"job-priority" did not exist on "5c20d591a4316b5befad14ff3a2a2bde6bf480c2"
Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
Campbell Barton
committed
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
Campbell Barton
committed
import mathutils
Campbell Barton
committed
from itertools import *
NARROW_UI = 180
MAX_INPUT_NUMBER = 50
#Global_Scale = 0.001 #1 blender unit = X mm
GLOBAL_SCALE = 0.1 #1 blender unit = X mm
#Global_Scale = 1.0 #1 blender unit = X mm
# next two utility functions are stolen from import_obj.py
def unpack_list(list_of_tuples):
l = []
for t in list_of_tuples:
l.extend(t)
return l
def unpack_face_list(list_of_tuples):
l = []
for t in list_of_tuples:
face = [i for i in t]
if len(face) != 3 and len(face) != 4:
raise RuntimeError("{0} vertices in face".format(len(face)))
Campbell Barton
committed
# rotate indices if the 4th is 0
if len(face) == 4 and face[3] == 0:
face = [face[3], face[0], face[1], face[2]]
if len(face) == 3:
face.append(0)
Campbell Barton
committed
Remove Doubles takes a list on Verts and a list of Faces and
removes the doubles, much like Blender does in edit mode.
It doesn’t have the range function but it will round the corrdinates
and remove verts that are very close togther. The function
is useful because you can perform a “Remove Doubles” with out
having to enter Edit Mode. Having to enter edit mode has the
disadvantage of not being able to interactively change the properties.
def RemoveDoubles(verts,faces,Decimal_Places = 4):
Campbell Barton
committed
new_verts = []
new_faces = []
dict_verts = {}
Rounded_Verts = []
Campbell Barton
committed
Campbell Barton
committed
for v in verts:
Rounded_Verts.append([round(v[0],Decimal_Places),round(v[1],Decimal_Places),round(v[2],Decimal_Places)])
for face in faces:
new_face = []
for vert_index in face:
Real_co = tuple(verts[vert_index])
Rounded_co = tuple(Rounded_Verts[vert_index])
if Rounded_co not in dict_verts:
dict_verts[Rounded_co] = len(dict_verts)
new_verts.append(Real_co)
Campbell Barton
committed
if dict_verts[Rounded_co] not in new_face:
Campbell Barton
committed
new_face.append(dict_verts[Rounded_co])
if len(new_face) == 3 or len(new_face) == 4:
new_faces.append(new_face)
Campbell Barton
committed
return new_verts,new_faces
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def Scale_Mesh_Verts(verts,scale_factor):
Ret_verts = []
for v in verts:
Ret_verts.append([v[0]*scale_factor,v[1]*scale_factor,v[2]*scale_factor])
return Ret_verts
#Create a matrix representing a rotation.
#
#Parameters:
#
# * angle (float) - The angle of rotation desired.
# * matSize (int) - The size of the rotation matrix to construct. Can be 2d, 3d, or 4d.
# * axisFlag (string (optional)) - Possible values:
# o "x - x-axis rotation"
# o "y - y-axis rotation"
# o "z - z-axis rotation"
# o "r - arbitrary rotation around vector"
# * axis (Vector object. (optional)) - The arbitrary axis of rotation used with "R"
#
#Returns: Matrix object.
Campbell Barton
committed
# A new rotation matrix.
def Simple_RotationMatrix(angle, matSize, axisFlag):
if matSize != 4 :
print ("Simple_RotationMatrix can only do 4x4")
Campbell Barton
committed
q = radians(angle) #make the rotation go clockwise
Campbell Barton
committed
matrix = mathutils.Matrix.Rotation(q, 4, 'X')
matrix = mathutils.Matrix.Rotation(q, 4, 'Y')
matrix = mathutils.Matrix.Rotation(q, 4, 'Z')
else:
print ("Simple_RotationMatrix can only do x y z axis")
return matrix
##########################################################################################
##########################################################################################
Campbell Barton
committed
## Converter Functions For Bolt Factory
##########################################################################################
##########################################################################################
def Flat_To_Radius(FLAT):
h = (float(FLAT)/2)/cos(radians(30))
return h
def Get_Phillips_Bit_Height(Bit_Dia):
Flat_Width_half = (Bit_Dia*(0.5/1.82))/2.0
Bit_Rad = Bit_Dia / 2.0
x = Bit_Rad - Flat_Width_half
y = tan(radians(60))*x
Campbell Barton
committed
return float(y)
##########################################################################################
##########################################################################################
## Miscellaneous Utilities
##########################################################################################
##########################################################################################
# Returns a list of verts rotated by the given matrix. Used by SpinDup
def Rot_Mesh(verts, matrix):
Campbell Barton
committed
from mathutils import Vector
return [(matrix * Vector(v))[:] for v in verts]
Campbell Barton
committed
# Returns a list of faces that has there index incremented by offset
def Copy_Faces(faces,offset):
return [[(i + offset) for i in f] for f in faces]
# Much like Blenders built in SpinDup.
def SpinDup(VERTS,FACES,DEGREE,DIVISIONS,AXIS):
verts=[]
faces=[]
Campbell Barton
committed
Campbell Barton
committed
DIVISIONS = 1
step = DEGREE/DIVISIONS # set step so pieces * step = degrees in arc
Campbell Barton
committed
for i in range(int(DIVISIONS)):
rotmat = Simple_RotationMatrix(step*i, 4, AXIS) # 4x4 rotation matrix, 30d about the x axis.
