Skip to content
Snippets Groups Projects
add_curve_simple.py 58.8 KiB
Newer Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and / or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110 - 1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

bl_info = {
    'name': 'Simple Curve',
    'author': 'Spivak Vladimir (http://cwolf3d.korostyshev.net)',
    'version': (1, 5, 2),
    'blender': (2, 6, 9),
    'location': 'View3D > Add > Curve',
    'description': 'Adds Simple Curve',
    'warning': '',  # used for warning icon and text in addons panel
    'wiki_url': 'http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Curve/Simple_curves',
    "tracker_url": "https://developer.blender.org/maniphest/task/edit/form/2/",
    'category': 'Add Curve'}


# ------------------------------------------------------------
#### import modules
import bpy
from bpy.props import *
from mathutils import *
from math import *
from bpy_extras.object_utils import *
from random import *

# ------------------------------------------------------------
# Point:


def SimplePoint():
    newpoints = []

    newpoints.append([0.0, 0.0, 0.0])

    return newpoints

# ------------------------------------------------------------
# Line:


def SimpleLine(c1=[0.0, 0.0, 0.0], c2=[2.0, 2.0, 2.0]):
    newpoints = []

    c3 = Vector(c2) - Vector(c1)
    newpoints.append([0.0, 0.0, 0.0])
    newpoints.append([c3[0], c3[1], c3[2]])

    return newpoints

# ------------------------------------------------------------
# Angle:


def SimpleAngle(length=1.0, angle=45.0):
    newpoints = []

    angle = radians(angle)
    newpoints.append([length, 0.0, 0.0])
    newpoints.append([0.0, 0.0, 0.0])
    newpoints.append([length * cos(angle), length * sin(angle), 0.0])

    return newpoints

# ------------------------------------------------------------
# Distance:


def SimpleDistance(length=1.0, center=True):
    newpoints = []

    if center:
        newpoints.append([-length / 2, 0.0, 0.0])
        newpoints.append([length / 2, 0.0, 0.0])
    else:
        newpoints.append([0.0, 0.0, 0.0])
        newpoints.append([length, 0.0, 0.0])

    return newpoints

# ------------------------------------------------------------
# Circle:


def SimpleCircle(sides=4, radius=1.0):
    newpoints = []

    angle = radians(360) / sides
    newpoints.append([radius, 0, 0])
    j = 1
    while j < sides:
        t = angle * j
        x = cos(t) * radius
        y = sin(t) * radius
        newpoints.append([x, y, 0])
        j += 1

    return newpoints

# ------------------------------------------------------------
# Ellipse:


def SimpleEllipse(a=2.0, b=1.0):
    newpoints = []

    newpoints.append([a, 0.0, 0.0])
    newpoints.append([0.0, b, 0.0])
    newpoints.append([-a, 0.0, 0.0])
    newpoints.append([0.0, -b, 0.0])

    return newpoints

# ------------------------------------------------------------
# Arc:


def SimpleArc(sides=0, radius=1.0, startangle=0.0, endangle=45.0):
    newpoints = []

    startangle = radians(startangle)
    endangle = radians(endangle)
    sides += 1

    angle = (endangle - startangle) / sides
    x = cos(startangle) * radius
    y = sin(startangle) * radius
    newpoints.append([x, y, 0])
    j = 1
    while j < sides:
        t = angle * j
        x = cos(t + startangle) * radius
        y = sin(t + startangle) * radius
        newpoints.append([x, y, 0])
        j += 1
    x = cos(endangle) * radius
    y = sin(endangle) * radius
    newpoints.append([x, y, 0])

    return newpoints

# ------------------------------------------------------------
# Sector:


def SimpleSector(sides=0, radius=1.0, startangle=0.0, endangle=45.0):
    newpoints = []

    startangle = radians(startangle)
    endangle = radians(endangle)
    sides += 1

    newpoints.append([0, 0, 0])
    angle = (endangle - startangle) / sides
    x = cos(startangle) * radius
    y = sin(startangle) * radius
    newpoints.append([x, y, 0])
    j = 1
    while j < sides:
        t = angle * j
        x = cos(t + startangle) * radius
        y = sin(t + startangle) * radius
        newpoints.append([x, y, 0])
        j += 1
    x = cos(endangle) * radius
    y = sin(endangle) * radius
    newpoints.append([x, y, 0])

    return newpoints

# ------------------------------------------------------------
# Segment:


def SimpleSegment(sides=0, a=2.0, b=1.0, startangle=0.0, endangle=45.0):
    newpoints = []

    startangle = radians(startangle)
    endangle = radians(endangle)
    sides += 1

    angle = (endangle - startangle) / sides
    x = cos(startangle) * a
    y = sin(startangle) * a
    newpoints.append([x, y, 0])
    j = 1
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
    while j < sides:
        t = angle * j
        x = cos(t + startangle) * a
        y = sin(t + startangle) * a
        newpoints.append([x, y, 0])
        j += 1
    x = cos(endangle) * a
    y = sin(endangle) * a
    newpoints.append([x, y, 0])

    x = cos(endangle) * b
    y = sin(endangle) * b
    newpoints.append([x, y, 0])
    j = sides
    while j > 0:
        t = angle * j
        x = cos(t + startangle) * b
        y = sin(t + startangle) * b
        newpoints.append([x, y, 0])
        j -= 1
    x = cos(startangle) * b
    y = sin(startangle) * b
    newpoints.append([x, y, 0])

    return newpoints

# ------------------------------------------------------------
# Rectangle:


def SimpleRectangle(width=2.0, length=2.0, rounded=0.0, center=True):
    newpoints = []

    r = rounded / 2

    if center:
        x = width / 2
        y = length / 2
        if rounded != 0.0:
            newpoints.append([-x + r, y, 0.0])
            newpoints.append([x - r, y, 0.0])
            newpoints.append([x, y - r, 0.0])
            newpoints.append([x, -y + r, 0.0])
            newpoints.append([x - r, -y, 0.0])
            newpoints.append([-x + r, -y, 0.0])
            newpoints.append([-x, -y + r, 0.0])
            newpoints.append([-x, y - r, 0.0])
        else:
            newpoints.append([-x, y, 0.0])
            newpoints.append([x, y, 0.0])
            newpoints.append([x, -y, 0.0])
            newpoints.append([-x, -y, 0.0])

    else:
        x = width
        y = length
        if rounded != 0.0:
            newpoints.append([r, y, 0.0])
            newpoints.append([x - r, y, 0.0])
            newpoints.append([x, y - r, 0.0])
            newpoints.append([x, r, 0.0])
            newpoints.append([x - r, 0.0, 0.0])
            newpoints.append([r, 0.0, 0.0])
            newpoints.append([0.0, r, 0.0])
            newpoints.append([0.0, y - r, 0.0])
        else:
            newpoints.append([0.0, 0.0, 0.0])
            newpoints.append([0.0, y, 0.0])
            newpoints.append([x, y, 0.0])
            newpoints.append([x, 0.0, 0.0])

    return newpoints

# ------------------------------------------------------------
# Rhomb:


def SimpleRhomb(width=2.0, length=2.0, center=True):
    newpoints = []
    x = width / 2
    y = length / 2

