Newer
Older
# SPDX-License-Identifier: GPL-2.0-or-later
import bpy
import gpu
from gpu_extras.batch import batch_for_shader
import math
import sys
import random
import bmesh
from mathutils import (
)
from mathutils.geometry import (
import bpy_extras
from bpy_extras import view3d_utils
from bpy_extras.view3d_utils import (
region_2d_to_vector_3d,
region_2d_to_location_3d,
location_3d_to_region_2d,
)
# Cut Square
def CreateCutSquare(self, context):
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
""" Create a rectangle mesh """
far_limit = 10000.0
faces=[]
# Get the mouse coordinates
coord = self.mouse_path[0][0], self.mouse_path[0][1]
# New mesh
me = bpy.data.meshes.new('CMT_Square')
bm = bmesh.new()
bm.from_mesh(me)
# New object and link it to the scene
ob = bpy.data.objects.new('CMT_Square', me)
self.CurrentObj = ob
context.collection.objects.link(ob)
# Scene information
region = context.region
rv3d = context.region_data
depth_location = region_2d_to_vector_3d(region, rv3d, coord)
self.ViewVector = depth_location
# Get a point on a infinite plane and its direction
plane_normal = depth_location
plane_direction = plane_normal.normalized()
if self.snapCursor:
plane_point = context.scene.cursor.location
else:
plane_point = self.OpsObj.location if self.OpsObj is not None else Vector((0.0, 0.0, 0.0))
# Find the intersection of a line going thru each vertex and the infinite plane
for v_co in self.rectangle_coord:
vec = region_2d_to_vector_3d(region, rv3d, v_co)
p0 = region_2d_to_location_3d(region, rv3d,v_co, vec)
p1 = region_2d_to_location_3d(region, rv3d,v_co, vec) + plane_direction * far_limit
faces.append(bm.verts.new(intersect_line_plane(p0, p1, plane_point, plane_direction)))
# Update vertices index
bm.verts.index_update()
# New faces
t_face = bm.faces.new(faces)
# Set mesh
bm.to_mesh(me)
# Cut Line
def CreateCutLine(self, context):
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
""" Create a polygon mesh """
far_limit = 10000.0
vertices = []
faces = []
loc = []
# Get the mouse coordinates
coord = self.mouse_path[0][0], self.mouse_path[0][1]
# New mesh
me = bpy.data.meshes.new('CMT_Line')
bm = bmesh.new()
bm.from_mesh(me)
# New object and link it to the scene
ob = bpy.data.objects.new('CMT_Line', me)
self.CurrentObj = ob
context.collection.objects.link(ob)
# Scene information
region = context.region
rv3d = context.region_data
depth_location = region_2d_to_vector_3d(region, rv3d, coord)
self.ViewVector = depth_location
# Get a point on a infinite plane and its direction
plane_normal = depth_location
plane_direction = plane_normal.normalized()
if self.snapCursor:
plane_point = context.scene.cursor.location
else:
plane_point = self.OpsObj.location if self.OpsObj is not None else Vector((0.0, 0.0, 0.0))
# Use dict to remove doubles
# Find the intersection of a line going thru each vertex and the infinite plane
for idx, v_co in enumerate(list(dict.fromkeys(self.mouse_path))):
vec = region_2d_to_vector_3d(region, rv3d, v_co)
p0 = region_2d_to_location_3d(region, rv3d,v_co, vec)
p1 = region_2d_to_location_3d(region, rv3d,v_co, vec) + plane_direction * far_limit
loc.append(intersect_line_plane(p0, p1, plane_point, plane_direction))
vertices.append(bm.verts.new(loc[idx]))
if idx > 0:
bm.edges.new([vertices[idx-1],vertices[idx]])
faces.append(vertices[idx])
# Update vertices index
bm.verts.index_update()
# Nothing is selected, create close geometry
if self.CreateMode:
if self.Closed and len(vertices) > 1:
bm.edges.new([vertices[-1], vertices[0]])
bm.faces.new(faces)
else:
# Create faces if more than 2 vertices
if len(vertices) > 1 :
bm.edges.new([vertices[-1], vertices[0]])
bm.faces.new(faces)
bm.to_mesh(me)
