Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
import bpy
class Element:
'''Element class with properties ([R, G, B], cov_radius, vdw_radius, name)'''
def __init__(self, color, cov_radius, vdw_radius, name):
self.color = color
self.cov_radius = cov_radius
self.vdw_radius = vdw_radius
self.name = name
class Atom:
'''Atom class with properties (serial, name, altloc, resname,chainid,
resseq, icode, x, y, z, occupancy, tempfactor, element, charge)'''
def __init__(self, serial, name, altloc, resname, chainid, resseq, icode,
x, y, z, occupancy, tempfactor, element, charge):
self.serial = serial
self.name = name
self.altloc = altloc
self.resname = resname
self.chainid = chainid
self.resseq = resseq
self.icode = icode
self.x = x
self.y = y
self.z = z
self.occupancy = occupancy
self.tempfactor = tempfactor
self.element = element
self.charge = charge
#collection of biomolecules based on model
#all chains in model stored here
class Model:
'''Model class'''
def __init__(self, model_id):
self.model_id = model_id
self.atoms = {}
self.atom_count = 0
self.vert_list = []
#Dictionary of {vert index: [list of vertex groups it belongs to]}
#Now element only
self.vert_group_index = {}
#Dictionary of {vertex group: number of group members}
self.vert_group_counts = {}
self.chains = {}
#new object level class
class Biomolecule:
'''Biomolecule'''
def __init__(self, serial):
self.serial = serial
self.atom_count = 0
self.vert_list = []
self.vert_group_index = {}
self.vert_group_counts = {}
self.chain_transforms = {}
#Atom collection
class Chain:
'''Chain'''
def __init__(self, chain_id):
self.chain_id = chain_id
self.atoms = {}
#Atomic data from http://www.ccdc.cam.ac.uk/products/csd/radii/
#Color palatte adapted from Jmol
#"Element symbol":[[Red, Green, Blue], Covalent radius, van der Waals radius,
# Element name]
#Atomic radii are in angstroms (100 pm)
#Unknown covalent radii are assigned 1.5 A, unknown van der Waals radiii are
#assigned 2 A,
atom_data = {
'H' : Element([1.00000, 1.00000, 1.00000], 0.23, 1.09, 'Hydrogen' ),
'HE': Element([0.85098, 1.00000, 1.00000], 1.5 , 1.4 , 'Helium' ),
'LI': Element([0.80000, 0.50196, 1.00000], 1.28, 1.82, 'Lithium' ),
'BE': Element([0.76078, 1.00000, 0.00000], 0.96, 2 , 'Beryllium' ),
'B' : Element([1.00000, 0.70980, 0.70980], 0.83, 2 , 'Boron' ),
'C' : Element([0.56471, 0.56471, 0.56471], 0.68, 1.7 , 'Carbon' ),
'N' : Element([0.18824, 0.31373, 0.97255], 0.68, 1.55, 'Nitrogen' ),
'O' : Element([1.00000, 0.05098, 0.05098], 0.68, 1.52, 'Oxygen' ),
'F' : Element([0.56471, 0.87843, 0.31373], 0.64, 1.47, 'Fluorine' ),
'NE': Element([0.70196, 0.89020, 0.96078], 1.5 , 1.54, 'Neon' ),
'NA': Element([0.67059, 0.36078, 0.94902], 1.66, 2.27, 'Sodium' ),
'MG': Element([0.54118, 1.00000, 0.00000], 1.41, 1.73, 'Magnesium' ),
'AL': Element([0.74902, 0.65098, 0.65098], 1.21, 2 , 'Aluminum' ),