Rot = Rot_Mesh(VERTS,rotmat)
Campbell Barton
committed
faces.extend(Copy_Faces(FACES,len(verts)))
verts.extend(Rot)
return verts,faces
# Returns a list of verts that have been moved up the z axis by DISTANCE
Campbell Barton
committed
def Move_Verts_Up_Z(VERTS,DISTANCE):
ret = []
for v in VERTS:
ret.append([v[0],v[1],v[2]+DISTANCE])
return ret
Campbell Barton
committed
# Returns a list of verts and faces that has been mirrored in the AXIS
def Mirror_Verts_Faces(VERTS,FACES,AXIS,FLIP_POINT =0):
ret_vert = []
ret_face = []
Campbell Barton
committed
offset = len(VERTS)
if AXIS == 'y':
for v in VERTS:
Delta = v[0] - FLIP_POINT
Campbell Barton
committed
ret_vert.append([FLIP_POINT-Delta,v[1],v[2]])
if AXIS == 'x':
for v in VERTS:
Delta = v[1] - FLIP_POINT
Campbell Barton
committed
ret_vert.append([v[0],FLIP_POINT-Delta,v[2]])
if AXIS == 'z':
for v in VERTS:
Delta = v[2] - FLIP_POINT
Campbell Barton
committed
ret_vert.append([v[0],v[1],FLIP_POINT-Delta])
for f in FACES:
fsub = []
for i in range(len(f)):
fsub.append(f[i]+ offset)
fsub.reverse() # flip the order to make norm point out
ret_face.append(fsub)
Campbell Barton
committed
Campbell Barton
committed
# Returns a list of faces that
# make up an array of 4 point polygon.
def Build_Face_List_Quads(OFFSET,COLUM,ROW,FLIP = 0):
Ret =[]
RowStart = 0;
for j in range(ROW):
for i in range(COLUM):
Res1 = RowStart + i;
Res2 = RowStart + i + (COLUM +1)
Res3 = RowStart + i + (COLUM +1) +1
Res4 = RowStart+i+1
if FLIP:
Ret.append([OFFSET+Res1,OFFSET+Res2,OFFSET+Res3,OFFSET+Res4])
else:
Ret.append([OFFSET+Res4,OFFSET+Res3,OFFSET+Res2,OFFSET+Res1])
RowStart += COLUM+1
return Ret
Campbell Barton
committed
# Returns a list of faces that makes up a fill pattern for a
# circle
def Fill_Ring_Face(OFFSET,NUM,FACE_DOWN = 0):
Ret =[]
Face = [1,2,0]
TempFace = [0,0,0]
B = 1
C = 2
if NUM < 3:
return None
for i in range(NUM-2):
if (i%2):
TempFace[0] = Face[C];
TempFace[1] = Face[C] + 1;
TempFace[2] = Face[B];
if FACE_DOWN:
Ret.append([OFFSET+Face[2],OFFSET+Face[1],OFFSET+Face[0]])
else:
Ret.append([OFFSET+Face[0],OFFSET+Face[1],OFFSET+Face[2]])
else:
TempFace[0] =Face[C];
if Face[C] == 0:
Campbell Barton
committed
TempFace[1] = NUM-1;
else:
TempFace[1] = Face[C] - 1;
TempFace[2] = Face[B];
if FACE_DOWN:
Ret.append([OFFSET+Face[0],OFFSET+Face[1],OFFSET+Face[2]])
else:
Ret.append([OFFSET+Face[2],OFFSET+Face[1],OFFSET+Face[0]])
Campbell Barton
committed
Face[0] = TempFace[0]
Face[1] = TempFace[1]
Face[2] = TempFace[2]
return Ret
Campbell Barton
committed
######################################################################################
##########################################################################################
##########################################################################################
## Create Allen Bit
##########################################################################################
##########################################################################################
def Allen_Fill(OFFSET,FLIP= 0):
faces = []
Lookup = [[19,1,0],
[19,2,1],
[19,3,2],
[19,20,3],
[20,4,3],
[20,5,4],
[20,6,5],
[20,7,6],
[20,8,7],
[20,9,8],
Campbell Barton
committed
Campbell Barton
committed
[21,10,9],
[21,11,10],
[21,12,11],
[21,13,12],
[21,14,13],
[21,15,14],
Campbell Barton
committed
[21,22,15],
[22,16,15],
[22,17,16],
[22,18,17]
]
for i in Lookup:
if FLIP:
faces.append([OFFSET+i[2],OFFSET+i[1],OFFSET+i[0]])
else:
faces.append([OFFSET+i[0],OFFSET+i[1],OFFSET+i[2]])
Campbell Barton
committed
return faces
def Allen_Bit_Dia(FLAT_DISTANCE):
Flat_Radius = (float(FLAT_DISTANCE)/2.0)/cos(radians(30))
return (Flat_Radius * 1.05) * 2.0
Campbell Barton
committed
def Allen_Bit_Dia_To_Flat(DIA):
Flat_Radius = (DIA/2.0)/1.05
return (Flat_Radius * cos (radians(30)))* 2.0
Campbell Barton
committed
def Create_Allen_Bit(FLAT_DISTANCE,HEIGHT):
Div = 36
verts = []
faces = []
Campbell Barton
committed
Flat_Radius = (float(FLAT_DISTANCE)/2.0)/cos(radians(30))
OUTTER_RADIUS = Flat_Radius * 1.05
Outter_Radius_Height = Flat_Radius * (0.1/5.77)
FaceStart_Outside = len(verts)
Deg_Step = 360.0 /float(Div)
Campbell Barton
committed
for i in range(int(Div/2)+1): # only do half and mirror later
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,0])