# Cut Circle
def CreateCutCircle(self, context):
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
""" Create a circle mesh """
far_limit = 10000.0
FacesList = []
# Get the mouse coordinates
mouse_pos_x = self.mouse_path[0][0]
mouse_pos_y = self.mouse_path[0][1]
coord = self.mouse_path[0][0], self.mouse_path[0][1]
# Scene information
region = context.region
rv3d = context.region_data
depth_location = region_2d_to_vector_3d(region, rv3d, coord)
self.ViewVector = depth_location
# Get a point on a infinite plane and its direction
plane_point = context.scene.cursor.location if self.snapCursor else Vector((0.0, 0.0, 0.0))
plane_normal = depth_location
plane_direction = plane_normal.normalized()
# New mesh
me = bpy.data.meshes.new('CMT_Circle')
bm = bmesh.new()
bm.from_mesh(me)
# New object and link it to the scene
ob = bpy.data.objects.new('CMT_Circle', me)
self.CurrentObj = ob
context.collection.objects.link(ob)
# Create a circle using a tri fan
tris_fan, indices = draw_circle(self, mouse_pos_x, mouse_pos_y)
# Remove the vertex in the center to get the outer line of the circle
verts = tris_fan[1:]
# Find the intersection of a line going thru each vertex and the infinite plane
for vert in verts:
vec = region_2d_to_vector_3d(region, rv3d, vert)
p0 = region_2d_to_location_3d(region, rv3d, vert, vec)
p1 = p0 + plane_direction * far_limit
loc0 = intersect_line_plane(p0, p1, plane_point, plane_direction)
t_v0 = bm.verts.new(loc0)
FacesList.append(t_v0)
bm.verts.index_update()
bm.faces.new(FacesList)
bm.to_mesh(me)
def create_2d_circle(self, step, radius, rotation = 0):
""" Create the vertices of a 2d circle at (0,0) """
verts = []
for angle in range(0, 360, step):
verts.append(math.cos(math.radians(angle + rotation)) * radius)
verts.append(math.sin(math.radians(angle + rotation)) * radius)
verts.append(0.0)
verts.append(math.cos(math.radians(0.0 + rotation)) * radius)
verts.append(math.sin(math.radians(0.0 + rotation)) * radius)
verts.append(0.0)
return(verts)
def draw_circle(self, mouse_pos_x, mouse_pos_y):
""" Return the coordinates + indices of a circle using a triangle fan """
tris_verts = []
indices = []
segments = int(360 / self.stepAngle[self.step])
radius = self.mouse_path[1][0] - self.mouse_path[0][0]
rotation = (self.mouse_path[1][1] - self.mouse_path[0][1]) / 2
# Get the vertices of a 2d circle
verts = create_2d_circle(self, self.stepAngle[self.step], radius, rotation)
# Create the first vertex at mouse position for the center of the circle
tris_verts.append(Vector((mouse_pos_x + self.xpos , mouse_pos_y + self.ypos)))
# For each vertex of the circle, add the mouse position and the translation
for idx in range(int(len(verts) / 3) - 1):
tris_verts.append(Vector((verts[idx * 3] + mouse_pos_x + self.xpos, \
verts[idx * 3 + 1] + mouse_pos_y + self.ypos)))
i1 = idx+1
i2 = idx+2 if idx+2 <= segments else 1
indices.append((0,i1,i2))
# Object dimensions (SCULPT Tools tips)
def objDiagonal(obj):
return ((obj.dimensions[0]**2) + (obj.dimensions[1]**2) + (obj.dimensions[2]**2))**0.5
# Bevel Update
def update_bevel(context):
selection = context.selected_objects.copy()
active = context.active_object
if len(selection) > 0:
for obj in selection:
bpy.ops.object.select_all(action='DESELECT')
obj.select_set(True)
context.view_layer.objects.active = obj
# Test object name
# Subdive mode : Only bevel weight
if obj.data.name.startswith("S_") or obj.data.name.startswith("S "):
bpy.ops.object.mode_set(mode='EDIT')
bpy.ops.mesh.region_to_loop()
bpy.ops.transform.edge_bevelweight(value=1)
bpy.ops.object.mode_set(mode='OBJECT')
else:
# No subdiv mode : bevel weight + Crease + Sharp
CreateBevel(context, obj)
for obj in selection:
obj.select_set(True)