'SI': Element([0.94118, 0.78431, 0.62745], 1.2 , 2.1 , 'Silicon' ),
'P' : Element([1.00000, 0.50196, 0.00000], 1.05, 1.8 , 'Phosphorus'),
'S' : Element([1.00000, 1.00000, 0.18824], 1.02, 1.8 , 'Sulfur' ),
'CL': Element([0.12157, 0.94118, 0.12157], 0.99, 1.75, 'Chlorine' ),
'AR': Element([0.50196, 0.81961, 0.89020], 1.51, 1.88, 'Argon' ),
'K' : Element([0.56078, 0.25098, 0.83137], 2.03, 2.75, 'Potassium' ),
'CA': Element([0.23922, 1.00000, 0.00000], 1.76, 2 , 'Calcium' ),
'SC': Element([0.90196, 0.90196, 0.90196], 1.7 , 2 , 'Scandium' ),
'TI': Element([0.74902, 0.76078, 0.78039], 1.6 , 2 , 'Titanium' ),
'V' : Element([0.65098, 0.65098, 0.67059], 1.53, 2 , 'Vanadium' ),
'CR': Element([0.54118, 0.60000, 0.78039], 1.39, 2 , 'Chromium' ),
'MN': Element([0.61176, 0.47843, 0.78039], 1.61, 2 , 'Manganese' ),
'FE': Element([0.87843, 0.40000, 0.20000], 1.52, 2 , 'Iron' ),
'CO': Element([0.94118, 0.56471, 0.62745], 1.26, 2 , 'Cobalt' ),
'NI': Element([0.31373, 0.81569, 0.31373], 1.24, 1.63, 'Nickel' ),
'CU': Element([0.78431, 0.50196, 0.20000], 1.32, 1.4 , 'Copper' ),
'ZN': Element([0.49020, 0.50196, 0.69020], 1.22, 1.39, 'Zinc' ),
'GA': Element([0.76078, 0.56078, 0.56078], 1.22, 1.87, 'Gallium' ),
'GE': Element([0.40000, 0.56078, 0.56078], 1.17, 2 , 'Germanium' ),
'AS': Element([0.74118, 0.50196, 0.89020], 1.21, 1.85, 'Arsenic' ),
'SE': Element([1.00000, 0.63137, 0.00000], 1.22, 1.9 , 'Selenium' ),
'BR': Element([0.65098, 0.16078, 0.16078], 1.21, 1.85, 'Bromine' ),
'KR': Element([0.36078, 0.72157, 0.81961], 1.5 , 2.02, 'Krypton' ),
'RB': Element([0.43922, 0.18039, 0.69020], 2.2 , 2 , 'Rubidium' ),
'SR': Element([0.00000, 1.00000, 0.00000], 1.95, 2 , 'Strontium' ),
'Y' : Element([0.58039, 1.00000, 1.00000], 1.9 , 2 , 'Yttrium' ),
'ZR': Element([0.58039, 0.87843, 0.87843], 1.75, 2 , 'Zirconium' ),
'NB': Element([0.45098, 0.76078, 0.78824], 1.64, 2 , 'Niobium' ),
'MO': Element([0.32941, 0.70980, 0.70980], 1.54, 2 , 'Molybdenum'),
'TC': Element([0.23137, 0.61961, 0.61961], 1.47, 2 , 'Technetium'),
'RU': Element([0.14118, 0.56078, 0.56078], 1.46, 2 , 'Ruthenium' ),
'RH': Element([0.03922, 0.49020, 0.54902], 1.45, 2 , 'Rhodium' ),
'PD': Element([0.00000, 0.41176, 0.52157], 1.39, 1.63, 'Palladium' ),
'AG': Element([0.75294, 0.75294, 0.75294], 1.45, 1.72, 'Silver' ),
'CD': Element([1.00000, 0.85098, 0.56078], 1.44, 1.58, 'Cadmium' ),
'IN': Element([0.65098, 0.45882, 0.45098], 1.42, 1.93, 'Indium' ),
'SN': Element([0.40000, 0.50196, 0.50196], 1.39, 2.17, 'Tin' ),
'SB': Element([0.61961, 0.38824, 0.70980], 1.39, 2 , 'Antimony' ),
'TE': Element([0.83137, 0.47843, 0.00000], 1.47, 2.06, 'Tellurium' ),
'I' : Element([0.58039, 0.00000, 0.58039], 1.4 , 1.98, 'Iodine' ),
'XE': Element([0.25882, 0.61961, 0.69020], 1.5 , 2.16, 'Xenon' ),
'CS': Element([0.34118, 0.09020, 0.56078], 2.44, 2 , 'Cesium' ),
