'DOT': "{0},{1}".format(*dl), 'DASH': "{1},{2}".format(*dl),
'LONGDASH': "{2},{1}".format(*dl), 'DASHDOT': "{2},{1},{0},{1}".format(*dl)}
def format_color(vec):
return "#{:02x}{:02x}{:02x}".format(round(vec[0] * 255), round(vec[1] * 255), round(vec[2] * 255))
def format_matrix(matrix):
return " ".join("{:.6f}".format(cell) for column in matrix for cell in column)
def path_convert(string, relto=os_path.dirname(filename)):
assert(os_path) # check the module was imported
string = os_path.relpath(string, relto)
if os_path.sep != '/':
string = string.replace(os_path.sep, '/')
return string
styleargs = {
name: format_color(getattr(self.style, name)) for name in (
"outer_color", "outbg_color", "convex_color", "concave_color", "freestyle_color",
"inbg_color", "sticker_fill", "text_color")}
styleargs.update({
name: format_style[getattr(self.style, name)] for name in
("outer_style", "convex_style", "concave_style", "freestyle_style")})
styleargs.update({
name: getattr(self.style, attr)[3] for name, attr in (
("outer_alpha", "outer_color"), ("outbg_alpha", "outbg_color"),
("convex_alpha", "convex_color"), ("concave_alpha", "concave_color"),
("freestyle_alpha", "freestyle_color"),
("inbg_alpha", "inbg_color"), ("sticker_alpha", "sticker_fill"),
("text_alpha", "text_color"))})
styleargs.update({
name: getattr(self.style, name) * self.style.line_width * 1000 for name in
("outer_width", "convex_width", "concave_width", "freestyle_width", "outbg_width", "inbg_width")})
for num, page in enumerate(mesh.pages):
page_filename = "{}_{}.svg".format(filename[:filename.rfind(".svg")], page.name) if len(mesh.pages) > 1 else filename
with open(page_filename, 'w') as f:
print(self.svg_base.format(width=self.page_size.x*1000, height=self.page_size.y*1000), file=f)
print(self.css_base.format(**styleargs), file=f)
if page.image_path:
print(
self.image_linked_tag.format(
pos="{0:.6f} {0:.6f}".format(self.margin*1000),
width=(self.page_size.x - 2 * self.margin)*1000,
height=(self.page_size.y - 2 * self.margin)*1000,
path=path_convert(page.image_path)),
file=f)
if len(page.islands) > 1:
print("<g>", file=f)
for island in page.islands:
print("<g>", file=f)
if island.image_path:
print(
self.image_linked_tag.format(
pos=self.format_vertex(island.pos + M.Vector((0, island.bounding_box.y))),
width=island.bounding_box.x*1000,
height=island.bounding_box.y*1000,
path=path_convert(island.image_path)),
file=f)
elif island.embedded_image:
print(
self.image_embedded_tag.format(
pos=self.format_vertex(island.pos + M.Vector((0, island.bounding_box.y))),
width=island.bounding_box.x*1000,
height=island.bounding_box.y*1000,
path=island.image_path),
island.embedded_image, "'/>",
file=f, sep="")
if island.title:
print(
self.text_tag.format(
size=1000 * self.text_size,
x=1000 * (island.bounding_box.x*0.5 + island.pos.x + self.margin),
y=1000 * (self.page_size.y - island.pos.y - self.margin - 0.2 * self.text_size),
label=island.title),
file=f)
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
data_markers, data_stickerfill, data_outer, data_convex, data_concave, data_freestyle = (list() for i in range(6))
for marker in island.markers:
if isinstance(marker, Sticker):
data_stickerfill.append("M {} Z".format(
line_through(self.format_vertex(vertex.co, island.pos) for vertex in marker.vertices)))
if marker.text:
data_markers.append(self.text_transformed_tag.format(
label=marker.text,
pos=self.format_vertex(marker.center, island.pos),
mat=format_matrix(marker.rot),
size=marker.width * 1000))
elif isinstance(marker, Arrow):
size = marker.size * 1000
position = marker.center + marker.rot*marker.size*M.Vector((0, -0.9))
data_markers.append(self.arrow_marker_tag.format(