    if center:
        newpoints.append([-x, 0.0, 0.0])
        newpoints.append([0.0, y, 0.0])
        newpoints.append([x, 0.0, 0.0])
        newpoints.append([0.0, -y, 0.0])
    else:
        newpoints.append([x, 0.0, 0.0])
        newpoints.append([0.0, y, 0.0])
        newpoints.append([x, length, 0.0])
        newpoints.append([width, y, 0.0])

    return newpoints

# ------------------------------------------------------------
# Polygon:


def SimplePolygon(sides=3, radius=1.0):
    newpoints = []
    angle = radians(360.0) / sides
    j = 0

    while j < sides:
        t = angle * j
        x = sin(t) * radius
        y = cos(t) * radius
        newpoints.append([x, y, 0.0])
        j += 1

    return newpoints

# ------------------------------------------------------------
# Polygon_ab:


def SimplePolygon_ab(sides=3, a=2.0, b=1.0):
    newpoints = []
    angle = radians(360.0) / sides
    j = 0

    while j < sides:
        t = angle * j
        x = sin(t) * a
        y = cos(t) * b
        newpoints.append([x, y, 0.0])
        j += 1

    return newpoints

# ------------------------------------------------------------
# Trapezoid:


def SimpleTrapezoid(a=2.0, b=1.0, h=1.0, center=True):
    newpoints = []
    x = a / 2
    y = b / 2
    r = h / 2

    if center:
        newpoints.append([-x, -r, 0.0])
        newpoints.append([-y, r, 0.0])
        newpoints.append([y, r, 0.0])
        newpoints.append([x, -r, 0.0])

    else:
        newpoints.append([0.0, 0.0, 0.0])
        newpoints.append([x - y, h, 0.0])
        newpoints.append([x + y, h, 0.0])
        newpoints.append([a, 0.0, 0.0])

    return newpoints

# ------------------------------------------------------------
# calculates the matrix for the new object
# depending on user pref


def align_matrix(context, location):
    loc = Matrix.Translation(location)
    obj_align = context.user_preferences.edit.object_align
    if (context.space_data.type == 'VIEW_3D'
            and obj_align == 'VIEW'):
        rot = context.space_data.region_3d.view_matrix.to_3x3().inverted().to_4x4()
    else:
        rot = Matrix()
    align_matrix = loc * rot

    return align_matrix

# ------------------------------------------------------------
# Main Function


def main(context, self, align_matrix):
    # deselect all objects
    bpy.ops.object.select_all(action='DESELECT')

    # create object
    name = self.Simple_Type         # Type as name

    # create curve
    scene = bpy.context.scene
    newCurve = bpy.data.curves.new(name, type='CURVE')  # curvedatablock
    newSpline = newCurve.splines.new('BEZIER')  # spline

    # set curveOptions
    newCurve.dimensions = self.shape
    newSpline.use_endpoint_u = True

    sides = abs(int((self.Simple_endangle - self.Simple_startangle) / 90))

    # get verts
    if self.Simple_Type == 'Point':
        verts = SimplePoint()
        newSpline.use_cyclic_u = False

    if self.Simple_Type == 'Line':
        verts = SimpleLine(self.Simple_startlocation, self.Simple_endlocation)
        newSpline.use_cyclic_u = False
        newCurve.dimensions = '3D'

    if self.Simple_Type == 'Distance':
        verts = SimpleDistance(self.Simple_length, self.Simple_center)
        newSpline.use_cyclic_u = False

    if self.Simple_Type == 'Angle':
        verts = SimpleAngle(self.Simple_length, self.Simple_angle)
        newSpline.use_cyclic_u = False

    if self.Simple_Type == 'Circle':
        if self.Simple_sides < 4:
            self.Simple_sides = 4
        verts = SimpleCircle(self.Simple_sides, self.Simple_radius)
        newSpline.use_cyclic_u = True

    if self.Simple_Type == 'Ellipse':
        verts = SimpleEllipse(self.Simple_a, self.Simple_b)
        newSpline.use_cyclic_u = True

    if self.Simple_Type == 'Arc':
        if self.Simple_sides < sides:
            self.Simple_sides = sides
        if self.Simple_radius == 0:
            return {'FINISHED'}
        verts = SimpleArc(self.Simple_sides, self.Simple_radius, self.Simple_startangle, self.Simple_endangle)
        newSpline.use_cyclic_u = False

    if self.Simple_Type == 'Sector':
        if self.Simple_sides < sides:
            self.Simple_sides = sides
        if self.Simple_radius == 0:
            return {'FINISHED'}
        verts = SimpleSector(self.Simple_sides, self.Simple_radius, self.Simple_startangle, self.Simple_endangle)
        newSpline.use_cyclic_u = True

    if self.Simple_Type == 'Segment':
        if self.Simple_sides < sides:
            self.Simple_sides = sides
        if self.Simple_a == 0 or self.Simple_b == 0:
            return {'FINISHED'}
        verts = SimpleSegment(self.Simple_sides, self.Simple_a, self.Simple_b, self.Simple_startangle, self.Simple_endangle)
        newSpline.use_cyclic_u = True

    if self.Simple_Type == 'Rectangle':
        verts = SimpleRectangle(self.Simple_width, self.Simple_length, self.Simple_rounded, self.Simple_center)
        newSpline.use_cyclic_u = True

    if self.Simple_Type == 'Rhomb':
        verts = SimpleRhomb(self.Simple_width, self.Simple_length, self.Simple_center)
        newSpline.use_cyclic_u = True

    if self.Simple_Type == 'Polygon':
        if self.Simple_sides < 3:
            self.Simple_sides = 3
        verts = SimplePolygon(self.Simple_sides, self.Simple_radius)
        newSpline.use_cyclic_u = True

    if self.Simple_Type == 'Polygon_ab':
        if self.Simple_sides < 3:
            self.Simple_sides = 3
        verts = SimplePolygon_ab(self.Simple_sides, self.Simple_a, self.Simple_b)
        newSpline.use_cyclic_u = True

    if self.Simple_Type == 'Trapezoid':
        verts = SimpleTrapezoid(self.Simple_a, self.Simple_b, self.Simple_h, self.Simple_center)
        newSpline.use_cyclic_u = True

    vertArray = []
    for v in verts:
        vertArray += v

    newSpline.bezier_points.add(int(len(vertArray) * 0.333333333))
    newSpline.bezier_points.foreach_set('co', vertArray)

