Newer
Older
#====================== BEGIN GPL LICENSE BLOCK ======================
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
#======================= END GPL LICENSE BLOCK ========================
import bpy
from mathutils import Vector
from math import pi, acos
from rigify.utils import MetarigError
from rigify.utils import copy_bone
from rigify.utils import connected_children_names
from rigify.utils import strip_org, make_mechanism_name, insert_before_lr
from rigify.utils import get_layers
from rigify.utils import create_widget, create_line_widget, create_sphere_widget
from rna_prop_ui import rna_idprop_ui_prop_get
def angle_on_plane(plane, vec1, vec2):
""" Return the angle between two vectors projected onto a plane.
"""
plane.normalize()
vec1 = vec1 - (plane * (vec1.dot(plane)))
vec2 = vec2 - (plane * (vec2.dot(plane)))
vec1.normalize()
vec2.normalize()
# Determine the angle
angle = acos(max(-1.0, min(1.0, vec1.dot(vec2))))
if angle < 0.00001: # close enough to zero that sign doesn't matter
return angle
# Determine the sign of the angle
vec3 = vec2.cross(vec1)
vec3.normalize()
sign = vec3.dot(plane)
if sign >= 0:
sign = 1
else:
sign = -1
return angle * sign
class Rig:
""" An IK arm rig, with an optional ik/fk switch.
"""
def __init__(self, obj, bone, params, ikfk_switch=False):
""" Gather and validate data about the rig.
Store any data or references to data that will be needed later on.
In particular, store references to bones that will be needed, and
store names of bones that will be needed.
Do NOT change any data in the scene. This is a gathering phase only.
ikfk_switch: if True, create an ik/fk switch slider
"""
self.obj = obj
self.params = params
self.switch = ikfk_switch
# Get the chain of 3 connected bones
self.org_bones = [bone] + connected_children_names(self.obj, bone)[:2]
if len(self.org_bones) != 3:
raise MetarigError("RIGIFY ERROR: Bone '%s': input to rig type must be a chain of 3 bones." % (strip_org(bone)))
# Get the rig parameters
if params.separate_ik_layers:
self.layers = list(params.ik_layers)
else:
self.layers = None
self.bend_hint = params.bend_hint
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
self.primary_rotation_axis = params.primary_rotation_axis
def generate(self):
""" Generate the rig.
Do NOT modify any of the original bones, except for adding constraints.
The main armature should be selected and active before this is called.
"""
bpy.ops.object.mode_set(mode='EDIT')
# Create the bones
uarm = copy_bone(self.obj, self.org_bones[0], make_mechanism_name(strip_org(insert_before_lr(self.org_bones[0], "_ik"))))
farm = copy_bone(self.obj, self.org_bones[1], make_mechanism_name(strip_org(insert_before_lr(self.org_bones[1], "_ik"))))
hand = copy_bone(self.obj, self.org_bones[2], strip_org(insert_before_lr(self.org_bones[2], "_ik")))
pole = copy_bone(self.obj, self.org_bones[0], strip_org(insert_before_lr(self.org_bones[0], "_pole")))
vishand = copy_bone(self.obj, self.org_bones[2], "VIS-" + strip_org(insert_before_lr(self.org_bones[2], "_ik")))
vispole = copy_bone(self.obj, self.org_bones[1], "VIS-" + strip_org(insert_before_lr(self.org_bones[0], "_pole")))
# Get edit bones
eb = self.obj.data.edit_bones
uarm_e = eb[uarm]
farm_e = eb[farm]
hand_e = eb[hand]
pole_e = eb[pole]
vishand_e = eb[vishand]
vispole_e = eb[vispole]
# Parenting
farm_e.parent = uarm_e
hand_e.use_connect = False
hand_e.parent = None
pole_e.use_connect = False
vishand_e.use_connect = False
vishand_e.parent = None
vispole_e.use_connect = False
vispole_e.parent = None
# Misc
hand_e.use_local_location = False
vishand_e.hide_select = True
vispole_e.hide_select = True
# Positioning
v1 = farm_e.tail - uarm_e.head
if 'X' in self.primary_rotation_axis or 'Y' in self.primary_rotation_axis:
v2 = v1.cross(farm_e.x_axis)
if (v2 * farm_e.z_axis) > 0.0:
v2 *= -1.0
else:
v2 = v1.cross(farm_e.z_axis)
if (v2 * farm_e.x_axis) < 0.0:
v2 *= -1.0
v2.normalize()
v2 *= v1.length
if '-' in self.primary_rotation_axis:
v2 *= -1
pole_e.head = farm_e.head + v2
pole_e.tail = pole_e.head + (Vector((0, 1, 0)) * (v1.length / 8))
pole_e.roll = 0.0
vishand_e.tail = vishand_e.head + Vector((0, 0, v1.length / 32))
vispole_e.tail = vispole_e.head + Vector((0, 0, v1.length / 32))
# Determine the pole offset value
plane = (farm_e.tail - uarm_e.head).normalized()
vec1 = uarm_e.x_axis.normalized()
vec2 = (pole_e.head - uarm_e.head).normalized()
pole_offset = angle_on_plane(plane, vec1, vec2)
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Object mode, get pose bones
bpy.ops.object.mode_set(mode='OBJECT')
pb = self.obj.pose.bones