Campbell Barton
committed
Campbell Barton
committed
Deg_Step = 360.0 /float(6)
for i in range(int(6/2)+1):
x = sin(radians(i*Deg_Step))* Flat_Radius
y = cos(radians(i*Deg_Step))* Flat_Radius
Campbell Barton
committed
verts.append([x,y,0-Outter_Radius_Height])
Campbell Barton
committed
Campbell Barton
committed
Deg_Step = 360.0 /float(6)
for i in range(int(6/2)+1):
x = sin(radians(i*Deg_Step))* Flat_Radius
y = cos(radians(i*Deg_Step))* Flat_Radius
Campbell Barton
committed
verts.append([x,y,0-HEIGHT])
faces.extend(Build_Face_List_Quads(FaceStart_Inside,3,1,True))
faces.extend(Fill_Ring_Face(FaceStart_Bottom,4))
Campbell Barton
committed
M_Verts,M_Faces = Mirror_Verts_Faces(verts,faces,'y')
verts.extend(M_Verts)
faces.extend(M_Faces)
Campbell Barton
committed
return verts,faces,OUTTER_RADIUS * 2.0
##########################################################################################
##########################################################################################
## Create Phillips Bit
##########################################################################################
##########################################################################################
def Phillips_Fill(OFFSET,FLIP= 0):
faces = []
Lookup = [[0,1,10],
[1,11,10],
[1,2,11],
[2,12,11],
Campbell Barton
committed
[2,3,12],
[3,4,12],
[4,5,12],
[5,6,12],
[6,7,12],
Campbell Barton
committed
[7,13,12],
[7,8,13],
[8,14,13],
[8,9,14],
Campbell Barton
committed
[10,11,16,15],
[11,12,16],
[12,13,16],
[13,14,17,16],
[15,16,17,18]
Campbell Barton
committed
]
for i in Lookup:
if FLIP:
if len(i) == 3:
faces.append([OFFSET+i[2],OFFSET+i[1],OFFSET+i[0]])
Campbell Barton
committed
else:
faces.append([OFFSET+i[3],OFFSET+i[2],OFFSET+i[1],OFFSET+i[0]])
else:
if len(i) == 3:
faces.append([OFFSET+i[0],OFFSET+i[1],OFFSET+i[2]])
else:
faces.append([OFFSET+i[0],OFFSET+i[1],OFFSET+i[2],OFFSET+i[3]])
return faces
def Create_Phillips_Bit(FLAT_DIA,FLAT_WIDTH,HEIGHT):
Div = 36
verts = []
faces = []
Campbell Barton
committed
FLAT_RADIUS = FLAT_DIA * 0.5
OUTTER_RADIUS = FLAT_RADIUS * 1.05
Campbell Barton
committed
Campbell Barton
committed
FaceStart_Outside = len(verts)
Deg_Step = 360.0 /float(Div)
for i in range(int(Div/4)+1): # only do half and mirror later
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,0])
Campbell Barton
committed
verts.append([0,FLAT_RADIUS,0]) #10
verts.append([Flat_Half,FLAT_RADIUS,0]) #11
verts.append([Flat_Half,Flat_Half,0]) #12
verts.append([FLAT_RADIUS,Flat_Half,0]) #13
verts.append([FLAT_RADIUS,0,0]) #14
Campbell Barton
committed
verts.append([0,Flat_Half,0-HEIGHT]) #15
verts.append([Flat_Half,Flat_Half,0-HEIGHT]) #16
verts.append([Flat_Half,0,0-HEIGHT]) #17
Campbell Barton
committed
Campbell Barton
committed
faces.extend(Phillips_Fill(FaceStart_Outside,True))
Spin_Verts,Spin_Face = SpinDup(verts,faces,360,4,'z')
Campbell Barton
committed
Campbell Barton
committed
##########################################################################################
##########################################################################################
## Create Head Types
##########################################################################################
##########################################################################################
def Max_Pan_Bit_Dia(HEAD_DIA):
HEAD_RADIUS = HEAD_DIA * 0.5
XRad = HEAD_RADIUS * 1.976
return (sin(radians(10))*XRad) * 2.0
def Create_Pan_Head(HOLE_DIA,HEAD_DIA,SHANK_DIA,HEIGHT,RAD1,RAD2,FACE_OFFSET):
DIV = 36
HOLE_RADIUS = HOLE_DIA * 0.5
HEAD_RADIUS = HEAD_DIA * 0.5
SHANK_RADIUS = SHANK_DIA * 0.5
verts = []
faces = []
Row = 0
XRad = HEAD_RADIUS * 1.976
ZRad = HEAD_RADIUS * 1.768
EndRad = HEAD_RADIUS * 0.284
EndZOffset = HEAD_RADIUS * 0.432
HEIGHT = HEAD_RADIUS * 0.59
Campbell Barton
committed
# Dome_Rad = 5.6
# RAD_Offset = 4.9
# OtherRad = 0.8
# OtherRad_X_Offset = 4.2
# OtherRad_Z_Offset = 2.52
# XRad = 9.88
# ZRad = 8.84
# EndRad = 1.42
# EndZOffset = 2.16
# HEIGHT = 2.95
Campbell Barton
committed
FaceStart = FACE_OFFSET
z = cos(radians(10))*ZRad
verts.append([HOLE_RADIUS,0.0,(0.0-ZRad)+z])
Start_Height = 0 - ((0.0-ZRad)+z)
Row += 1
#for i in range(0,30,10): was 0 to 30 more work needed to make this look good.