index=marker.text,
arrow_pos=self.format_vertex(marker.center, island.pos),
scale=size,
pos=self.format_vertex(position, island.pos - marker.size*M.Vector((0, 0.4))),
mat=format_matrix(size * marker.rot)))
elif isinstance(marker, NumberAlone):
data_markers.append(self.text_transformed_tag.format(
label=marker.text,
pos=self.format_vertex(marker.center, island.pos),
mat=format_matrix(marker.rot),
size=marker.size * 1000))
if data_stickerfill and self.style.sticker_fill[3] > 0:
print("<path class='sticker' d='", rows(data_stickerfill), "'/>", file=f)
outer_edges = set(island.boundary)
while outer_edges:
data_loop = list()
uvedge = outer_edges.pop()
while 1:
if uvedge.sticker:
data_loop.extend(self.format_vertex(vertex.co, island.pos) for vertex in uvedge.sticker.vertices[1:])
else:
vertex = uvedge.vb if uvedge.uvface.flipped else uvedge.va
data_loop.append(self.format_vertex(vertex.co, island.pos))
uvedge = uvedge.neighbor_right
try:
outer_edges.remove(uvedge)
except KeyError:
break
data_outer.append("M {} Z".format(line_through(data_loop)))
for uvedge in island.edges:
edge = uvedge.edge
if edge.is_cut(uvedge.uvface.face) and not uvedge.sticker:
continue
data_uvedge = "M {}".format(
line_through(self.format_vertex(vertex.co, island.pos) for vertex in (uvedge.va, uvedge.vb)))
if edge.freestyle:
data_freestyle.append(data_uvedge)
# each uvedge is in two opposite-oriented variants; we want to add each only once
if uvedge.sticker or uvedge.uvface.flipped != (uvedge.va.vertex.index > uvedge.vb.vertex.index):
if edge.angle > self.angle_epsilon:
data_convex.append(data_uvedge)
elif edge.angle < -self.angle_epsilon:
data_concave.append(data_uvedge)
if island.is_inside_out:
data_convex, data_concave = data_concave, data_convex
if data_freestyle:
print("<path class='freestyle' d='", rows(data_freestyle), "'/>", file=f)
if (data_convex or data_concave) and not self.pure_net and self.style.use_inbg:
print("<path class='inner_background' d='", rows(data_convex + data_concave), "'/>", file=f)
if data_convex:
print("<path class='convex' d='", rows(data_convex), "'/>", file=f)
if data_concave:
print("<path class='concave' d='", rows(data_concave), "'/>", file=f)
if data_outer:
if not self.pure_net and self.style.use_outbg:
print("<path class='outer_background' d='", rows(data_outer), "'/>", file=f)
print("<path class='outer' d='", rows(data_outer), "'/>", file=f)
if data_markers:
print(rows(data_markers), file=f)
print("</g>", file=f)
if len(page.islands) > 1:
print("</g>", file=f)
print("</svg>", file=f)
image_linked_tag = "<image transform='translate({pos})' width='{width:.6f}' height='{height:.6f}' xlink:href='{path}'/>"
image_embedded_tag = "<image transform='translate({pos})' width='{width:.6f}' height='{height:.6f}' xlink:href='data:image/png;base64,"
text_tag = "<text transform='translate({x} {y})' style='font-size:{size:.2f}'><tspan>{label}</tspan></text>"
text_transformed_tag = "<text transform='matrix({mat} {pos})' style='font-size:{size:.2f}'><tspan>{label}</tspan></text>"
arrow_marker_tag = "<g><path transform='matrix({mat} {arrow_pos})' class='arrow' d='M 0 0 L 1 1 L 0 0.25 L -1 1 Z'/>" \
"<text transform='translate({pos})' style='font-size:{scale:.2f}'><tspan>{index}</tspan></text></g>"
svg_base = """<?xml version='1.0' encoding='UTF-8' standalone='no'?>
<svg xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' version='1.1'
width='{width:.2f}mm' height='{height:.2f}mm' viewBox='0 0 {width:.2f} {height:.2f}'>"""
css_base = """<style type="text/css">
path {{
fill: none;
stroke-linecap: butt;
stroke-linejoin: bevel;
stroke-dasharray: none;
}}
path.outer {{
stroke: {outer_color};
stroke-dasharray: {outer_style};