uarm_p = pb[uarm]
farm_p = pb[farm]
hand_p = pb[hand]
pole_p = pb[pole]
vishand_p = pb[vishand]
vispole_p = pb[vispole]
# Set the elbow to only bend on the primary axis
if 'X' in self.primary_rotation_axis:
farm_p.lock_ik_y = True
farm_p.lock_ik_z = True
elif 'Y' in self.primary_rotation_axis:
farm_p.lock_ik_x = True
farm_p.lock_ik_z = True
else:
farm_p.lock_ik_x = True
farm_p.lock_ik_y = True
# Pole target only translates
pole_p.lock_location = False, False, False
pole_p.lock_rotation = True, True, True
pole_p.lock_rotation_w = True
pole_p.lock_scale = True, True, True
# Set up custom properties
if self.switch == True:
prop = rna_idprop_ui_prop_get(hand_p, "ikfk_switch", create=True)
hand_p["ikfk_switch"] = 0.0
prop["soft_min"] = prop["min"] = 0.0
prop["soft_max"] = prop["max"] = 1.0
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Bend direction hint
if self.bend_hint:
con = farm_p.constraints.new('LIMIT_ROTATION')
con.name = "bend_hint"
con.owner_space = 'LOCAL'
if self.primary_rotation_axis == 'X':
con.use_limit_x = True
con.min_x = pi / 10
con.max_x = pi / 10
elif self.primary_rotation_axis == '-X':
con.use_limit_x = True
con.min_x = -pi / 10
con.max_x = -pi / 10
elif self.primary_rotation_axis == 'Y':
con.use_limit_y = True
con.min_y = pi / 10
con.max_y = pi / 10
elif self.primary_rotation_axis == '-Y':
con.use_limit_y = True
con.min_y = -pi / 10
con.max_y = -pi / 10
elif self.primary_rotation_axis == 'Z':
con.use_limit_z = True
con.min_z = pi / 10
con.max_z = pi / 10
elif self.primary_rotation_axis == '-Z':
con.use_limit_z = True
con.min_z = -pi / 10
con.max_z = -pi / 10
# IK Constraint
con = farm_p.constraints.new('IK')
con.name = "ik"
con.target = self.obj
con.subtarget = hand
con.pole_target = self.obj
con.pole_subtarget = pole
con.pole_angle = pole_offset
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
con.chain_count = 2
# Constrain org bones to controls
con = pb[self.org_bones[0]].constraints.new('COPY_TRANSFORMS')
con.name = "ik"
con.target = self.obj
con.subtarget = uarm
if self.switch == True:
# IK/FK switch driver
fcurve = con.driver_add("influence")
driver = fcurve.driver
var = driver.variables.new()
driver.type = 'AVERAGE'
var.name = "var"
var.targets[0].id_type = 'OBJECT'
var.targets[0].id = self.obj
var.targets[0].data_path = hand_p.path_from_id() + '["ikfk_switch"]'
con = pb[self.org_bones[1]].constraints.new('COPY_TRANSFORMS')
con.name = "ik"
con.target = self.obj
con.subtarget = farm
if self.switch == True:
# IK/FK switch driver
fcurve = con.driver_add("influence")
driver = fcurve.driver
var = driver.variables.new()
driver.type = 'AVERAGE'
var.name = "var"
var.targets[0].id_type = 'OBJECT'
var.targets[0].id = self.obj
var.targets[0].data_path = hand_p.path_from_id() + '["ikfk_switch"]'
con = pb[self.org_bones[2]].constraints.new('COPY_TRANSFORMS')
con.name = "ik"
con.target = self.obj
con.subtarget = hand
if self.switch == True:
# IK/FK switch driver
fcurve = con.driver_add("influence")
driver = fcurve.driver
var = driver.variables.new()
driver.type = 'AVERAGE'
var.name = "var"
var.targets[0].id_type = 'OBJECT'
var.targets[0].id = self.obj
var.targets[0].data_path = hand_p.path_from_id() + '["ikfk_switch"]'
# VIS hand constraints
con = vishand_p.constraints.new('COPY_LOCATION')
con.name = "copy_loc"
con.target = self.obj
con.subtarget = self.org_bones[2]
con = vishand_p.constraints.new('STRETCH_TO')
con.name = "stretch_to"
con.target = self.obj
con.subtarget = hand
con.volume = 'NO_VOLUME'
con.rest_length = vishand_p.length
# VIS pole constraints
con = vispole_p.constraints.new('COPY_LOCATION')
con.name = "copy_loc"
con.target = self.obj
con.subtarget = self.org_bones[1]
con = vispole_p.constraints.new('STRETCH_TO')
con.name = "stretch_to"
con.target = self.obj
con.subtarget = pole
con.volume = 'NO_VOLUME'
con.rest_length = vispole_p.length
# Set layers if specified
if self.layers:
hand_p.bone.layers = self.layers
pole_p.bone.layers = self.layers
vishand_p.bone.layers = self.layers
vispole_p.bone.layers = self.layers
# Create widgets
create_line_widget(self.obj, vispole)
create_line_widget(self.obj, vishand)
create_sphere_widget(self.obj, pole)
ob = create_widget(self.obj, hand)
if ob != None:
verts = [(0.7, 1.5, 0.0), (0.7, -0.25, 0.0), (-0.7, -0.25, 0.0), (-0.7, 1.5, 0.0), (0.7, 0.723, 0.0), (-0.7, 0.723, 0.0), (0.7, 0.0, 0.0), (-0.7, 0.0, 0.0)]
edges = [(1, 2), (0, 3), (0, 4), (3, 5), (4, 6), (1, 6), (5, 7), (2, 7)]
mesh = ob.data
mesh.from_pydata(verts, edges, [])
mesh.update()
mod = ob.modifiers.new("subsurf", 'SUBSURF')
mod.levels = 2
return [uarm, farm, hand, pole]