    # create object with newCurve
    SimpleCurve = bpy.data.objects.new(name, newCurve)  # object
    scene.objects.link(SimpleCurve)  # place in active scene
    SimpleCurve.select = True  # set as selected
    scene.objects.active = SimpleCurve  # set as active
    SimpleCurve.matrix_world = align_matrix  # apply matrix
    SimpleCurve.rotation_euler = self.Simple_rotation_euler

    all_points = [p for p in newSpline.bezier_points]
    d = 2 * 0.27606262
    n = 0
    for p in all_points:
        p.handle_right_type = 'VECTOR'
        p.handle_left_type = 'VECTOR'
        n += 1

    if self.Simple_Type == 'Circle' or self.Simple_Type == 'Arc' or self.Simple_Type == 'Sector' or self.Simple_Type == 'Segment' or self.Simple_Type == 'Ellipse':
        for p in all_points:
            p.handle_right_type = 'FREE'
            p.handle_left_type = 'FREE'

    if self.Simple_Type == 'Circle':
        i = 0
        for p1 in all_points:
            if i != n - 1:
                p2 = all_points[i + 1]
                u1 = asin(p1.co.y / self.Simple_radius)
                u2 = asin(p2.co.y / self.Simple_radius)
                if p1.co.x > 0 and p2.co.x < 0:
                    u1 = acos(p1.co.x / self.Simple_radius)
                    u2 = acos(p2.co.x / self.Simple_radius)
                elif p1.co.x < 0 and p2.co.x > 0:
                    u1 = acos(p1.co.x / self.Simple_radius)
                    u2 = acos(p2.co.x / self.Simple_radius)
                u = u2 - u1
                if u < 0:
                    u = -u
                l = 4 / 3 * tan(1 / 4 * u) * self.Simple_radius
                v1 = Vector((-p1.co.y, p1.co.x, 0))
                v1.normalize()
                v2 = Vector((-p2.co.y, p2.co.x, 0))
                v2.normalize()
                vh1 = v1 * l
                vh2 = v2 * l
                v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
                v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
                p1.handle_right = v1
                p2.handle_left = v2
            if i == n - 1:
                p2 = all_points[0]
                u1 = asin(p1.co.y / self.Simple_radius)
                u2 = asin(p2.co.y / self.Simple_radius)
                if p1.co.x > 0 and p2.co.x < 0:
                    u1 = acos(p1.co.x / self.Simple_radius)
                    u2 = acos(p2.co.x / self.Simple_radius)
                elif p1.co.x < 0 and p2.co.x > 0:
                    u1 = acos(p1.co.x / self.Simple_radius)
                    u2 = acos(p2.co.x / self.Simple_radius)
                u = u2 - u1
                if u < 0:
                    u = -u
                l = 4 / 3 * tan(1 / 4 * u) * self.Simple_radius
                v1 = Vector((-p1.co.y, p1.co.x, 0))
                v1.normalize()
                v2 = Vector((-p2.co.y, p2.co.x, 0))
                v2.normalize()
                vh1 = v1 * l
                vh2 = v2 * l
                v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
                v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
                p1.handle_right = v1
                p2.handle_left = v2
            i += 1

    if self.Simple_Type == 'Ellipse':
        all_points[0].handle_right = Vector((self.Simple_a, self.Simple_b * d, 0))
        all_points[0].handle_left = Vector((self.Simple_a, -self.Simple_b * d, 0))
        all_points[1].handle_right = Vector((-self.Simple_a * d, self.Simple_b, 0))
        all_points[1].handle_left = Vector((self.Simple_a * d, self.Simple_b, 0))
        all_points[2].handle_right = Vector((-self.Simple_a, -self.Simple_b * d, 0))
        all_points[2].handle_left = Vector((-self.Simple_a, self.Simple_b * d, 0))
        all_points[3].handle_right = Vector((self.Simple_a * d, -self.Simple_b, 0))
        all_points[3].handle_left = Vector((-self.Simple_a * d, -self.Simple_b, 0))

    if self.Simple_Type == 'Arc':
        i = 0
        for p1 in all_points:
            if i != n - 1:
                p2 = all_points[i + 1]
                u1 = asin(p1.co.y / self.Simple_radius)
                u2 = asin(p2.co.y / self.Simple_radius)
                if p1.co.x > 0 and p2.co.x < 0:
                    u1 = acos(p1.co.x / self.Simple_radius)
                    u2 = acos(p2.co.x / self.Simple_radius)
                elif p1.co.x < 0 and p2.co.x > 0:
                    u1 = acos(p1.co.x / self.Simple_radius)
                    u2 = acos(p2.co.x / self.Simple_radius)
                u = u2 - u1
                if u < 0:
                    u = -u
                l = 4 / 3 * tan(1 / 4 * u) * self.Simple_radius
                v1 = Vector((-p1.co.y, p1.co.x, 0))
                v1.normalize()
                v2 = Vector((-p2.co.y, p2.co.x, 0))
                v2.normalize()
                vh1 = v1 * l
                vh2 = v2 * l
                if self.Simple_startangle < self.Simple_endangle:
                    v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
                    v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
                    p1.handle_right = v1
                    p2.handle_left = v2
                else:
                    v1 = Vector((p1.co.x, p1.co.y, 0)) - vh1
                    v2 = Vector((p2.co.x, p2.co.y, 0)) + vh2
                    p1.handle_right = v1
                    p2.handle_left = v2
            i += 1

    if self.Simple_Type == 'Sector':
        i = 0
        for p1 in all_points:
            if i == 0:
                p1.handle_right_type = 'VECTOR'
                p1.handle_left_type = 'VECTOR'
            elif i != n - 1:
                p2 = all_points[i + 1]
                u1 = asin(p1.co.y / self.Simple_radius)
                u2 = asin(p2.co.y / self.Simple_radius)
                if p1.co.x > 0 and p2.co.x < 0:
                    u1 = acos(p1.co.x / self.Simple_radius)
                    u2 = acos(p2.co.x / self.Simple_radius)
                elif p1.co.x < 0 and p2.co.x > 0:
                    u1 = acos(p1.co.x / self.Simple_radius)
                    u2 = acos(p2.co.x / self.Simple_radius)
                u = u2 - u1
                if u < 0:
                    u = -u
                l = 4 / 3 * tan(1 / 4 * u) * self.Simple_radius
                v1 = Vector((-p1.co.y, p1.co.x, 0))
                v1.normalize()
                v2 = Vector((-p2.co.y, p2.co.x, 0))
                v2.normalize()
                vh1 = v1 * l
                vh2 = v2 * l
                if self.Simple_startangle < self.Simple_endangle:
                    v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
                    v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
                    p1.handle_right = v1
                    p2.handle_left = v2
                else:
                    v1 = Vector((p1.co.x, p1.co.y, 0)) - vh1
                    v2 = Vector((p2.co.x, p2.co.y, 0)) + vh2
                    p1.handle_right = v1
                    p2.handle_left = v2
            i += 1