'BA': Element([0.00000, 0.78824, 0.00000], 2.15, 2 , 'Barium' ),
'LA': Element([0.43922, 0.83137, 1.00000], 2.07, 2 , 'Lanthanum' ),
'CE': Element([1.00000, 1.00000, 0.78039], 2.04, 2 , 'Cerium' ),
'PR': Element([0.85098, 1.00000, 0.78039], 2.03, 2 , 'Praseodymium'),
'ND': Element([0.78039, 1.00000, 0.78039], 2.01, 2 , 'Neodymium' ),
'PM': Element([0.63922, 1.00000, 0.78039], 1.99, 2 , 'Promethium'),
'SM': Element([0.56078, 1.00000, 0.78039], 1.98, 2 , 'Samarium' ),
'EE': Element([0.38039, 1.00000, 0.78039], 1.98, 2 , 'Europium' ),
'GD': Element([0.27059, 1.00000, 0.78039], 1.96, 2 , 'Gadolinium'),
'TB': Element([0.18824, 1.00000, 0.78039], 1.94, 2 , 'Terbium' ),
'DY': Element([0.12157, 1.00000, 0.78039], 1.92, 2 , 'Dysprosium'),
'HO': Element([0.00000, 1.00000, 0.61176], 1.92, 2 , 'Holmium' ),
'ER': Element([0.00000, 0.90196, 0.45882], 1.89, 2 , 'Erbium' ),
'TM': Element([0.00000, 0.83137, 0.32157], 1.9 , 2 , 'Thulium' ),
'YB': Element([0.00000, 0.74902, 0.21961], 1.87, 2 , 'Ytterbium' ),
'LU': Element([0.00000, 0.67059, 0.14118], 1.87, 2 , 'Lutetium' ),
'HF': Element([0.30196, 0.76078, 1.00000], 1.75, 2 , 'Hafnium' ),
'TA': Element([0.30196, 0.65098, 1.00000], 1.7 , 2 , 'Tantalum' ),
'W' : Element([0.12941, 0.58039, 0.83922], 1.62, 2 , 'Tungsten' ),
'RE': Element([0.14902, 0.49020, 0.67059], 1.51, 2 , 'Rhenium' ),
'OS': Element([0.14902, 0.40000, 0.58824], 1.44, 2 , 'Osmium' ),
'IR': Element([0.09020, 0.32941, 0.52941], 1.41, 2 , 'Iridium' ),
'PT': Element([0.81569, 0.81569, 0.87843], 1.36, 1.72, 'Platinum' ),
'AU': Element([1.00000, 0.81961, 0.13725], 1.5 , 1.66, 'Gold' ),
'HG': Element([0.72157, 0.72157, 0.81569], 1.32, 1.55, 'Mercury' ),
'TL': Element([0.65098, 0.32941, 0.30196], 1.45, 1.96, 'Thallium' ),
'PB': Element([0.34118, 0.34902, 0.38039], 1.46, 2.02, 'Lead' ),
'BI': Element([0.61961, 0.30980, 0.70980], 1.48, 2 , 'Bismuth' ),
'PO': Element([0.67059, 0.36078, 0.00000], 1.4 , 2 , 'Polonium' ),
'AT': Element([0.45882, 0.30980, 0.27059], 1.21, 2 , 'Astatine' ),
'RN': Element([0.25882, 0.50980, 0.58824], 1.5 , 2 , 'Radon' ),
'FR': Element([0.25882, 0.00000, 0.40000], 2.6 , 2 , 'Francium' ),
'RA': Element([0.00000, 0.49020, 0.00000], 2.21, 2 , 'Radium' ),
'AC': Element([0.43922, 0.67059, 0.98039], 2.15, 2 , 'Actinium' ),
'TH': Element([0.00000, 0.72941, 1.00000], 2.06, 2 , 'Thorium' ),
'PA': Element([0.00000, 0.63137, 1.00000], 2 , 2 , 'Protactinium'),
'U' : Element([0.00000, 0.56078, 1.00000], 1.96, 1.86, 'Uranium' ),
'NP': Element([0.00000, 0.50196, 1.00000], 1.9 , 2 , 'Neptunium' ),
'PU': Element([0.00000, 0.41961, 1.00000], 1.87, 2 , 'Plutonium' ),
'AM': Element([0.32941, 0.36078, 0.94902], 1.8 , 2 , 'Americium' ),
'CM': Element([0.47059, 0.36078, 0.89020], 1.69, 2 , 'Curium' ),
'BK': Element([0.54118, 0.30980, 0.89020], 1.54, 2 , 'Berkelium' ),
'CF': Element([0.63137, 0.21176, 0.83137], 1.83, 2 , 'Californium'),