stroke-dashoffset: 0;
stroke-width: {outer_width:.2};
stroke-opacity: {outer_alpha:.2};
}}
path.convex {{
stroke: {convex_color};
stroke-dasharray: {convex_style};
stroke-dashoffset:0;
stroke-width:{convex_width:.2};
stroke-opacity: {convex_alpha:.2}
}}
path.concave {{
stroke: {concave_color};
stroke-dasharray: {concave_style};
stroke-dashoffset: 0;
stroke-width: {concave_width:.2};
stroke-opacity: {concave_alpha:.2}
}}
path.freestyle {{
stroke: {freestyle_color};
stroke-dasharray: {freestyle_style};
stroke-dashoffset: 0;
stroke-width: {freestyle_width:.2};
stroke-opacity: {freestyle_alpha:.2}
}}
path.outer_background {{
stroke: {outbg_color};
stroke-opacity: {outbg_alpha};
stroke-width: {outbg_width:.2}
}}
path.inner_background {{
stroke: {inbg_color};
stroke-opacity: {inbg_alpha};
stroke-width: {inbg_width:.2}
}}
path.sticker {{
fill: {sticker_fill};
stroke: none;
fill-opacity: {sticker_alpha:.2};
}}
path.arrow {{
fill: #000;
}}
text {{
font-style: normal;
fill: {text_color};
fill-opacity: {text_alpha:.2};
stroke: none;
}}
text, tspan {{
text-anchor:middle;
}}
</style>"""
class PDF:
"""Simple PDF exporter"""
mm_to_pt = 72 / 25.4
character_width_packed = {
191: "'", 222: 'ijl\x82\x91\x92', 278: '|¦\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !,./:;I[\\]ft\xa0·ÌÍÎÏìíîï',
333: '()-`r\x84\x88\x8b\x93\x94\x98\x9b¡¨\xad¯²³´¸¹{}', 350: '\x7f\x81\x8d\x8f\x90\x95\x9d', 365: '"ºª*°', 469: '^', 500: 'Jcksvxyz\x9a\x9eçýÿ', 584: '¶+<=>~¬±×÷', 611: 'FTZ\x8e¿ßø',
667: '&ABEKPSVXY\x8a\x9fÀÁÂÃÄÅÈÉÊËÝÞ', 722: 'CDHNRUwÇÐÑÙÚÛÜ', 737: '©®', 778: 'GOQÒÓÔÕÖØ', 833: 'Mm¼½¾', 889: '%æ', 944: 'W\x9c', 1000: '\x85\x89\x8c\x97\x99Æ', 1015: '@', }
character_width = {c: value for (value, chars) in character_width_packed.items() for c in chars}
def __init__(self, page_size: M.Vector, style, margin, pure_net=True, angle_epsilon=0.01):
self.page_size = page_size
self.style = style
self.margin = M.Vector((margin, margin))
self.pure_net = pure_net
self.angle_epsilon = angle_epsilon
def text_width(self, text, scale=None):
return (scale or self.text_size) * sum(self.character_width.get(c, 556) for c in text) / 1000
@classmethod
def encode_image(cls, bpy_image):
data = bytes(int(255 * px) for (i, px) in enumerate(bpy_image.pixels) if i % 4 != 3)
image = {
"Type": "XObject", "Subtype": "Image", "Width": bpy_image.size[0], "Height": bpy_image.size[1],
"ColorSpace": "DeviceRGB", "BitsPerComponent": 8, "Interpolate": True,
"Filter": ["ASCII85Decode", "FlateDecode"], "stream": data}
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
return image
def write(self, mesh, filename):
def format_dict(obj, refs=tuple()):
return "<< " + "".join("/{} {}\n".format(key, format_value(value, refs)) for (key, value) in obj.items()) + ">>"
def line_through(seq):
return "".join("{0.x:.6f} {0.y:.6f} {1} ".format(1000*v.co, c) for (v, c) in zip(seq, chain("m", repeat("l"))))
def format_value(value, refs=tuple()):
if value in refs:
return "{} 0 R".format(refs.index(value) + 1)
elif type(value) is dict:
return format_dict(value, refs)
elif type(value) in (list, tuple):
return "[ " + " ".join(format_value(item, refs) for item in value) + " ]"
elif type(value) is int:
return str(value)
elif type(value) is float:
return "{:.6f}".format(value)
elif type(value) is bool:
return "true" if value else "false"
else:
return "/{}".format(value) # this script can output only PDF names, no strings
def write_object(index, obj, refs, f, stream=None):
byte_count = f.write("{} 0 obj\n".format(index))
if type(obj) is not dict:
stream, obj = obj, dict()
elif "stream" in obj:
stream = obj.pop("stream")
if stream:
if True or type(stream) is bytes:
obj["Filter"] = ["ASCII85Decode", "FlateDecode"]