context.view_layer.objects.active = active
# Create bevel
def CreateBevel(context, CurrentObject):
# Save active object
SavActive = context.active_object
# Test if initial object has bevel
bevel_modifier = False
for modifier in SavActive.modifiers:
if modifier.name == 'Bevel':
bevel_modifier = True
if bevel_modifier:
# Active "CurrentObject"
context.view_layer.objects.active = CurrentObject
# Edge mode
bpy.ops.mesh.select_mode(use_extend=False, use_expand=False, type='EDGE')
# Clear all
bpy.ops.mesh.select_all(action='SELECT')
bpy.ops.mesh.mark_sharp(clear=True)
bpy.ops.transform.edge_crease(value=-1)
bpy.ops.transform.edge_bevelweight(value=-1)
# Select (in radians) all 30° sharp edges
bpy.ops.mesh.edges_select_sharp(sharpness=0.523599)
# Apply bevel weight + Crease + Sharp to the selected edges
bpy.ops.mesh.mark_sharp()
bpy.ops.transform.edge_crease(value=1)
bpy.ops.transform.edge_bevelweight(value=1)
CurrentObject.data.use_customdata_edge_bevel = True
for i in range(len(CurrentObject.data.edges)):
if CurrentObject.data.edges[i].select is True:
CurrentObject.data.edges[i].bevel_weight = 1.0
CurrentObject.data.edges[i].use_edge_sharp = True
bevel_modifier = False
for m in CurrentObject.modifiers:
if m.name == 'Bevel':
bevel_modifier = True
if bevel_modifier is False:
bpy.ops.object.modifier_add(type='BEVEL')
mod = context.object.modifiers[-1]
mod.limit_method = 'WEIGHT'
mod.width = 0.01
mod.profile = 0.699099
mod.use_clamp_overlap = False
context.object.data.use_auto_smooth = True
context.object.data.auto_smooth_angle = 1.0471975
# Restore the active object
context.view_layer.objects.active = SavActive
def MoveCursor(qRot, location, self):
""" In brush mode : Draw a circle around the brush """
if qRot is not None:
verts = create_2d_circle(self, 10, 1)
self.CLR_C.clear()
vc = Vector()
for idx in range(int(len(verts) / 3)):
vc.x = verts[idx * 3]
vc.y = verts[idx * 3 + 1]
vc.z = verts[idx * 3 + 2]
vc = qRot @ vc
self.CLR_C.append(vc.x)
self.CLR_C.append(vc.y)
self.CLR_C.append(vc.z)
def rot_axis_quat(vector1, vector2):
""" Find the rotation (quaternion) from vector 1 to vector 2"""
vector1 = vector1.normalized()
vector2 = vector2.normalized()
cosTheta = vector1.dot(vector2)
rotationAxis = Vector((0.0, 0.0, 0.0))
if (cosTheta < -1 + 0.001):
v = Vector((0.0, 1.0, 0.0))
#Get the vector at the right angles to both
rotationAxis = vector1.cross(v)
rotationAxis = rotationAxis.normalized()
q = Quaternion()
q.w = 0.0
q.x = rotationAxis.x
q.y = rotationAxis.y
q.z = rotationAxis.z
else:
rotationAxis = vector1.cross(vector2)
s = math.sqrt((1.0 + cosTheta) * 2.0)
invs = 1 / s
q = Quaternion()
q.w = s * 0.5
q.x = rotationAxis.x * invs
q.y = rotationAxis.y * invs
q.z = rotationAxis.z * invs
return q
# Picking (template)
def Picking(context, event):
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
""" Put the 3d cursor on the closest object"""
# get the context arguments
scene = context.scene
region = context.region
rv3d = context.region_data
coord = event.mouse_region_x, event.mouse_region_y
# get the ray from the viewport and mouse
view_vector = view3d_utils.region_2d_to_vector_3d(region, rv3d, coord)
ray_origin = view3d_utils.region_2d_to_origin_3d(region, rv3d, coord)
ray_target = ray_origin + view_vector
def visible_objects_and_duplis():
depsgraph = context.evaluated_depsgraph_get()
for dup in depsgraph.object_instances:
if dup.is_instance: # Real dupli instance
obj = dup.instance_object.original
yield (obj, dup.matrix.copy())
else: # Usual object
obj = dup.object.original
yield (obj, obj.matrix_world.copy())
def obj_ray_cast(obj, matrix):
# get the ray relative to the object
matrix_inv = matrix.inverted()