    if self.Simple_Type == 'Segment':
        i = 0
        for p1 in all_points:
            if i < n / 2 - 1:
                p2 = all_points[i + 1]
                u1 = asin(p1.co.y / self.Simple_a)
                u2 = asin(p2.co.y / self.Simple_a)
                if p1.co.x > 0 and p2.co.x < 0:
                    u1 = acos(p1.co.x / self.Simple_a)
                    u2 = acos(p2.co.x / self.Simple_a)
                elif p1.co.x < 0 and p2.co.x > 0:
                    u1 = acos(p1.co.x / self.Simple_a)
                    u2 = acos(p2.co.x / self.Simple_a)
                u = u2 - u1
                if u < 0:
                    u = -u
                l = 4 / 3 * tan(1 / 4 * u) * self.Simple_a
                v1 = Vector((-p1.co.y, p1.co.x, 0))
                v1.normalize()
                v2 = Vector((-p2.co.y, p2.co.x, 0))
                v2.normalize()
                vh1 = v1 * l
                vh2 = v2 * l
                if self.Simple_startangle < self.Simple_endangle:
                    v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
                    v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
                    p1.handle_right = v1
                    p2.handle_left = v2
                else:
                    v1 = Vector((p1.co.x, p1.co.y, 0)) - vh1
                    v2 = Vector((p2.co.x, p2.co.y, 0)) + vh2
                    p1.handle_right = v1
                    p2.handle_left = v2
            elif i != n / 2 - 1 and i != n - 1:
                p2 = all_points[i + 1]
                u1 = asin(p1.co.y / self.Simple_b)
                u2 = asin(p2.co.y / self.Simple_b)
                if p1.co.x > 0 and p2.co.x < 0:
                    u1 = acos(p1.co.x / self.Simple_b)
                    u2 = acos(p2.co.x / self.Simple_b)
                elif p1.co.x < 0 and p2.co.x > 0:
                    u1 = acos(p1.co.x / self.Simple_b)
                    u2 = acos(p2.co.x / self.Simple_b)
                u = u2 - u1
                if u < 0:
                    u = -u
                l = 4 / 3 * tan(1 / 4 * u) * self.Simple_b
                v1 = Vector((-p1.co.y, p1.co.x, 0))
                v1.normalize()
                v2 = Vector((-p2.co.y, p2.co.x, 0))
                v2.normalize()
                vh1 = v1 * l
                vh2 = v2 * l
                if self.Simple_startangle < self.Simple_endangle:
                    v1 = Vector((p1.co.x, p1.co.y, 0)) - vh1
                    v2 = Vector((p2.co.x, p2.co.y, 0)) + vh2
                    p1.handle_right = v1
                    p2.handle_left = v2
                else:
                    v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
                    v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
                    p1.handle_right = v1
                    p2.handle_left = v2

            i += 1
        all_points[0].handle_left_type = 'VECTOR'
        all_points[n - 1].handle_right_type = 'VECTOR'
        all_points[int(n / 2) - 1].handle_right_type = 'VECTOR'
        all_points[int(n / 2)].handle_left_type = 'VECTOR'

    SimpleCurve.Simple = True
    SimpleCurve.Simple_Change = False
    SimpleCurve.Simple_Type = self.Simple_Type
    SimpleCurve.Simple_startlocation = self.Simple_startlocation
    SimpleCurve.Simple_endlocation = self.Simple_endlocation
    SimpleCurve.Simple_a = self.Simple_a
    SimpleCurve.Simple_b = self.Simple_b
    SimpleCurve.Simple_h = self.Simple_h
    SimpleCurve.Simple_angle = self.Simple_angle
    SimpleCurve.Simple_startangle = self.Simple_startangle
    SimpleCurve.Simple_endangle = self.Simple_endangle
    SimpleCurve.Simple_rotation_euler = self.Simple_rotation_euler
    SimpleCurve.Simple_sides = self.Simple_sides
    SimpleCurve.Simple_radius = self.Simple_radius
    SimpleCurve.Simple_center = self.Simple_center
    SimpleCurve.Simple_width = self.Simple_width
    SimpleCurve.Simple_length = self.Simple_length
    SimpleCurve.Simple_rounded = self.Simple_rounded

    bpy.ops.object.mode_set(mode='EDIT', toggle=True)
    bpy.ops.curve.select_all(action='SELECT')
    bpy.ops.object.mode_set(mode='OBJECT', toggle=True)

    return

# ------------------------------------------------------------
# Delete simple curve


def SimpleDelete(name):
    if bpy.ops.object.mode_set.poll():
        bpy.ops.object.mode_set(mode='OBJECT')

    bpy.context.scene.objects.active = bpy.data.objects[name]
    bpy.ops.object.delete()

    return

# ------------------------------------------------------------
# Simple operator


class Simple(bpy.types.Operator):
    ''''''
    bl_idname = "curve.simple"
    bl_label = "Simple curve"
    bl_options = {'REGISTER', 'UNDO'}
    bl_description = "adds simple curve"

    # align_matrix for the invoke
    align_matrix = Matrix()

    # change properties
    Simple = BoolProperty(name="Simple",
                          default=True,
                          description="simple curve")

    Simple_Change = BoolProperty(name="Change",
                                 default=False,
                                 description="change simple curve")

    Simple_Delete = StringProperty(name="Delete",
                                   description="Delete simple curve")

    # general properties
    Types = [('Point', 'Point', 'Point'),
             ('Line', 'Line', 'Line'),
             ('Distance', 'Distance', 'Distance'),
             ('Angle', 'Angle', 'Angle'),
             ('Circle', 'Circle', 'Circle'),
             ('Ellipse', 'Ellipse', 'Ellipse'),
             ('Arc', 'Arc', 'Arc'),
             ('Sector', 'Sector', 'Sector'),
             ('Segment', 'Segment', 'Segment'),
             ('Rectangle', 'Rectangle', 'Rectangle'),
             ('Rhomb', 'Rhomb', 'Rhomb'),
             ('Polygon', 'Polygon', 'Polygon'),
             ('Polygon_ab', 'Polygon_ab', 'Polygon_ab'),
             ('Trapezoid', 'Trapezoid', 'Trapezoid')]
    Simple_Type = EnumProperty(name="Type",
                               description="Form of Curve to create",
                               items=Types)

    # Line properties
    Simple_startlocation = FloatVectorProperty(name="",
                                               description="Start location",
                                               default=(0.0, 0.0, 0.0),
                                               subtype='TRANSLATION')
    Simple_endlocation = FloatVectorProperty(name="",
                                             description="End location",
                                             default=(2.0, 2.0, 2.0),
                                             subtype='TRANSLATION')
    Simple_rotation_euler = FloatVectorProperty(name="",
                                                description="Rotation",
                                                default=(0.0, 0.0, 0.0),
                                                subtype='EULER')

    # Trapezoid properties
    Simple_a = FloatProperty(name="a",
                             default=2.0,
                             min=0.0, soft_min=0.0,
                             unit='LENGTH',
                             description="a")
    Simple_b = FloatProperty(name="b",
                             default=1.0,
                             min=0.0, soft_min=0.0,
                             unit='LENGTH',
                             description="b")
    Simple_h = FloatProperty(name="h",
                             default=1.0,
                             unit='LENGTH',
                             description="h")

    Simple_angle = FloatProperty(name="Angle",
                                 default=45.0,
                                 description="Angle")
    Simple_startangle = FloatProperty(name="Start angle",
                                      default=0.0,
                                      min=-360.0, soft_min=-360.0,
                                      max=360.0, soft_max=360.0,
                                      description="Start angle")
    Simple_endangle = FloatProperty(name="End angle",
                                    default=45.0,
                                    min=-360.0, soft_min=-360.0,
                                    max=360.0, soft_max=360.0,
                                    description="End angle")

    Simple_sides = IntProperty(name="sides",
                               default=3,
                               min=0, soft_min=0,
                               description="sides")