stream = encode(stream)
obj["Length"] = len(stream)
byte_count += f.write(format_dict(obj, refs))
if stream:
byte_count += f.write("\nstream\n")
byte_count += f.write(stream)
byte_count += f.write("\nendstream")
return byte_count + f.write("\nendobj\n")
def encode(data):
from base64 import a85encode
from zlib import compress
if hasattr(data, "encode"):
data = data.encode()
return a85encode(compress(data), adobe=True, wrapcol=250)[2:].decode()
page_size_pt = 1000 * self.mm_to_pt * self.page_size
root = {"Type": "Pages", "MediaBox": [0, 0, page_size_pt.x, page_size_pt.y], "Kids": list()}
catalog = {"Type": "Catalog", "Pages": root}
font = {
"Type": "Font", "Subtype": "Type1", "Name": "F1",
"BaseFont": "Helvetica", "Encoding": "MacRomanEncoding"}
dl = [length * self.style.line_width * 1000 for length in (1, 4, 9)]
format_style = {
'SOLID': list(), 'DOT': [dl[0], dl[1]], 'DASH': [dl[1], dl[2]],
'LONGDASH': [dl[2], dl[1]], 'DASHDOT': [dl[2], dl[1], dl[0], dl[1]]}
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
styles = {
"Gtext": {"ca": self.style.text_color[3], "Font": [font, 1000 * self.text_size]},
"Gsticker": {"ca": self.style.sticker_fill[3]}}
for name in ("outer", "convex", "concave", "freestyle"):
gs = {
"LW": self.style.line_width * 1000 * getattr(self.style, name + "_width"),
"CA": getattr(self.style, name + "_color")[3],
"D": [format_style[getattr(self.style, name + "_style")], 0]}
styles["G" + name] = gs
for name in ("outbg", "inbg"):
gs = {
"LW": self.style.line_width * 1000 * getattr(self.style, name + "_width"),
"CA": getattr(self.style, name + "_color")[3],
"D": [format_style['SOLID'], 0]}
styles["G" + name] = gs
objects = [root, catalog, font]
objects.extend(styles.values())
for page in mesh.pages:
commands = ["{0:.6f} 0 0 {0:.6f} 0 0 cm".format(self.mm_to_pt)]
resources = {"Font": {"F1": font}, "ExtGState": styles, "XObject": dict()}
for island in page.islands:
commands.append("q 1 0 0 1 {0.x:.6f} {0.y:.6f} cm".format(1000*(self.margin + island.pos)))
if island.embedded_image:
identifier = "Im{}".format(len(resources["XObject"]) + 1)
commands.append(self.command_image.format(1000 * island.bounding_box, identifier))
objects.append(island.embedded_image)
resources["XObject"][identifier] = island.embedded_image
if island.title:
commands.append(self.command_label.format(
size=1000*self.text_size,
x=500 * (island.bounding_box.x - self.text_width(island.title)),
y=1000 * 0.2 * self.text_size,
label=island.title))
data_markers, data_stickerfill, data_outer, data_convex, data_concave, data_freestyle = (list() for i in range(6))
for marker in island.markers:
if isinstance(marker, Sticker):
data_stickerfill.append(line_through(marker.vertices) + "f")
if marker.text:
data_markers.append(self.command_sticker.format(
label=marker.text,
pos=1000*marker.center,
mat=marker.rot,
align=-500 * self.text_width(marker.text, marker.width),
size=1000*marker.width))
elif isinstance(marker, Arrow):
size = 1000 * marker.size
position = 1000 * (marker.center + marker.rot*marker.size*M.Vector((0, -0.9)))
data_markers.append(self.command_arrow.format(
index=marker.text,
arrow_pos=1000 * marker.center,
pos=position - 1000 * M.Vector((0.5 * self.text_width(marker.text), 0.4 * self.text_size)),
mat=size * marker.rot,
size=size))
elif isinstance(marker, NumberAlone):
data_markers.append(self.command_number.format(
label=marker.text,
pos=1000*marker.center,
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
size=1000*marker.size))
outer_edges = set(island.boundary)
while outer_edges:
data_loop = list()
uvedge = outer_edges.pop()
while 1:
if uvedge.sticker:
data_loop.extend(uvedge.sticker.vertices[1:])
else:
vertex = uvedge.vb if uvedge.uvface.flipped else uvedge.va
data_loop.append(vertex)
uvedge = uvedge.neighbor_right
try:
outer_edges.remove(uvedge)
except KeyError:
break
data_outer.append(line_through(data_loop) + "s")
for uvedge in island.edges:
edge = uvedge.edge
if edge.is_cut(uvedge.uvface.face) and not uvedge.sticker:
continue
data_uvedge = line_through((uvedge.va, uvedge.vb)) + "S"
if edge.freestyle:
data_freestyle.append(data_uvedge)
# each uvedge is in two opposite-oriented variants; we want to add each only once
if uvedge.sticker or uvedge.uvface.flipped != (uvedge.va.vertex.index > uvedge.vb.vertex.index):
if edge.angle > self.angle_epsilon:
data_convex.append(data_uvedge)
elif edge.angle < -self.angle_epsilon:
data_concave.append(data_uvedge)
if island.is_inside_out:
data_convex, data_concave = data_concave, data_convex
if data_stickerfill and self.style.sticker_fill[3] > 0:
commands.append("/Gsticker gs {0[0]:.3f} {0[1]:.3f} {0[2]:.3f} rg".format(self.style.sticker_fill))
commands.extend(data_stickerfill)
if data_freestyle:
commands.append("/Gfreestyle gs {0[0]:.3f} {0[1]:.3f} {0[2]:.3f} RG".format(self.style.freestyle_color))
commands.extend(data_freestyle)
if (data_convex or data_concave) and not self.pure_net and self.style.use_inbg:
commands.append("/Ginbg gs {0[0]:.3f} {0[1]:.3f} {0[2]:.3f} RG".format(self.style.inbg_color))
commands.extend(chain(data_convex, data_concave))
if data_convex:
commands.append("/Gconvex gs {0[0]:.3f} {0[1]:.3f} {0[2]:.3f} RG".format(self.style.convex_color))
commands.extend(data_convex)
if data_concave:
commands.append("/Gconcave gs {0[0]:.3f} {0[1]:.3f} {0[2]:.3f} RG".format(self.style.concave_color))
commands.extend(data_concave)
if data_outer:
if not self.pure_net and self.style.use_outbg:
commands.append("/Goutbg gs {0[0]:.3f} {0[1]:.3f} {0[2]:.3f} RG".format(self.style.outbg_color))
commands.extend(data_outer)
commands.append("/Gouter gs {0[0]:.3f} {0[1]:.3f} {0[2]:.3f} RG".format(self.style.outer_color))
commands.extend(data_outer)
commands.append("/Gtext gs {0[0]:.3f} {0[1]:.3f} {0[2]:.3f} rg".format(self.style.text_color))
commands.extend(data_markers)
commands.append("Q")
content = "\n".join(commands)
page = {"Type": "Page", "Parent": root, "Contents": content, "Resources": resources}
root["Kids"].append(page)
objects.extend((page, content))
root["Count"] = len(root["Kids"])
with open(filename, "w+") as f:
xref_table = list()
position = f.write("%PDF-1.4\n")
for index, obj in enumerate(objects, 1):
xref_table.append(position)
position += write_object(index, obj, objects, f)
xref_pos = position
f.write("xref_table\n0 {}\n".format(len(xref_table) + 1))
f.write("{:010} {:05} f\n".format(0, 65536))
for position in xref_table:
f.write("{:010} {:05} n\n".format(position, 0))
f.write("trailer\n")
f.write(format_dict({"Size": len(xref_table), "Root": catalog}, objects))
f.write("\nstartxref\n{}\n%%EOF\n".format(xref_pos))
command_label = "/Gtext gs BT {x:.6f} {y:.6f} Td ({label}) Tj ET"
command_image = "q {0.x:.6f} 0 0 {0.y:.6f} 0 0 cm 1 0 0 -1 0 1 cm /{1} Do Q"
command_sticker = "q {mat[0][0]:.6f} {mat[1][0]:.6f} {mat[0][1]:.6f} {mat[1][1]:.6f} {pos.x:.6f} {pos.y:.6f} cm BT {align:.6f} 0 Td /F1 {size:.6f} Tf ({label}) Tj ET Q"
command_arrow = "q BT {pos.x:.6f} {pos.y:.6f} Td /F1 {size:.6f} Tf ({index}) Tj ET {mat[0][0]:.6f} {mat[1][0]:.6f} {mat[0][1]:.6f} {mat[1][1]:.6f} {arrow_pos.x:.6f} {arrow_pos.y:.6f} cm 0 0 m 1 -1 l 0 -0.25 l -1 -1 l f Q"
command_number = "q {mat[0][0]:.6f} {mat[1][0]:.6f} {mat[0][1]:.6f} {mat[1][1]:.6f} {pos.x:.6f} {pos.y:.6f} cm BT /F1 {size:.6f} Tf ({label}) Tj ET Q"
class Unfold(bpy.types.Operator):
"""Blender Operator: unfold the selected object."""