ray_origin_obj = matrix_inv @ ray_origin
ray_target_obj = matrix_inv @ ray_target
ray_direction_obj = ray_target_obj - ray_origin_obj
# cast the ray
success, location, normal, face_index = obj.ray_cast(ray_origin_obj, ray_direction_obj)
if success:
return location, normal, face_index
return None, None, None
# cast rays and find the closest object
best_length_squared = -1.0
best_obj = None
# cast rays and find the closest object
for obj, matrix in visible_objects_and_duplis():
if obj.type == 'MESH':
hit, normal, face_index = obj_ray_cast(obj, matrix)
if hit is not None:
hit_world = matrix @ hit
length_squared = (hit_world - ray_origin).length_squared
if best_obj is None or length_squared < best_length_squared:
scene.cursor.location = hit_world
best_length_squared = length_squared
best_obj = obj
else:
if best_obj is None:
depth_location = region_2d_to_vector_3d(region, rv3d, coord)
loc = region_2d_to_location_3d(region, rv3d, coord, depth_location)
scene.cursor.location = loc
def Pick(context, event, self, ray_max=10000.0):
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
region = context.region
rv3d = context.region_data
coord = event.mouse_region_x, event.mouse_region_y
view_vector = view3d_utils.region_2d_to_vector_3d(region, rv3d, coord)
ray_origin = view3d_utils.region_2d_to_origin_3d(region, rv3d, coord)
ray_target = ray_origin + (view_vector * ray_max)
def obj_ray_cast(obj, matrix):
matrix_inv = matrix.inverted()
ray_origin_obj = matrix_inv @ ray_origin
ray_target_obj = matrix_inv @ ray_target
success, hit, normal, face_index = obj.ray_cast(ray_origin_obj, ray_target_obj)
if success:
return hit, normal, face_index
return None, None, None
best_length_squared = ray_max * ray_max
best_obj = None
for obj in self.CList:
matrix = obj.matrix_world
hit, normal, face_index = obj_ray_cast(obj, matrix)
rotation = obj.rotation_euler.to_quaternion()
if hit is not None:
hit_world = matrix @ hit
length_squared = (hit_world - ray_origin).length_squared
if length_squared < best_length_squared:
best_length_squared = length_squared
best_obj = obj
hits = hit_world
ns = normal
fs = face_index
if best_obj is not None:
return hits, ns, rotation
return None, None, None
def SelectObject(self, copyobj):
for child in copyobj.children:
SelectObject(self, child)
if copyobj.parent is None:
bpy.context.view_layer.objects.active = copyobj
# Undo
def printUndo(self):
def UndoAdd(self, type, obj):
""" Create a backup mesh before apply the action to the object """
if obj is None:
return
if type != "DUPLICATE":
bm = bmesh.new()
bm.from_mesh(obj.data)
self.UndoOps.append((obj, type, bm))
else:
self.UndoOps.append((obj, type, None))
def UndoListUpdate(self):
self.UList.append((self.UndoOps.copy()))
self.UList_Index += 1
self.UndoOps.clear()
if self.UList_Index < 0:
return
# get previous mesh
for o in self.UList[self.UList_Index]:
if o[1] == "MESH":
bm = o[2]
bm.to_mesh(o[0].data)
SelectObjList = bpy.context.selected_objects.copy()
Active_Obj = bpy.context.active_object
bpy.ops.object.select_all(action='TOGGLE')
for o in self.UList[self.UList_Index]:
if o[1] == "REBOOL":
o[0].select_set(True)
o[0].hide_viewport = False
if o[1] == "DUPLICATE":
o[0].select_set(True)
o[0].hide_viewport = False
for so in SelectObjList:
bpy.data.objects[so.name].select_set(True)
bpy.context.view_layer.objects.active = Active_Obj
self.UList_Index -= 1
self.UList[self.UList_Index + 1:] = []
def duplicateObject(self):
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
if self.Instantiate:
bpy.ops.object.duplicate_move_linked(
OBJECT_OT_duplicate={
"linked": True,
"mode": 'TRANSLATION',
},
TRANSFORM_OT_translate={
"value": (0, 0, 0),
},
)
else:
bpy.ops.object.duplicate_move(
OBJECT_OT_duplicate={