for i in range(10,30,10):
x = sin(radians(i))*XRad
z = cos(radians(i))*ZRad
verts.append([x,0.0,(0.0-ZRad)+z])
Row += 1
for i in range(20,140,10):
x = sin(radians(i))*EndRad
z = cos(radians(i))*EndRad
if ((0.0 - EndZOffset)+z) < (0.0-HEIGHT):
verts.append([(HEAD_RADIUS -EndRad)+x,0.0,0.0 - HEIGHT])
else:
verts.append([(HEAD_RADIUS -EndRad)+x,0.0,(0.0 - EndZOffset)+z])
Row += 1
Campbell Barton
committed
verts.append([SHANK_RADIUS,0.0,(0.0-HEIGHT)])
Row += 1
Campbell Barton
committed
verts.append([SHANK_RADIUS,0.0,(0.0-HEIGHT)-Start_Height])
Row += 1
sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z')
sVerts.extend(verts) #add the start verts to the Spin verts to complete the loop
Campbell Barton
committed
faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV))
Campbell Barton
committed
return Move_Verts_Up_Z(sVerts,Start_Height),faces,HEIGHT
def Create_Dome_Head(HOLE_DIA,HEAD_DIA,SHANK_DIA,HEIGHT,RAD1,RAD2,FACE_OFFSET):
DIV = 36
HOLE_RADIUS = HOLE_DIA * 0.5
HEAD_RADIUS = HEAD_DIA * 0.5
SHANK_RADIUS = SHANK_DIA * 0.5
Campbell Barton
committed
Campbell Barton
committed
Dome_Rad = HEAD_RADIUS * 1.12
#Head_Height = HEAD_RADIUS * 0.78
RAD_Offset = HEAD_RADIUS * 0.98
Dome_Height = HEAD_RADIUS * 0.64
OtherRad = HEAD_RADIUS * 0.16
OtherRad_X_Offset = HEAD_RADIUS * 0.84
OtherRad_Z_Offset = HEAD_RADIUS * 0.504
Campbell Barton
committed
# Dome_Rad = 5.6
# RAD_Offset = 4.9
# Dome_Height = 3.2
# OtherRad = 0.8
# OtherRad_X_Offset = 4.2
# OtherRad_Z_Offset = 2.52
Campbell Barton
committed
#
Campbell Barton
committed
verts.append([HOLE_RADIUS,0.0,0.0])
Row += 1
for i in range(0,60,10):
x = sin(radians(i))*Dome_Rad
z = cos(radians(i))*Dome_Rad
if ((0.0-RAD_Offset)+z) <= 0:
verts.append([x,0.0,(0.0-RAD_Offset)+z])
Row += 1
for i in range(60,160,10):
x = sin(radians(i))*OtherRad
z = cos(radians(i))*OtherRad
z = (0.0-OtherRad_Z_Offset)+z
if z < (0.0-Dome_Height):
z = (0.0-Dome_Height)
verts.append([OtherRad_X_Offset+x,0.0,z])
Row += 1
Campbell Barton
committed
verts.append([SHANK_RADIUS,0.0,(0.0-Dome_Height)])
Row += 1
sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z')
sVerts.extend(verts) #add the start verts to the Spin verts to complete the loop
Campbell Barton
committed
faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV))
def Create_CounterSink_Head(HOLE_DIA,HEAD_DIA,SHANK_DIA,HEIGHT,RAD1):
DIV = 36
Campbell Barton
committed
HOLE_RADIUS = HOLE_DIA * 0.5
HEAD_RADIUS = HEAD_DIA * 0.5
SHANK_RADIUS = SHANK_DIA * 0.5
Campbell Barton
committed
verts = []
faces = []
Row = 0
# HEAD_RADIUS = (HEIGHT/tan(radians(60))) + SHANK_RADIUS
HEIGHT = tan(radians(60)) * (HEAD_RADIUS - SHANK_RADIUS)
#print (RAD1)
Campbell Barton
committed
FaceStart = len(verts)
verts.append([HOLE_RADIUS,0.0,0.0])
Row += 1
#rad
Campbell Barton
committed
for i in range(0,100,10):
x = sin(radians(i))*RAD1
z = cos(radians(i))*RAD1
verts.append([(HEAD_RADIUS-RAD1)+x,0.0,(0.0-RAD1)+z])
Row += 1
Campbell Barton
committed
verts.append([SHANK_RADIUS,0.0,0.0-HEIGHT])
Row += 1
sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z')
sVerts.extend(verts) #add the start verts to the Spin verts to complete the loop
Campbell Barton
committed
faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV,1))
Campbell Barton
committed
def Create_Cap_Head(HOLE_DIA,HEAD_DIA,SHANK_DIA,HEIGHT,RAD1,RAD2):
DIV = 36
Campbell Barton
committed
HOLE_RADIUS = HOLE_DIA * 0.5
HEAD_RADIUS = HEAD_DIA * 0.5
SHANK_RADIUS = SHANK_DIA * 0.5
Campbell Barton
committed
verts = []
faces = []
Row = 0
BEVEL = HEIGHT * 0.01
Campbell Barton
committed
FaceStart = len(verts)
verts.append([HOLE_RADIUS,0.0,0.0])
Row += 1
#rad
Campbell Barton
committed
for i in range(0,100,10):
x = sin(radians(i))*RAD1
z = cos(radians(i))*RAD1
verts.append([(HEAD_RADIUS-RAD1)+x,0.0,(0.0-RAD1)+z])
Row += 1
Campbell Barton
committed
verts.append([HEAD_RADIUS,0.0,0.0-HEIGHT+BEVEL])
Row += 1
verts.append([HEAD_RADIUS-BEVEL,0.0,0.0-HEIGHT])
Row += 1
#rad2
Campbell Barton
committed
for i in range(0,100,10):
x = sin(radians(i))*RAD2
z = cos(radians(i))*RAD2
verts.append([(SHANK_RADIUS+RAD2)-x,0.0,(0.0-HEIGHT-RAD2)+z])
Row += 1
Campbell Barton
committed
sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z')
sVerts.extend(verts) #add the start verts to the Spin verts to complete the loop
Campbell Barton
committed
faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV))
Campbell Barton
committed
return sVerts,faces,HEIGHT+RAD2
def Create_Hex_Head(FLAT,HOLE_DIA,SHANK_DIA,HEIGHT):
Campbell Barton
committed
verts = []
faces = []
HOLE_RADIUS = HOLE_DIA * 0.5
Half_Flat = FLAT/2
TopBevelRadius = Half_Flat - (Half_Flat* (0.05/8))
Undercut_Height = (Half_Flat* (0.05/8))
Campbell Barton
committed
Shank_Bevel = (Half_Flat* (0.05/8))
Flat_Height = HEIGHT - Undercut_Height - Shank_Bevel