    Simple_radius = FloatProperty(name="radius",
                                  default=1.0,
                                  min=0.0, soft_min=0.0,
                                  unit='LENGTH',
                                  description="radius")

    Simple_center = BoolProperty(name="Length center",
                                 default=True,
                                 description="Length center")

    Angle_types = [('Degrees', 'Degrees', 'Degrees'),
                   ('Radians', 'Radians', 'Radians')]
    Simple_degrees_or_radians = EnumProperty(name="Degrees or radians",
                                             description="Degrees or radians",
                                             items=Angle_types)

    # Rectangle properties
    Simple_width = FloatProperty(name="Width",
                                 default=2.0,
                                 min=0.0, soft_min=0,
                                 unit='LENGTH',
                                 description="Width")
    Simple_length = FloatProperty(name="Length",
                                  default=2.0,
                                  min=0.0, soft_min=0.0,
                                  unit='LENGTH',
                                  description="Length")
    Simple_rounded = FloatProperty(name="Rounded",
                                   default=0.0,
                                   min=0.0, soft_min=0.0,
                                   unit='LENGTH',
                                   description="Rounded")

    # Curve Options
    shapeItems = [
        ('2D', '2D', '2D'),
        ('3D', '3D', '3D')]
    shape = EnumProperty(name="2D / 3D",
                         items=shapeItems,
                         description="2D or 3D Curve")

    ##### DRAW #####
    def draw(self, context):
        layout = self.layout

        # general options
        col = layout.column()
        col.prop(self, 'Simple_Type')

        l = 0
        s = 0

        if self.Simple_Type == 'Line':
            col.label(text=self.Simple_Type + " Options")
            box = layout.box()
            box.prop(self, 'Simple_endlocation')
            v = Vector(self.Simple_endlocation) - Vector(self.Simple_startlocation)
            l = v.length

        if self.Simple_Type == 'Distance':
            col.label(text=self.Simple_Type + " Options")
            box = layout.box()
            box.prop(self, 'Simple_length')
            box.prop(self, 'Simple_center')
            l = self.Simple_length

        if self.Simple_Type == 'Angle':
            col.label(text=self.Simple_Type + " Options")
            box = layout.box()
            box.prop(self, 'Simple_length')
            box.prop(self, 'Simple_angle')
            row = layout.row()
            row.prop(self, 'Simple_degrees_or_radians', expand=True)

        if self.Simple_Type == 'Circle':
            col.label(text=self.Simple_Type + " Options")
            box = layout.box()
            box.prop(self, 'Simple_sides')
            box.prop(self, 'Simple_radius')
            l = 2 * pi * abs(self.Simple_radius)
            s = pi * self.Simple_radius * self.Simple_radius

        if self.Simple_Type == 'Ellipse':
            col.label(text=self.Simple_Type + " Options")
            box = layout.box()
            box.prop(self, 'Simple_a')
            box.prop(self, 'Simple_b')
            l = pi * (3 * (self.Simple_a + self.Simple_b) - sqrt((3 * self.Simple_a + self.Simple_b) * (self.Simple_a + 3 * self.Simple_b)))
            s = pi * abs(self.Simple_b) * abs(self.Simple_a)

        if self.Simple_Type == 'Arc':
            col.label(text=self.Simple_Type + " Options")
            box = layout.box()
            box.prop(self, 'Simple_sides')
            box.prop(self, 'Simple_radius')
            box.prop(self, 'Simple_startangle')
            box.prop(self, 'Simple_endangle')
            row = layout.row()
            row.prop(self, 'Simple_degrees_or_radians', expand=True)
            l = abs(pi * self.Simple_radius * (self.Simple_endangle - self.Simple_startangle) / 180)

        if self.Simple_Type == 'Sector':
            col.label(text=self.Simple_Type + " Options")
            box = layout.box()
            box.prop(self, 'Simple_sides')
            box.prop(self, 'Simple_radius')
            box.prop(self, 'Simple_startangle')
            box.prop(self, 'Simple_endangle')
            row = layout.row()
            row.prop(self, 'Simple_degrees_or_radians', expand=True)
            l = abs(pi * self.Simple_radius * (self.Simple_endangle - self.Simple_startangle) / 180) + self.Simple_radius * 2
            s = pi * self.Simple_radius * self.Simple_radius * abs(self.Simple_endangle - self.Simple_startangle) / 360

        if self.Simple_Type == 'Segment':
            col.label(text=self.Simple_Type + " Options")
            box = layout.box()
            box.prop(self, 'Simple_sides')
            box.prop(self, 'Simple_a')
            box.prop(self, 'Simple_b')
            box.prop(self, 'Simple_startangle')
            box.prop(self, 'Simple_endangle')
            row = layout.row()
            row.prop(self, 'Simple_degrees_or_radians', expand=True)
            la = abs(pi * self.Simple_a * (self.Simple_endangle - self.Simple_startangle) / 180)
            lb = abs(pi * self.Simple_b * (self.Simple_endangle - self.Simple_startangle) / 180)
            l = abs(self.Simple_a - self.Simple_b) * 2 + la + lb
            sa = pi * self.Simple_a * self.Simple_a * abs(self.Simple_endangle - self.Simple_startangle) / 360
            sb = pi * self.Simple_b * self.Simple_b * abs(self.Simple_endangle - self.Simple_startangle) / 360
            s = abs(sa - sb)

        if self.Simple_Type == 'Rectangle':
            col.label(text=self.Simple_Type + " Options")
            box = layout.box()
            box.prop(self, 'Simple_width')
            box.prop(self, 'Simple_length')
            box.prop(self, 'Simple_rounded')
            box.prop(self, 'Simple_center')
            l = 2 * abs(self.Simple_width) + 2 * abs(self.Simple_length)
            s = abs(self.Simple_width) * abs(self.Simple_length)

        if self.Simple_Type == 'Rhomb':
            col.label(text=self.Simple_Type + " Options")
            box = layout.box()
            box.prop(self, 'Simple_width')
            box.prop(self, 'Simple_length')
            box.prop(self, 'Simple_center')
            g = hypot(self.Simple_width / 2, self.Simple_length / 2)
            l = 4 * g
            s = self.Simple_width * self.Simple_length / 2

        if self.Simple_Type == 'Polygon':
            col.label(text=self.Simple_Type + " Options")
            box = layout.box()
            box.prop(self, 'Simple_sides')
            box.prop(self, 'Simple_radius')

        if self.Simple_Type == 'Polygon_ab':
            col.label(text=self.Simple_Type + " Options")
            box = layout.box()
            box.prop(self, 'Simple_sides')
            box.prop(self, 'Simple_a')
            box.prop(self, 'Simple_b')

        if self.Simple_Type == 'Trapezoid':
            col.label(text=self.Simple_Type + " Options")
            box = layout.box()
            box.prop(self, 'Simple_a')
            box.prop(self, 'Simple_b')
            box.prop(self, 'Simple_h')
            box.prop(self, 'Simple_center')
            g = hypot(self.Simple_h, (self.Simple_a - self.Simple_b) / 2)
            l = self.Simple_a + self.Simple_b + g * 2
            s = (abs(self.Simple_a) + abs(self.Simple_b)) / 2 * self.Simple_h

        row = layout.row()
        row.prop(self, 'shape', expand=True)
        box = layout.box()
        box.label("Location:")
        box.prop(self, 'Simple_startlocation')
        box = layout.box()
        box.label("Rotation:")
        box.prop(self, 'Simple_rotation_euler')
        if l != 0:
            l_str = str(round(l, 4))
            row = layout.row()
            row.label("Length: " + l_str)
        if s != 0:
            s_str = str(round(s, 4))
            row = layout.row()
            row.label("Area: " + s_str)