"linked": False,
"mode": 'TRANSLATION',
},
TRANSFORM_OT_translate={
"value": (0, 0, 0),
},
)
ob_new = bpy.context.active_object
ob_new.location = self.CurLoc
v = Vector()
v.x = v.y = 0.0
v.z = self.BrushDepthOffset
ob_new.location += self.qRot * v
if self.ObjectMode:
ob_new.scale = self.ObjectBrush.scale
if self.ProfileMode:
ob_new.scale = self.ProfileBrush.scale
e = Euler()
e.x = e.y = 0.0
e.z = self.aRotZ / 25.0
# If duplicate with a grid, no random rotation (each mesh in the grid is already rotated randomly)
if (self.alt is True) and ((self.nbcol + self.nbrow) < 3):
if self.RandomRotation:
e.z += random.random()
qe = e.to_quaternion()
qRot = self.qRot * qe
ob_new.rotation_mode = 'QUATERNION'
ob_new.rotation_quaternion = qRot
ob_new.rotation_mode = 'XYZ'
if (ob_new.display_type == "WIRE") and (self.BrushSolidify is False):
ob_new.hide_viewport = True
if self.BrushSolidify:
ob_new.display_type = "SOLID"
ob_new.show_in_front = False
for o in bpy.context.selected_objects:
UndoAdd(self, "DUPLICATE", o)
if len(bpy.context.selected_objects) > 0:
bpy.ops.object.select_all(action='TOGGLE')
for o in self.all_sel_obj_list:
o.select_set(True)
bpy.context.view_layer.objects.active = self.OpsObj
def update_grid(self, context):
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
"""
Thanks to batFINGER for his help :
source : http://blender.stackexchange.com/questions/55864/multiple-meshes-not-welded-with-pydata
"""
verts = []
edges = []
faces = []
numface = 0
if self.nbcol < 1:
self.nbcol = 1
if self.nbrow < 1:
self.nbrow = 1
if self.gapx < 0:
self.gapx = 0
if self.gapy < 0:
self.gapy = 0
# Get the data from the profils or the object
if self.ProfileMode:
brush = bpy.data.objects.new(
self.Profils[self.nProfil][0],
bpy.data.meshes[self.Profils[self.nProfil][0]]
)
obj = bpy.data.objects["CT_Profil"]
obfaces = brush.data.polygons
obverts = brush.data.vertices
lenverts = len(obverts)
else:
brush = bpy.data.objects["CarverBrushCopy"]
obj = context.selected_objects[0]
obverts = brush.data.vertices
obfaces = brush.data.polygons
lenverts = len(brush.data.vertices)
# Gap between each row / column
gapx = self.gapx
gapy = self.gapy
# Width of each row / column
widthx = brush.dimensions.x * self.scale_x
widthy = brush.dimensions.y * self.scale_y
# Compute the corners so the new object will be always at the center
left = -((self.nbcol - 1) * (widthx + gapx)) / 2
start = -((self.nbrow - 1) * (widthy + gapy)) / 2
for i in range(self.nbrow * self.nbcol):
row = i % self.nbrow
col = i // self.nbrow
startx = left + ((widthx + gapx) * col)
starty = start + ((widthy + gapy) * row)
# Add random rotation
if (self.RandomRotation) and not (self.GridScaleX or self.GridScaleY):
rotmat = Matrix.Rotation(math.radians(360 * random.random()), 4, 'Z')
for v in obverts:
v.co = v.co @ rotmat
verts.extend([((v.co.x - startx, v.co.y - starty, v.co.z)) for v in obverts])
faces.extend([[v + numface * lenverts for v in p.vertices] for p in obfaces])
numface += 1
# Update the mesh
# Create mesh data
mymesh = bpy.data.meshes.new("CT_Profil")
# Generate mesh data
mymesh.from_pydata(verts, edges, faces)
# Calculate the edges
mymesh.update(calc_edges=True)
# Update data
obj.data = mymesh
# Make the object active to remove doubles
context.view_layer.objects.active = obj
def boolean_operation(bool_type="DIFFERENCE"):
ActiveObj = bpy.context.active_object
sel_index = 0 if bpy.context.selected_objects[0] != bpy.context.active_object else 1
# bpy.ops.object.modifier_apply(modifier="CT_SOLIDIFY")
bool_name = "CT_" + bpy.context.selected_objects[sel_index].name
BoolMod = ActiveObj.modifiers.new(bool_name, "BOOLEAN")
BoolMod.object = bpy.context.selected_objects[sel_index]