#Undercut_Height = 5
SHANK_RADIUS = SHANK_DIA/2
Row = 0;
verts.append([0.0,0.0,0.0])
Campbell Barton
committed
Campbell Barton
committed
x = sin(radians(0))*HOLE_RADIUS
y = cos(radians(0))*HOLE_RADIUS
verts.append([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/6))*HOLE_RADIUS
y = cos(radians(60/6))*HOLE_RADIUS
verts.append([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/3))*HOLE_RADIUS
y = cos(radians(60/3))*HOLE_RADIUS
verts.append([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/2))*HOLE_RADIUS
y = cos(radians(60/2))*HOLE_RADIUS
verts.append([x,y,0.0])
Row += 1
Campbell Barton
committed
Campbell Barton
committed
x = sin(radians(0))*TopBevelRadius
y = cos(radians(0))*TopBevelRadius
Campbell Barton
committed
vec1 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/6))*TopBevelRadius
y = cos(radians(60/6))*TopBevelRadius
Campbell Barton
committed
vec2 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/3))*TopBevelRadius
y = cos(radians(60/3))*TopBevelRadius
Campbell Barton
committed
vec3 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/2))*TopBevelRadius
y = cos(radians(60/2))*TopBevelRadius
Campbell Barton
committed
vec4 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
dvec = vec1 - mathutils.Vector([x,Half_Flat,0.0])
Campbell Barton
committed
Campbell Barton
committed
dvec = vec2 - mathutils.Vector([x,Half_Flat,0.0])
Campbell Barton
committed
Campbell Barton
committed
dvec = vec3 - mathutils.Vector([x,Half_Flat,0.0])
Lowest_Point = -dvec.length
verts.append([x,Half_Flat,-dvec.length])
Campbell Barton
committed
Campbell Barton
committed
dvec = vec4 - mathutils.Vector([x,Half_Flat,0.0])
Lowest_Point = -dvec.length
verts.append([x,Half_Flat,-dvec.length])
Row += 1
Campbell Barton
committed
#down Bits Tri
x = tan(radians(0))*Half_Flat
verts.append([x,Half_Flat,Lowest_Point])
Campbell Barton
committed
x = tan(radians(60/6))*Half_Flat
verts.append([x,Half_Flat,Lowest_Point])
x = tan(radians(60/3))*Half_Flat
verts.append([x,Half_Flat,Lowest_Point])
Campbell Barton
committed
x = tan(radians(60/2))*Half_Flat
verts.append([x,Half_Flat,Lowest_Point])
Row += 1
#down Bits
Campbell Barton
committed
x = tan(radians(0))*Half_Flat
verts.append([x,Half_Flat,-Flat_Height])
Campbell Barton
committed
x = tan(radians(60/6))*Half_Flat
verts.append([x,Half_Flat,-Flat_Height])
x = tan(radians(60/3))*Half_Flat
verts.append([x,Half_Flat,-Flat_Height])
Campbell Barton
committed
x = tan(radians(60/2))*Half_Flat
verts.append([x,Half_Flat,-Flat_Height])
Row += 1
Campbell Barton
committed
#under cut
x = sin(radians(0))*Half_Flat
y = cos(radians(0))*Half_Flat
Campbell Barton
committed
vec1 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/6))*Half_Flat
y = cos(radians(60/6))*Half_Flat
Campbell Barton
committed
vec2 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/3))*Half_Flat
y = cos(radians(60/3))*Half_Flat
Campbell Barton
committed
vec3 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/2))*Half_Flat
y = cos(radians(60/2))*Half_Flat
Campbell Barton
committed
vec3 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
#under cut down bit
x = sin(radians(0))*Half_Flat
y = cos(radians(0))*Half_Flat
Campbell Barton
committed
vec1 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/6))*Half_Flat
y = cos(radians(60/6))*Half_Flat
Campbell Barton
committed
vec2 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/3))*Half_Flat
y = cos(radians(60/3))*Half_Flat
Campbell Barton
committed
vec3 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/2))*Half_Flat
y = cos(radians(60/2))*Half_Flat
Campbell Barton
committed
vec3 = mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height])
Row += 1
Campbell Barton
committed
#under cut to Shank BEVEAL
x = sin(radians(0))*(SHANK_RADIUS+Shank_Bevel)
y = cos(radians(0))*(SHANK_RADIUS+Shank_Bevel)
Campbell Barton
committed
vec1 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/6))*(SHANK_RADIUS+Shank_Bevel)
y = cos(radians(60/6))*(SHANK_RADIUS+Shank_Bevel)
Campbell Barton
committed
vec2 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/3))*(SHANK_RADIUS+Shank_Bevel)
y = cos(radians(60/3))*(SHANK_RADIUS+Shank_Bevel)
Campbell Barton
committed
vec3 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/2))*(SHANK_RADIUS+Shank_Bevel)
y = cos(radians(60/2))*(SHANK_RADIUS+Shank_Bevel)
Campbell Barton
committed
vec3 = mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height])
Row += 1
Campbell Barton
committed
#under cut to Shank BEVEAL
x = sin(radians(0))*SHANK_RADIUS
y = cos(radians(0))*SHANK_RADIUS
Campbell Barton
committed
vec1 = mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height-Shank_Bevel])
Campbell Barton
committed
x = sin(radians(60/6))*SHANK_RADIUS
y = cos(radians(60/6))*SHANK_RADIUS
Campbell Barton
committed