'ES': Element([0.70196, 0.12157, 0.83137], 1.5 , 2 , 'Einsteinium'),
'FM': Element([0.70196, 0.12157, 0.72941], 1.5 , 2 , 'Fermium' ),
'MD': Element([0.70196, 0.05098, 0.65098], 1.5 , 2 , 'Mendelevium'),
'NO': Element([0.74118, 0.05098, 0.52941], 1.5 , 2 , 'Nobelium' ),
'LR': Element([0.78039, 0.00000, 0.40000], 1.5 , 2 , 'Lawrencium'),
'RF': Element([0.80000, 0.00000, 0.34902], 1.5 , 2 , 'Rutherfordium'),
'DB': Element([0.81961, 0.00000, 0.30980], 1.5 , 2 , 'Dubnium' ),
'SG': Element([0.85098, 0.00000, 0.27059], 1.5 , 2 , 'Seaborgium'),
'BH': Element([0.87843, 0.00000, 0.21961], 1.5 , 2 , 'Bohrium' ),
'HS': Element([0.90196, 0.00000, 0.18039], 1.5 , 2 , 'Hassium' ),
'MT': Element([0.92157, 0.00000, 0.14902], 1.5 , 2 , 'Meitnerium'),
'DS': Element([0.93725, 0.00000, 0.12157], 1.5 , 2 , 'Darmstadtium')
}
def load_pdb(filepath, context, atom_size, scene_scale, atom_subdivisions,
retain_alts, multi_models, multimers):
file = open(filepath, 'r')
lines = file.readlines()
file.close()
model_list = {}
model_flag = False
biomolecule_flag = False
biomolecule_list = {}
chain_list = []
mat_list = []
#Parse data
for line in lines:
# print(line)
if line[:6] == 'COMPND':
if line[11:17] == 'CHAIN:':
s = 17
for i in range(1, (len(line[17:]) + 1)):
if line[16+i:17+i] == ',':
chain_id = line[s:16+i].strip()
chain_list.append(chain_id)
s = 17 + i
elif line[16+i:17+i] == ';':
chain_id = line[s:16+i].strip()
chain_list.append(chain_id)
break
elif i == len(line[17:]):
chain_id = line[s:].strip()
chain_list.append(chain_id)
elif line[:10] == 'REMARK 300':
if line[11:23] == 'BIOMOLECULE:':
biomolecule_flag = True
s = 23
for i in range(1, (len(line[23:]) + 1)):
if line[22+i:23+i] == ',':
bm_serial = int(line[s:22+i])
biomolecule_list[bm_serial] = Biomolecule(bm_serial)
s = 23 + i
elif i == len(line[23:]):
bm_serial = int(line[s:])
biomolecule_list[bm_serial] = Biomolecule(bm_serial)
elif line[:10] == 'REMARK 350':
if line[11:23] == 'BIOMOLECULE:':
cur_biomolecule = biomolecule_list[int(line[23:].strip())]
elif line[11:41] == 'APPLY THE FOLLOWING TO CHAINS:':
s = 41
cur_chain_list = []
for i in range(1, (len(line[41:]) + 1)):
if line[40+i:41+i] == ',':
cur_chain_list.append(line[s:40+i].strip())
s = 41+i
elif i == len(line[41:]):
cur_chain_list.append(line[s:].strip())
cur_biomolecule.chain_transforms[tuple(cur_chain_list)] = []
elif line[13:18] == 'BIOMT':
if line[18:19] == '1':
row1 = [float(line[24:33]), float(line[34:43]),
float(line[44:53]), float(line[60:68])]
elif line[18:19] == '2':
row2 =[float(line[24:33]), float(line[34:43]),
float(line[44:53]), float(line[60:68])]
elif line[18:19] == '3':
row3 = [float(line[24:33]), float(line[34:43]),
float(line[44:53]), float(line[60:68])]
cur_biomolecule.chain_transforms[tuple(cur_chain_list)].append([row1, row2, row3])
elif line[:5] == 'MODEL':
model_id = int(line[10:14])