bl_idname = "mesh.unfold"
bl_label = "Unfold"
bl_description = "Mark seams so that the mesh can be exported as a paper model"
bl_options = {'REGISTER', 'UNDO'}
edit: bpy.props.BoolProperty(default=False, options={'HIDDEN'})
priority_effect_convex: bpy.props.FloatProperty(
name="Priority Convex", description="Priority effect for edges in convex angles",
default=default_priority_effect['CONVEX'], soft_min=-1, soft_max=10, subtype='FACTOR')
priority_effect_concave: bpy.props.FloatProperty(
name="Priority Concave", description="Priority effect for edges in concave angles",
default=default_priority_effect['CONCAVE'], soft_min=-1, soft_max=10, subtype='FACTOR')
priority_effect_length: bpy.props.FloatProperty(
name="Priority Length", description="Priority effect of edge length",
default=default_priority_effect['LENGTH'], soft_min=-10, soft_max=1, subtype='FACTOR')
do_create_uvmap: bpy.props.BoolProperty(
name="Create UVMap", description="Create a new UV Map showing the islands and page layout", default=False)
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
object = None
@classmethod
def poll(cls, context):
return context.active_object and context.active_object.type == "MESH"
def draw(self, context):
layout = self.layout
col = layout.column()
col.active = not self.object or len(self.object.data.uv_textures) < 8
col.prop(self.properties, "do_create_uvmap")
layout.label(text="Edge Cutting Factors:")
col = layout.column(align=True)
col.label(text="Face Angle:")
col.prop(self.properties, "priority_effect_convex", text="Convex")
col.prop(self.properties, "priority_effect_concave", text="Concave")
layout.prop(self.properties, "priority_effect_length", text="Edge Length")
def execute(self, context):
sce = bpy.context.scene
settings = sce.paper_model
recall_mode = context.object.mode
bpy.ops.object.mode_set(mode='OBJECT')
recall_display_islands, sce.paper_model.display_islands = sce.paper_model.display_islands, False
self.object = context.active_object
mesh = self.object.data
cage_size = M.Vector((settings.output_size_x, settings.output_size_y)) if settings.limit_by_page else None
priority_effect = {
'CONVEX': self.priority_effect_convex,
'CONCAVE': self.priority_effect_concave,
'LENGTH': self.priority_effect_length}
try:
unfolder = Unfolder(self.object)
unfolder.prepare(
cage_size, self.do_create_uvmap, mark_seams=True,
priority_effect=priority_effect, scale=sce.unit_settings.scale_length/settings.scale)
except UnfoldError as error:
self.report(type={'ERROR_INVALID_INPUT'}, message=error.args[0])
bpy.ops.object.mode_set(mode=recall_mode)
sce.paper_model.display_islands = recall_display_islands
return {'CANCELLED'}
if mesh.paper_island_list:
unfolder.copy_island_names(mesh.paper_island_list)
island_list = mesh.paper_island_list
attributes = {item.label: (item.abbreviation, item.auto_label, item.auto_abbrev) for item in island_list}
island_list.clear() # remove previously defined islands
for island in unfolder.mesh.islands:
# add islands to UI list and set default descriptions
list_item = island_list.add()
# add faces' IDs to the island
for uvface in island.faces:
lface = list_item.faces.add()
lface.id = uvface.face.index
list_item["label"] = island.label
list_item["abbreviation"], list_item["auto_label"], list_item["auto_abbrev"] = attributes.get(
island.label,
(island.abbreviation, True, True))
island_item_changed(list_item, context)
mesh.paper_island_index = -1
mesh.show_edge_seams = True
bpy.ops.object.mode_set(mode=recall_mode)
sce.paper_model.display_islands = recall_display_islands
return {'FINISHED'}
class ClearAllSeams(bpy.types.Operator):
"""Blender Operator: clear all seams of the active Mesh and all its unfold data"""
bl_idname = "mesh.clear_all_seams"
bl_label = "Clear All Seams"
bl_description = "Clear all the seams and unfolded islands of the active object"
@classmethod
def poll(cls, context):
return context.active_object and context.active_object.type == 'MESH'