vec2 = mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height-Shank_Bevel])
Campbell Barton
committed
x = sin(radians(60/3))*SHANK_RADIUS
y = cos(radians(60/3))*SHANK_RADIUS
Campbell Barton
committed
vec3 = mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height-Shank_Bevel])
Campbell Barton
committed
x = sin(radians(60/2))*SHANK_RADIUS
y = cos(radians(60/2))*SHANK_RADIUS
Campbell Barton
committed
vec3 = mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height-Shank_Bevel])
Row += 1
Campbell Barton
committed
#Global_Head_Height = 0 - (-HEIGHT-0.1)
faces.extend(Build_Face_List_Quads(FaceStart,3,Row - 1))
Campbell Barton
committed
Mirror_Verts,Mirror_Faces = Mirror_Verts_Faces(verts,faces,'y')
verts.extend(Mirror_Verts)
faces.extend(Mirror_Faces)
Campbell Barton
committed
Spin_Verts,Spin_Faces = SpinDup(verts,faces,360,6,'z')
Campbell Barton
committed
Campbell Barton
committed
##########################################################################################
##########################################################################################
## Create External Thread
##########################################################################################
##########################################################################################
def Thread_Start3(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset):
Campbell Barton
committed
Campbell Barton
committed
Height_Start = Height_Offset - PITCH
Height_Step = float(PITCH)/float(DIV)
Deg_Step = 360.0 /float(DIV)
Campbell Barton
committed
Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0
Campbell Barton
committed
#theard start
Rank = float(OUTTER_RADIUS - INNER_RADIUS)/float(DIV)
for j in range(4):
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
if z > Height_Start:
z = Height_Start
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,z])
Height_Offset -= Crest_Height
Ret_Row += 1
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
Campbell Barton
committed
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,z ])
Height_Offset -= Crest_to_Root_Height
Ret_Row += 1
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
Campbell Barton
committed
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
if j == 0:
x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
verts.append([x,y,z ])
Height_Offset -= Root_Height
Ret_Row += 1
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
Campbell Barton
committed
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
if j == 0:
x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
verts.append([x,y,z ])
Height_Offset -= Root_to_Crest_Height
Ret_Row += 1
Campbell Barton
committed
return Ret_Row,Height_Offset
def Create_Shank_Verts(START_DIA,OUTTER_DIA,LENGTH,Z_LOCATION = 0):
verts = []
DIV = 36
Campbell Barton
committed
START_RADIUS = START_DIA/2
OUTTER_RADIUS = OUTTER_DIA/2
Campbell Barton
committed
Opp = abs(START_RADIUS - OUTTER_RADIUS)
Taper_Lentgh = Opp/tan(radians(31));
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
Lowest_Z_Vert = 0;
Campbell Barton
committed
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*START_RADIUS
y = cos(radians(i*Deg_Step))*START_RADIUS
z = Height_Offset - 0
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Stright_Length
Row += 1
Campbell Barton
committed
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*START_RADIUS
y = cos(radians(i*Deg_Step))*START_RADIUS
z = Height_Offset - 0
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Taper_Lentgh
Row += 1
return verts,Row,Height_Offset
def Create_Thread_Start_Verts(INNER_DIA,OUTTER_DIA,PITCH,CREST_PERCENT,ROOT_PERCENT,Z_LOCATION = 0):
Campbell Barton
committed
Campbell Barton
committed
INNER_RADIUS = INNER_DIA/2
OUTTER_RADIUS = OUTTER_DIA/2
Campbell Barton
committed
Deg_Step = 360.0 /float(DIV)
Height_Step = float(PITCH)/float(DIV)
Row = 0
Campbell Barton
committed
Lowest_Z_Vert = 0;
Campbell Barton
committed
Height_Start = Height_Offset
Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0
Rank = float(OUTTER_RADIUS - INNER_RADIUS)/float(DIV)
Campbell Barton
committed
Height_Offset = Z_LOCATION + PITCH
Campbell Barton
committed
Campbell Barton
committed
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
z = Height_Offset - (Height_Step*i)
if z > Cut_off : z = Cut_off
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Crest_Height
Row += 1
Campbell Barton
committed
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
z = Height_Offset - (Height_Step*i)
if z > Cut_off : z = Cut_off
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Crest_to_Root_Height
Row += 1
Campbell Barton
committed
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
z = Height_Offset - (Height_Step*i)
Campbell Barton
committed
if z > Cut_off : z = Cut_off