model_list[model_id] = Model(model_id)
cur_model = model_list[model_id]
model_flag = True
for chain in chain_list:
cur_model.chains[chain] = Chain(chain)
elif line[:6] == 'ENDMDL':
cur_model = None
elif line[:4] == 'ATOM':
if not model_flag:
model_list[1] = Model(1)
cur_model = model_list[1]
model_flag = True
for chain in chain_list:
cur_model.chains[chain] = Chain(chain)
serial = int(line[6:11])
name = line[12:16].strip()
altloc = line[16:17]
resname = line[17:20]
chainid = line[21:22]
resseq = int(line[22:26])
icode = line[26:28].strip()
x = float(line[30:38]) * scene_scale
y = float(line[38:46]) * scene_scale
z = float(line[46:54]) * scene_scale
occupancy = float(line[54:60])
tempfactor = float(line[60:66])
element = line[76:78].strip()
charge = line[78:80].strip()
'''print('******************************************************************')
print('serial : ' )
print(serial)
print('name : ' )
print(name)
print('altloc : ' )
print(altloc)
print('resname : ' )
print(resname)
print('chainid : ' )
print(chainid)
print('resseq : ' )
print(resseq)
print('icode : ' )
print(icode)
print('x : ' )
print(x)
print('y : ' )
print(y)
print('z : ' )
print(z)
print('occupancy : ' )
print(occupancy)
print('tempfactor : ' )
print(tempfactor)
print('element : ' )
print(element)
print('charge : ' )
print(charge)
print('******************************************************************')'''
cur_model.chains[chainid].atoms[serial] = Atom(serial, name, altloc,
resname, chainid,
resseq, icode,
x, y, z, occupancy,
tempfactor, element,
charge)
if (not multimers) or (not biomolecule_flag):
#Create a default biomolecule w/ all chains and identity transform
#Overwrites original biomolecule_list
biomolecule_flag = True
biomolecule_list = {1:Biomolecule(1)}
biomolecule_list[1].chain_transforms[tuple(chain_list)] = []
biomolecule_list[1].chain_transforms[tuple(chain_list)].append([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0]])
#Create atom mesh template
bpy.ops.mesh.primitive_ico_sphere_add(subdivisions=atom_subdivisions,
size=(atom_size * scene_scale))
bpy.ops.object.shade_smooth()
atom_mesh = bpy.context.active_object.data
atom_mesh.name = 'Atom_Template'
bpy.ops.object.delete()
layers = bpy.context.scene.layers
#After parsing and preparing the templates, generate the output
for model_id, model in model_list.items():
if (not multi_models) and model_id != 1:
break
for bm_serial, biomolecule in biomolecule_list.items():
biom_mesh = bpy.data.meshes.new('Biomolecule' + str(bm_serial) + '.' +
str(model_id))
cur_biom = bpy.data.objects.new('Biomolecule' + str(bm_serial) +
'.' + str(model_id), biom_mesh)
bpy.context.scene.objects.link(cur_biom)
for chain_clones, transforms in biomolecule.chain_transforms.items():
for chain in chain_clones:
for transform in transforms:
#rotations
row1 = transform[0][0:3]