BoolMod.operation = bool_type
bpy.context.selected_objects[sel_index].display_type = 'WIRE'
while ActiveObj.modifiers.find(bool_name) > 0:
bpy.ops.object.modifier_move_up(modifier=bool_name)
def Rebool(context, self):
Brush = context.selected_objects[1]
Brush.display_type = "WIRE"
#Deselect all
bpy.ops.object.select_all(action='TOGGLE')
target_obj.display_type = "SOLID"
target_obj.select_set(True)
bpy.ops.object.duplicate()
m = rebool_obj.modifiers.new("CT_INTERSECT", "BOOLEAN")
m.operation = "INTERSECT"
m.object = Brush
m = target_obj.modifiers.new("CT_DIFFERENCE", "BOOLEAN")
m.operation = "DIFFERENCE"
m.object = Brush
for mb in target_obj.modifiers:
if mb.type == 'BEVEL':
mb.show_viewport = False
if self.ObjectBrush or self.ProfileBrush:
rebool_obj.show_in_front = False
try:
bpy.ops.object.modifier_apply(modifier="CT_SOLIDIFY")
except:
exc_type, exc_value, exc_traceback = sys.exc_info()
self.report({'ERROR'}, str(exc_value))
bpy.ops.object.modifier_apply(modifier="CT_INTERSECT")
except:
exc_type, exc_value, exc_traceback = sys.exc_info()
self.report({'ERROR'}, str(exc_value))
for mb in target_obj.modifiers:
if mb.type == 'BEVEL':
mb.show_viewport = True
context.view_layer.objects.active = target_obj
target_obj.select_set(True)
if self.dont_apply_boolean is False:
try:
bpy.ops.object.modifier_apply(modifier="CT_DIFFERENCE")
except:
exc_type, exc_value, exc_traceback = sys.exc_info()
self.report({'ERROR'}, str(exc_value))
def createMeshFromData(self):
if self.Profils[self.nProfil][0] not in bpy.data.meshes:
# Create mesh and object
me = bpy.data.meshes.new(self.Profils[self.nProfil][0])
# Create mesh from given verts, faces.
me.from_pydata(self.Profils[self.nProfil][2], [], self.Profils[self.nProfil][3])
me.validate(verbose=True, clean_customdata=True)
# Update mesh with new data
me.update()
if "CT_Profil" not in bpy.data.objects:
ob = bpy.data.objects.new("CT_Profil", bpy.data.meshes[self.Profils[self.nProfil][0]])
ob.location = Vector((0.0, 0.0, 0.0))
# Link object to scene and make active
bpy.context.collection.objects.link(ob)
bpy.context.view_layer.update()
bpy.context.view_layer.objects.active = ob
ob.select_set(True)
ob.location = Vector((10000.0, 0.0, 0.0))
ob.display_type = "WIRE"
self.SolidifyPossible = True
else:
bpy.data.objects["CT_Profil"].data = bpy.data.meshes[self.Profils[self.nProfil][0]]
def Selection_Save_Restore(self):
if "CT_Profil" in bpy.data.objects:
Selection_Save(self)
bpy.ops.object.select_all(action='DESELECT')
bpy.data.objects["CT_Profil"].select_set(True)
bpy.context.view_layer.objects.active = bpy.data.objects["CT_Profil"]
if bpy.data.objects["CT_Profil"] in self.all_sel_obj_list:
self.all_sel_obj_list.remove(bpy.data.objects["CT_Profil"])
bpy.ops.object.delete(use_global=False)
Selection_Restore(self)
def Selection_Save(self):
obj_name = getattr(bpy.context.active_object, "name", None)
self.all_sel_obj_list = bpy.context.selected_objects.copy()
self.save_active_obj = obj_name
def Selection_Restore(self):
for o in self.all_sel_obj_list:
o.select_set(True)
if self.save_active_obj:
bpy.context.view_layer.objects.active = bpy.data.objects.get(self.save_active_obj, None)
def Snap_Cursor(self, context, event, mouse_pos):
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
""" Find the closest position on the overlay grid and snap the mouse on it """
# Get the context arguments
region = context.region
rv3d = context.region_data
# Get the VIEW3D area
for i, a in enumerate(context.screen.areas):
if a.type == 'VIEW_3D':
space = context.screen.areas[i].spaces.active
# Get the grid overlay for the VIEW_3D
grid_scale = space.overlay.grid_scale
grid_subdivisions = space.overlay.grid_subdivisions