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Root_Height
Row += 1
Campbell Barton
committed
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
z = Height_Offset - (Height_Step*i)
Campbell Barton
committed
if z > Cut_off : z = Cut_off
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Root_to_Crest_Height
Row += 1
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
if z > Height_Start:
z = Height_Start
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Crest_Height
Row += 1
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
Campbell Barton
committed
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,z ])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Crest_to_Root_Height
Row += 1
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
Campbell Barton
committed
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
if j == 0:
x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
verts.append([x,y,z ])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Root_Height
Row += 1
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
Campbell Barton
committed
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
if j == 0:
x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
verts.append([x,y,z ])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Root_to_Crest_Height
Row += 1
Campbell Barton
committed
return verts,Row,Height_Offset
def Create_Thread_Verts(INNER_DIA,OUTTER_DIA,PITCH,HEIGHT,CREST_PERCENT,ROOT_PERCENT,Z_LOCATION = 0):
verts = []
Campbell Barton
committed
Campbell Barton
committed
INNER_RADIUS = INNER_DIA/2
OUTTER_RADIUS = OUTTER_DIA/2
Campbell Barton
committed
Deg_Step = 360.0 /float(DIV)
Height_Step = float(PITCH)/float(DIV)
NUM_OF_START_THREADS = 4.0
NUM_OF_END_THREADS = 3.0
Num = int((HEIGHT- ((NUM_OF_START_THREADS*PITCH) + (NUM_OF_END_THREADS*PITCH) ))/PITCH)
Row = 0
Campbell Barton
committed
Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0
Height_Offset = Z_LOCATION
Campbell Barton
committed
Campbell Barton
committed
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Crest_Height
Row += 1
Campbell Barton
committed
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
z = Height_Offset - (Height_Step*i)
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Crest_to_Root_Height
Row += 1
Campbell Barton
committed
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Root_Height
Row += 1
Campbell Barton
committed
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Root_to_Crest_Height
Row += 1
Campbell Barton
committed
return verts,Row,Height_Offset
def Create_Thread_End_Verts(INNER_DIA,OUTTER_DIA,PITCH,CREST_PERCENT,ROOT_PERCENT,Z_LOCATION = 0):
verts = []
Campbell Barton
committed
DIV = 36
INNER_RADIUS = INNER_DIA/2
OUTTER_RADIUS = OUTTER_DIA/2
Campbell Barton
committed
Deg_Step = 360.0 /float(DIV)
Height_Step = float(PITCH)/float(DIV)
Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0
Campbell Barton
committed
Campbell Barton
committed
Height_Offset = Z_LOCATION
Tapper_Height_Start = Height_Offset - PITCH - PITCH
Max_Height = Tapper_Height_Start - PITCH
Campbell Barton
committed
Campbell Barton
committed
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
z = max(z,Max_Height)
Tapper_Radius = OUTTER_RADIUS
if z < Tapper_Height_Start:
Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z)
x = sin(radians(i*Deg_Step))*(Tapper_Radius)
y = cos(radians(i*Deg_Step))*(Tapper_Radius)
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Crest_Height
Row += 1
Campbell Barton
committed
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
z = max(z,Max_Height)
Tapper_Radius = OUTTER_RADIUS
if z < Tapper_Height_Start:
Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z)
x = sin(radians(i*Deg_Step))*(Tapper_Radius)
y = cos(radians(i*Deg_Step))*(Tapper_Radius)
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Crest_to_Root_Height
Row += 1
Campbell Barton
committed
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
z = max(z,Max_Height)
Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z)
if Tapper_Radius > INNER_RADIUS:
Campbell Barton
committed
Tapper_Radius = INNER_RADIUS
Campbell Barton
committed
x = sin(radians(i*Deg_Step))*(Tapper_Radius)
y = cos(radians(i*Deg_Step))*(Tapper_Radius)
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Root_Height
Row += 1
Campbell Barton
committed
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
z = max(z,Max_Height)
Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z)
if Tapper_Radius > INNER_RADIUS:
Campbell Barton
committed
Tapper_Radius = INNER_RADIUS
Campbell Barton
committed
x = sin(radians(i*Deg_Step))*(Tapper_Radius)
y = cos(radians(i*Deg_Step))*(Tapper_Radius)
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Root_to_Crest_Height
Row += 1
Campbell Barton
committed