    ##### POLL #####
    @classmethod
    def poll(cls, context):
        return context.scene is not None

    ##### EXECUTE #####
    def execute(self, context):
        if self.Simple_Change:
            SimpleDelete(self.Simple_Delete)

        # go to object mode
        if bpy.ops.object.mode_set.poll():
            bpy.ops.object.mode_set(mode='OBJECT')

        # turn off undo
        undo = bpy.context.user_preferences.edit.use_global_undo
        bpy.context.user_preferences.edit.use_global_undo = False

        # main function
        self.align_matrix = align_matrix(context, self.Simple_startlocation)
        main(context, self, self.align_matrix)

        # restore pre operator undo state
        bpy.context.user_preferences.edit.use_global_undo = undo

        return {'FINISHED'}

    ##### INVOKE #####
    def invoke(self, context, event):
        # store creation_matrix
        if self.Simple_Change:
            bpy.context.scene.cursor_location = self.Simple_startlocation
        else:
            self.Simple_startlocation = bpy.context.scene.cursor_location

        self.align_matrix = align_matrix(context, self.Simple_startlocation)
        self.execute(context)

        return {'FINISHED'}

# ------------------------------------------------------------
# Fillet


class BezierPointsFillet(bpy.types.Operator):
    ''''''
    bl_idname = "curve.bezier_points_fillet"
    bl_label = "Bezier points fillet"
    bl_options = {'REGISTER', 'UNDO'}
    bl_description = "bezier points fillet"

    Fillet_radius = FloatProperty(name="Radius",
                                  default=0.25,
                                  unit='LENGTH',
                                  description="radius")

    Types = [('Round', 'Round', 'Round'),
             ('Chamfer', 'Chamfer', 'Chamfer')]
    Fillet_Type = EnumProperty(name="Type",
                               description="Fillet type",
                               items=Types)

    ##### DRAW #####
    def draw(self, context):
        layout = self.layout

        # general options
        col = layout.column()
        col.prop(self, 'Fillet_radius')
        col.prop(self, 'Fillet_Type', expand=True)

    ##### POLL #####
    @classmethod
    def poll(cls, context):
        return context.scene is not None

    ##### EXECUTE #####
    def execute(self, context):
        # go to object mode
        if bpy.ops.object.mode_set.poll():
            bpy.ops.object.mode_set(mode='OBJECT')
            bpy.ops.object.mode_set(mode='EDIT')

        # turn off undo
        undo = bpy.context.user_preferences.edit.use_global_undo
        bpy.context.user_preferences.edit.use_global_undo = False

        # main function
        spline = bpy.context.object.data.splines.active
        selected = [p for p in spline.bezier_points if p.select_control_point]

        bpy.ops.curve.handle_type_set(type='VECTOR')
        n = 0
        ii = []
        for p in spline.bezier_points:
            if p.select_control_point:
                ii.append(n)
                n += 1
            else:
                n += 1

        if n > 2:

            jn = 0

            for j in ii:

                j += jn

                selected_all = [p for p in spline.bezier_points]

                bpy.ops.curve.select_all(action='DESELECT')

                if j != 0 and j != n - 1:
                    selected_all[j].select_control_point = True
                    selected_all[j + 1].select_control_point = True
                    bpy.ops.curve.subdivide()
                    selected_all = [p for p in spline.bezier_points]
                    selected4 = [selected_all[j - 1], selected_all[j], selected_all[j + 1], selected_all[j + 2]]
                    jn += 1
                    n += 1

                elif j == 0:
                    selected_all[j].select_control_point = True
                    selected_all[j + 1].select_control_point = True
                    bpy.ops.curve.subdivide()
                    selected_all = [p for p in spline.bezier_points]
                    selected4 = [selected_all[n], selected_all[0], selected_all[1], selected_all[2]]
                    jn += 1
                    n += 1

                elif j == n - 1:
                    selected_all[j].select_control_point = True
                    selected_all[j - 1].select_control_point = True
                    bpy.ops.curve.subdivide()
                    selected_all = [p for p in spline.bezier_points]
                    selected4 = [selected_all[0], selected_all[n], selected_all[n - 1], selected_all[n - 2]]

                selected4[2].co = selected4[1].co
                s1 = Vector(selected4[0].co) - Vector(selected4[1].co)
                s2 = Vector(selected4[3].co) - Vector(selected4[2].co)
                s1.normalize()
                s11 = Vector(selected4[1].co) + s1 * self.Fillet_radius
                selected4[1].co = s11
                s2.normalize()
                s22 = Vector(selected4[2].co) + s2 * self.Fillet_radius
                selected4[2].co = s22

                if self.Fillet_Type == 'Round':
                    if j != n - 1:
                        selected4[2].handle_right_type = 'VECTOR'
                        selected4[1].handle_left_type = 'VECTOR'
                        selected4[1].handle_right_type = 'ALIGNED'
                        selected4[2].handle_left_type = 'ALIGNED'
                    else:
                        selected4[1].handle_right_type = 'VECTOR'
                        selected4[2].handle_left_type = 'VECTOR'
                        selected4[2].handle_right_type = 'ALIGNED'
                        selected4[1].handle_left_type = 'ALIGNED'
                if self.Fillet_Type == 'Chamfer':
                    selected4[2].handle_right_type = 'VECTOR'
                    selected4[1].handle_left_type = 'VECTOR'
                    selected4[1].handle_right_type = 'VECTOR'
                    selected4[2].handle_left_type = 'VECTOR'

        bpy.ops.curve.select_all(action='SELECT')
        bpy.ops.curve.spline_type_set(type='BEZIER')

        # restore pre operator undo state
        bpy.context.user_preferences.edit.use_global_undo = undo

        return {'FINISHED'}

    ##### INVOKE #####
    def invoke(self, context, event):
        self.execute(context)

        return {'FINISHED'}


def subdivide_cubic_bezier(p1, p2, p3, p4, t):
    p12 = (p2 - p1) * t + p1
    p23 = (p3 - p2) * t + p2
    p34 = (p4 - p3) * t + p3
    p123 = (p23 - p12) * t + p12
    p234 = (p34 - p23) * t + p23
    p1234 = (p234 - p123) * t + p123
    return [p12, p123, p1234, p234, p34]

# ------------------------------------------------------------
# BezierDivide Operator


class BezierDivide(bpy.types.Operator):
    ''''''
    bl_idname = "curve.bezier_spline_divide"
    bl_label = "Bezier Divide (enters edit mode) for Fillet Curves"
    bl_options = {'REGISTER', 'UNDO'}
    bl_description = "bezier spline divide"