row2 = transform[1][0:3]
row3 = transform[2][0:3]
#translations
dx = transform[0][3]
dy = transform[1][3]
dz = transform[2][3]
for serial, atom in model.chains[chain].atoms.items():
#Prunes alternative locations for the atoms
#(should pick the one with highest occupancy but doesn't)
if (atom.altloc == ' ' or atom.altloc == 'A') or retain_alts:
element = atom_data[atom.element].name
#Generate master element models
if element not in mat_list:
#Create a master atom
mesh = atom_mesh.copy()
mesh.name = element
mat = bpy.data.materials.new(element)
mat.diffuse_color = atom_data[atom.element].color
mesh.materials.append(mat)
master_atom = bpy.data.objects.new(element, mesh)
master_atom.scale = [atom_data[atom.element].vdw_radius]*3
master_atom.layers = layers
master_atom.name = element
bpy.context.scene.objects.link(master_atom)
mat_list.append(element)
else:
pass
#Generate element vertex groups
if element not in cur_biom.vertex_groups:
cur_vert_group = cur_biom.vertex_groups.new(element)
#Adds a key in the vert_group_count
biomolecule.vert_group_counts[cur_vert_group] = 0
else:
cur_vert_group = cur_biom.vertex_groups[element]
#Generate particle systems (can be merged with vertex group generator)
if element not in cur_biom.particle_systems:
bpy.context.scene.objects.active = cur_biom
bpy.ops.object.particle_system_add()
cur_particle = cur_biom.particle_systems.active
cur_particle.name = element
cur_particle.settings.name = (element + '.' + str(bm_serial) + '.' + str(model_id))
cur_particle.settings.frame_start = 0
cur_particle.settings.frame_end = 0
cur_particle.settings.lifetime = 10000
cur_particle.settings.emit_from = 'VERT'
cur_particle.settings.use_emit_random = False
cur_particle.settings.normal_factor = 0
cur_particle.settings.particle_size = 1
cur_particle.settings.render_type = 'OBJECT'
cur_particle.settings.dupli_object = bpy.data.objects[element]
cur_particle.settings.effector_weights.gravity = 0
cur_particle.vertex_group_density = element
biomolecule.vert_group_index[biomolecule.atom_count] = cur_vert_group
biomolecule.vert_group_counts[cur_vert_group] += 1
biomolecule.atom_count += 1
tx = atom.x * row1[0] + atom.y * row1[1] + atom.z * row1[2] + (dx * scene_scale)
ty = atom.x * row2[0] + atom.y * row2[1] + atom.z * row2[2] + (dy * scene_scale)
tz = atom.x * row3[0] + atom.y * row3[1] + atom.z * row3[2] + (dz * scene_scale)
biomolecule.vert_list.extend([tx, ty, tz])
else:
pass
biom_mesh.vertices.add(biomolecule.atom_count)
biom_mesh.vertices.foreach_set('co', biomolecule.vert_list)
for vert_index, vert_group in biomolecule.vert_group_index.items():
aa = [] # neeed array to vertex_groups.assign
aa.append(vert_index)
vert_group.add(aa, 1, "ADD")
for vert_group, count in biomolecule.vert_group_counts.items():
bpy.data.particles[vert_group.name + '.' + str(bm_serial) + '.' + str(model_id)].count = count