# Use the grid scale and subdivision to get the increment
increment = (grid_scale / grid_subdivisions)
half_increment = increment / 2
# Convert the 2d location of the mouse in 3d
for index, loc in enumerate(reversed(mouse_pos)):
mouse_loc_3d = region_2d_to_location_3d(region, rv3d, loc, (0, 0, 0))
# Get the remainder from the mouse location and the ratio
# Test if the remainder > to the half of the increment
for i in range(3):
modulo = mouse_loc_3d[i] % increment
if modulo < half_increment:
modulo = - modulo
else:
modulo = increment - modulo
# Add the remainder to get the closest location on the grid
mouse_loc_3d[i] = mouse_loc_3d[i] + modulo
# Get the snapped 2d location
snap_loc_2d = location_3d_to_region_2d(region, rv3d, mouse_loc_3d)
# Replace the last mouse location by the snapped location
if len(self.mouse_path) > 0:
self.mouse_path[len(self.mouse_path) - (index + 1) ] = tuple(snap_loc_2d)
def mini_grid(self, context, color):
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
""" Draw a snap mini grid around the cursor based on the overlay grid"""
# Get the context arguments
region = context.region
rv3d = context.region_data
# Get the VIEW3D area
for i, a in enumerate(context.screen.areas):
if a.type == 'VIEW_3D':
space = context.screen.areas[i].spaces.active
screen_height = context.screen.areas[i].height
screen_width = context.screen.areas[i].width
#Draw the snap grid, only in ortho view
if not space.region_3d.is_perspective :
grid_scale = space.overlay.grid_scale
grid_subdivisions = space.overlay.grid_subdivisions
increment = (grid_scale / grid_subdivisions)
# Get the 3d location of the mouse forced to a snap value in the operator
mouse_coord = self.mouse_path[len(self.mouse_path) - 1]
snap_loc = region_2d_to_location_3d(region, rv3d, mouse_coord, (0, 0, 0))
# Add the increment to get the closest location on the grid
snap_loc[0] += increment
snap_loc[1] += increment
# Get the 2d location of the snap location
snap_loc = location_3d_to_region_2d(region, rv3d, snap_loc)
origin = location_3d_to_region_2d(region, rv3d, (0,0,0))
# Get the increment value
snap_value = snap_loc[0] - mouse_coord[0]
grid_coords = []
# Draw lines on X and Z axis from the cursor through the screen
grid_coords = [
(0, mouse_coord[1]), (screen_width, mouse_coord[1]),
(mouse_coord[0], 0), (mouse_coord[0], screen_height)
]
# Draw a mlini grid around the cursor to show the snap options
grid_coords += [
(mouse_coord[0] + snap_value, mouse_coord[1] + 25 + snap_value),
(mouse_coord[0] + snap_value, mouse_coord[1] - 25 - snap_value),
(mouse_coord[0] + 25 + snap_value, mouse_coord[1] + snap_value),
(mouse_coord[0] - 25 - snap_value, mouse_coord[1] + snap_value),
(mouse_coord[0] - snap_value, mouse_coord[1] + 25 + snap_value),
(mouse_coord[0] - snap_value, mouse_coord[1] - 25 - snap_value),
(mouse_coord[0] + 25 + snap_value, mouse_coord[1] - snap_value),
(mouse_coord[0] - 25 - snap_value, mouse_coord[1] - snap_value),
]
draw_shader(self, color, 0.3, 'LINES', grid_coords, size=2)
def draw_shader(self, color, alpha, type, coords, size=1, indices=None):
gpu.state.program_point_size_set(False)
gpu.state.point_size_set(size)
shader = gpu.shader.from_builtin('UNIFORM_COLOR')
shader = gpu.shader.from_builtin('POLYLINE_UNIFORM_COLOR')
shader.uniform_float("viewportSize", gpu.state.viewport_get()[2:])
shader.uniform_float("lineWidth", 1.0)
try:
shader.uniform_float("color", (color[0], color[1], color[2], alpha))
batch = batch_for_shader(shader, type, {"pos": coords}, indices=indices)
batch.draw(shader)
except:
exc_type, exc_value, exc_traceback = sys.exc_info()
self.report({'ERROR'}, str(exc_value))
gpu.state.point_size_set(1.0)
gpu.state.blend_set('NONE')