    # align_matrix for the invoke
    align_matrix = Matrix()

    Bezier_t = FloatProperty(name="t (0% - 100%)",
                             default=50.0,
                             min=0.0, soft_min=0.0,
                             max=100.0, soft_max=100.0,
                             description="t (0% - 100%)")

    ##### POLL #####
    @classmethod
    def poll(cls, context):
        return context.scene is not None

    ##### EXECUTE #####
    def execute(self, context):
        # go to object mode
        if bpy.ops.object.mode_set.poll():
            bpy.ops.object.mode_set(mode='OBJECT')
            bpy.ops.object.mode_set(mode='EDIT')

        # turn off undo
        undo = bpy.context.user_preferences.edit.use_global_undo
        bpy.context.user_preferences.edit.use_global_undo = False

        # main function
        spline = bpy.context.object.data.splines.active
        vertex = []
        selected_all = [p for p in spline.bezier_points if p.select_control_point]
        h = subdivide_cubic_bezier(selected_all[0].co, selected_all[0].handle_right, selected_all[1].handle_left, selected_all[1].co, self.Bezier_t / 100)

        selected_all[0].handle_right_type = 'FREE'
        selected_all[0].handle_left_type = 'FREE'
        selected_all[1].handle_right_type = 'FREE'
        selected_all[1].handle_left_type = 'FREE'
        bpy.ops.curve.subdivide(1)
        selected_all = [p for p in spline.bezier_points if p.select_control_point]

        selected_all[0].handle_right = h[0]
        selected_all[1].co = h[2]
        selected_all[1].handle_left = h[1]
        selected_all[1].handle_right = h[3]
        selected_all[2].handle_left = h[4]

        # restore pre operator undo state
        bpy.context.user_preferences.edit.use_global_undo = undo

        return {'FINISHED'}

    ##### INVOKE #####
    def invoke(self, context, event):
        self.execute(context)

        return {'FINISHED'}

# ------------------------------------------------------------
# Simple change panel


class SimplePanel(bpy.types.Panel):

    bl_label = "Simple change"
    bl_space_type = "VIEW_3D"
    bl_region_type = "TOOLS"
    bl_options = {'DEFAULT_CLOSED'}
    bl_category = "Tools"

    ##### POLL #####
    @classmethod
    def poll(cls, context):
        if not context.active_object:
            pass
        elif context.object.Simple == True:
            return (context.object)

    ##### DRAW #####
    def draw(self, context):
        if context.object.Simple == True:

            layout = self.layout

            obj = context.object
            row = layout.row()
            simple_change = row.operator("curve.simple", text='Change')
            simple_change.Simple_Change = True
            simple_change.Simple_Delete = obj.name
            simple_change.Simple_Type = obj.Simple_Type
            simple_change.Simple_startlocation = obj.location
            simple_change.Simple_endlocation = obj.Simple_endlocation
            simple_change.Simple_a = obj.Simple_a
            simple_change.Simple_b = obj.Simple_b
            simple_change.Simple_h = obj.Simple_h
            simple_change.Simple_angle = obj.Simple_angle
            simple_change.Simple_startangle = obj.Simple_startangle
            simple_change.Simple_endangle = obj.Simple_endangle
            simple_change.Simple_rotation_euler = obj.rotation_euler
            simple_change.Simple_sides = obj.Simple_sides
            simple_change.Simple_radius = obj.Simple_radius
            simple_change.Simple_center = obj.Simple_center
            simple_change.Simple_width = obj.Simple_width
            simple_change.Simple_length = obj.Simple_length
            simple_change.Simple_rounded = obj.Simple_rounded

# ------------------------------------------------------------
# Fillet tools panel


class SimpleEdit(bpy.types.Operator):

    """Curve Simple"""
    bl_idname = "object._simple_edit"
    bl_label = "Create Curves"
    bl_options = {'REGISTER', 'UNDO'}
    bl_description = "Subdivide & Fillet Curves"

    ##### POLL #####
    @classmethod
    def poll(cls, context):
        vertex = []
        nselected = []
        n = 0
        obj = context.active_object
        if obj is not None:
            if obj.type == 'CURVE':
                for i in obj.data.splines:
                    for j in i.bezier_points:
                        n += 1
                        if j.select_control_point:
                            nselected.append(n)
                            vertex.append(obj.matrix_world * j.co)

            if len(vertex) > 0 and n > 2:
                return (context.active_object)
            if len(vertex) == 2 and abs(nselected[0] - nselected[1]) == 1:
                return (context.active_object)

        selected = 0
        for obj in context.selected_objects:
            if obj.type == 'CURVE':
                selected += 1

        if selected >= 2:
            return (context.selected_objects)

    ##### DRAW #####
    def draw(self, context):
        vertex = []
        selected = []
        n = 0
        obj = context.active_object
        if obj is not None:
            if obj.type == 'CURVE':
                for i in obj.data.splines:
                    for j in i.bezier_points:
                        n += 1
                        if j.select_control_point:
                            selected.append(n)
                            vertex.append(obj.matrix_world * j.co)

            if len(vertex) > 0 and n > 2:
                layout = self.layout
                row = layout.row()
                simple_edit = row.operator("curve.bezier_points_fillet", text='Fillet')
            if len(vertex) == 2 and abs(selected[0] - selected[1]) == 1:
                layout = self.layout
                row = layout.row()
                simple_divide = row.operator("curve.bezier_spline_divide", text='Divide')

# ------------------------------------------------------------
# location update


def StartLocationUpdate(self, context):

    bpy.context.scene.cursor_location = self.Simple_startlocation

    return

# ------------------------------------------------------------
# Add properties to objects


def SimpleVariables():

    bpy.types.Object.Simple = bpy.props.BoolProperty()
    bpy.types.Object.Simple_Change = bpy.props.BoolProperty()
    # general properties
    Types = [('Point', 'Point', 'Point'),
             ('Line', 'Line', 'Line'),
             ('Distance', 'Distance', 'Distance'),
             ('Angle', 'Angle', 'Angle'),
             ('Circle', 'Circle', 'Circle'),
             ('Ellipse', 'Ellipse', 'Ellipse'),
             ('Arc', 'Arc', 'Arc'),
             ('Sector', 'Sector', 'Sector'),
             ('Segment', 'Segment', 'Segment'),
             ('Rectangle', 'Rectangle', 'Rectangle'),
             ('Rhomb', 'Rhomb', 'Rhomb'),
             ('Polygon', 'Polygon', 'Polygon'),
             ('Polygon_ab', 'Polygon_ab', 'Polygon_ab'),
             ('Trapezoid', 'Trapezoid', 'Trapezoid')]
    bpy.types.Object.Simple_Type = bpy.props.EnumProperty(name="Type",
                                                          description="Form of Curve to create",
                                                          items=Types)

    # Line properties
    bpy.types.Object.Simple_startlocation = bpy.props.FloatVectorProperty(name="Start location",
                                                                          description="Start location",
                                                                          default=(0.0, 0.0, 0.0),
                                                                          subtype='TRANSLATION',
                                                                          update=StartLocationUpdate)
    bpy.types.Object.Simple_endlocation = bpy.props.FloatVectorProperty(name="End location",
                                                                        description="End location",
                                                                        default=(2.0, 2.0, 2.0),
                                                                        subtype='TRANSLATION')
    bpy.types.Object.Simple_rotation_euler = bpy.props.FloatVectorProperty(name="Rotation",
                                                                           description="Rotation",
                                                                           default=(0.0, 0.0, 0.0),
                                                                           subtype='EULER')

    # Trapezoid properties
    bpy.types.Object.Simple_a = bpy.props.FloatProperty(name="a",
                                                        default=2.0,
                                                        min=0.0, soft_min=0.0,
                                                        unit='LENGTH',
                                                        description="a")
    bpy.types.Object.Simple_b = bpy.props.FloatProperty(name="b",
                                                        default=1.0,
                                                        min=0.0, soft_min=0.0,
                                                        unit='LENGTH',
                                                        description="b")
    bpy.types.Object.Simple_h = bpy.props.FloatProperty(name="h",
                                                        default=1.0,
                                                        unit='LENGTH',
                                                        description="h")

    bpy.types.Object.Simple_angle = bpy.props.FloatProperty(name="Angle",
                                                            default=45.0,
                                                            description="Angle")
    bpy.types.Object.Simple_startangle = bpy.props.FloatProperty(name="Start angle",
                                                                 default=0.0,
                                                                 min=-360.0, soft_min=-360.0,
                                                                 max=360.0, soft_max=360.0,
                                                                 description="Start angle")
    bpy.types.Object.Simple_endangle = bpy.props.FloatProperty(name="End angle",
                                                               default=45.0,
                                                               min=-360.0, soft_min=-360.0,
                                                               max=360.0, soft_max=360.0,
                                                               description="End angle")

    bpy.types.Object.Simple_sides = bpy.props.IntProperty(name="sides",
                                                          default=3,
                                                          min=3, soft_min=3,
                                                          description="sides")

    bpy.types.Object.Simple_radius = bpy.props.FloatProperty(name="radius",
                                                             default=1.0,
                                                             min=0.0, soft_min=0.0,
                                                             unit='LENGTH',
                                                             description="radius")

    bpy.types.Object.Simple_center = bpy.props.BoolProperty(name="Length center",
                                                            default=True,
                                                            description="Length center")

    # Rectangle properties
    bpy.types.Object.Simple_width = bpy.props.FloatProperty(name="Width",
                                                            default=2.0,
                                                            min=0.0, soft_min=0.0,
                                                            unit='LENGTH',
                                                            description="Width")
    bpy.types.Object.Simple_length = bpy.props.FloatProperty(name="Length",
                                                             default=2.0,
                                                             min=0.0, soft_min=0.0,
                                                             unit='LENGTH',
                                                             description="Length")
    bpy.types.Object.Simple_rounded = bpy.props.FloatProperty(name="Rounded",
                                                              default=0.0,
                                                              unit='LENGTH',
                                                              description="Rounded")

################################################################################
##### REGISTER #####


class INFO_MT_simple_menu(bpy.types.Menu):
    # Define the "Extras" menu
    bl_idname = "INFO_MT_simple_menu"
    bl_label = "2D Objects"

    def draw(self, context):
        self.layout.operator_context = 'INVOKE_REGION_WIN'

        oper2 = self.layout.operator(Simple.bl_idname, text="Point", icon="MOD_CURVE")
        oper2.Simple_Change = False
        oper2.Simple_Type = "Point"

        oper3 = self.layout.operator(Simple.bl_idname, text="Line", icon="MOD_CURVE")
        oper3.Simple_Change = False
        oper3.Simple_Type = "Line"

        oper4 = self.layout.operator(Simple.bl_idname, text="Distance", icon="MOD_CURVE")
        oper4.Simple_Change = False
        oper4.Simple_Type = "Distance"

        oper5 = self.layout.operator(Simple.bl_idname, text="Angle", icon="MOD_CURVE")
        oper5.Simple_Change = False
        oper5.Simple_Type = "Angle"

        oper6 = self.layout.operator(Simple.bl_idname, text="Circle", icon="MOD_CURVE")
        oper6.Simple_Change = False
        oper6.Simple_Type = "Circle"

        oper7 = self.layout.operator(Simple.bl_idname, text="Ellipse", icon="MOD_CURVE")
        oper7.Simple_Change = False
        oper7.Simple_Type = "Ellipse"

        oper8 = self.layout.operator(Simple.bl_idname, text="Arc", icon="MOD_CURVE")
        oper8.Simple_Change = False
        oper8.Simple_Type = "Arc"

        oper9 = self.layout.operator(Simple.bl_idname, text="Sector", icon="MOD_CURVE")
        oper9.Simple_Change = False
        oper9.Simple_Type = "Sector"

        oper10 = self.layout.operator(Simple.bl_idname, text="Segment", icon="MOD_CURVE")
        oper10.Simple_Change = False
        oper10.Simple_Type = "Segment"

        oper11 = self.layout.operator(Simple.bl_idname, text="Rectangle", icon="MOD_CURVE")
        oper11.Simple_Change = False
        oper11.Simple_Type = "Rectangle"

        oper12 = self.layout.operator(Simple.bl_idname, text="Rhomb", icon="MOD_CURVE")
        oper12.Simple_Change = False
        oper12.Simple_Type = "Rhomb"

        oper13 = self.layout.operator(Simple.bl_idname, text="Polygon", icon="MOD_CURVE")
        oper13.Simple_Change = False
        oper13.Simple_Type = "Polygon"

        oper14 = self.layout.operator(Simple.bl_idname, text="Polygon_ab", icon="MOD_CURVE")
        oper14.Simple_Change = False
        oper14.Simple_Type = "Polygon_ab"

        oper15 = self.layout.operator(Simple.bl_idname, text="Trapezoid", icon="MOD_CURVE")
        oper15.Simple_Change = False
        oper15.Simple_Type = "Trapezoid"


def Simple_button(self, context):
    layout = self.layout
    layout.separator()
    oper11 = self.layout.operator(Simple.bl_idname, text="Rectangle", icon="MOD_CURVE")
    oper11.Simple_Change = False
    oper11.Simple_Type = "Rectangle"

    self.layout.menu("INFO_MT_simple_menu", icon="MOD_CURVE")


def register():
    bpy.utils.register_class(Simple)
    bpy.utils.register_class(BezierPointsFillet)
    bpy.utils.register_class(BezierDivide)
    bpy.utils.register_class(SimplePanel)
    bpy.utils.register_class(SimpleEdit)
    bpy.utils.register_class(INFO_MT_simple_menu)

    bpy.types.INFO_MT_curve_add.append(Simple_button)

    SimpleVariables()


def unregister():
    bpy.utils.unregister_class(Simple)
    bpy.utils.unregister_class(BezierPointsFillet)
    bpy.utils.unregister_class(BezierDivide)
    bpy.utils.unregister_class(SimplePanel)
    bpy.utils.unregister_class(SimpleEdit)
    bpy.utils.unregister_class(INFO_MT_simple_menu)

    bpy.types.INFO_MT_curve_add.remove(Simple_button)

if __name__ == "__main__":
    register()