return verts,Row,Height_Offset,Lowest_Z_Vert
def Create_External_Thread(SHANK_DIA,SHANK_LENGTH,INNER_DIA,OUTTER_DIA,PITCH,LENGTH,CREST_PERCENT,ROOT_PERCENT):
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
Shank_Verts,Shank_Row,Offset = Create_Shank_Verts(SHANK_DIA,OUTTER_DIA,SHANK_LENGTH,Offset)
Total_Row += Shank_Row
Thread_Start_Verts,Thread_Start_Row,Offset = Create_Thread_Start_Verts(INNER_DIA,OUTTER_DIA,PITCH,CREST_PERCENT,ROOT_PERCENT,Offset)
Total_Row += Thread_Start_Row
Campbell Barton
committed
Thread_Verts,Thread_Row,Offset = Create_Thread_Verts(INNER_DIA,OUTTER_DIA,PITCH,LENGTH,CREST_PERCENT,ROOT_PERCENT,Offset)
Total_Row += Thread_Row
Campbell Barton
committed
Thread_End_Verts,Thread_End_Row,Offset,Lowest_Z_Vert = Create_Thread_End_Verts(INNER_DIA,OUTTER_DIA,PITCH,CREST_PERCENT,ROOT_PERCENT,Offset )
Campbell Barton
committed
Total_Row += Thread_End_Row
verts.extend(Shank_Verts)
verts.extend(Thread_Start_Verts)
verts.extend(Thread_Verts)
verts.extend(Thread_End_Verts)
Campbell Barton
committed
faces.extend(Build_Face_List_Quads(Face_Start,DIV,Total_Row -1,0))
faces.extend(Fill_Ring_Face(len(verts)-DIV,DIV,1))
Campbell Barton
committed
Campbell Barton
committed
##########################################################################################
##########################################################################################
## Create Nut
##########################################################################################
##########################################################################################
def add_Hex_Nut(FLAT,HOLE_DIA,HEIGHT):
global Global_Head_Height
global Global_NutRad
Campbell Barton
committed
verts = []
faces = []
HOLE_RADIUS = HOLE_DIA * 0.5
Half_Flat = FLAT/2
Half_Height = HEIGHT/2
TopBevelRadius = Half_Flat - 0.05
Campbell Barton
committed
Campbell Barton
committed
Row = 0;
Lowest_Z_Vert = 0.0;
verts.append([0.0,0.0,0.0])
Campbell Barton
committed
Campbell Barton
committed
x = sin(radians(0))*HOLE_RADIUS
y = cos(radians(0))*HOLE_RADIUS
#print ("rad 0 x;", x, "y:" ,y )
verts.append([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/6))*HOLE_RADIUS
y = cos(radians(60/6))*HOLE_RADIUS
#print ("rad 60/6x;", x, "y:" ,y )
verts.append([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/3))*HOLE_RADIUS
y = cos(radians(60/3))*HOLE_RADIUS
#print ("rad 60/3x;", x, "y:" ,y )
verts.append([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/2))*HOLE_RADIUS
y = cos(radians(60/2))*HOLE_RADIUS
#print ("rad 60/2x;", x, "y:" ,y )
verts.append([x,y,0.0])
Row += 1
Campbell Barton
committed
Campbell Barton
committed
x = sin(radians(0))*TopBevelRadius
y = cos(radians(0))*TopBevelRadius
Campbell Barton
committed
vec1 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/6))*TopBevelRadius
y = cos(radians(60/6))*TopBevelRadius
Campbell Barton
committed
vec2 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/3))*TopBevelRadius
y = cos(radians(60/3))*TopBevelRadius
Campbell Barton
committed
vec3 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
x = sin(radians(60/2))*TopBevelRadius
y = cos(radians(60/2))*TopBevelRadius
Campbell Barton
committed
vec4 = mathutils.Vector([x,y,0.0])
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
dvec = vec1 - mathutils.Vector([x,Half_Flat,0.0])
verts.append([x,Half_Flat,-dvec.length])
Lowest_Z_Vert = min(Lowest_Z_Vert,-dvec.length)
Campbell Barton
committed
Campbell Barton
committed
dvec = vec2 - mathutils.Vector([x,Half_Flat,0.0])
verts.append([x,Half_Flat,-dvec.length])
Lowest_Z_Vert = min(Lowest_Z_Vert,-dvec.length)
Campbell Barton
committed
Campbell Barton
committed
dvec = vec3 - mathutils.Vector([x,Half_Flat,0.0])
Lowest_Point = -dvec.length
verts.append([x,Half_Flat,-dvec.length])
Lowest_Z_Vert = min(Lowest_Z_Vert,-dvec.length)
x = tan(radians(60/2))*Half_Flat
Campbell Barton
committed
dvec = vec4 - mathutils.Vector([x,Half_Flat,0.0])
Lowest_Point = -dvec.length
verts.append([x,Half_Flat,-dvec.length])
Lowest_Z_Vert = min(Lowest_Z_Vert,-dvec.length)
Row += 1
Campbell Barton
committed
#down Bits Tri
x = tan(radians(0))*Half_Flat
verts.append([x,Half_Flat,Lowest_Point])
Campbell Barton
committed
x = tan(radians(60/6))*Half_Flat
verts.append([x,Half_Flat,Lowest_Point])
x = tan(radians(60/3))*Half_Flat
verts.append([x,Half_Flat,Lowest_Point])
Campbell Barton
committed
x = tan(radians(60/2))*Half_Flat
verts.append([x,Half_Flat,Lowest_Point])
Lowest_Z_Vert = min(Lowest_Z_Vert,Lowest_Point)
Row += 1
#down Bits
Campbell Barton
committed
x = tan(radians(0))*Half_Flat
verts.append([x,Half_Flat,-Half_Height])
Campbell Barton
committed
x = tan(radians(60/6))*Half_Flat
verts.append([x,Half_Flat,-Half_Height])
x = tan(radians(60/3))*Half_Flat
verts.append([x,Half_Flat,-Half_Height])
Campbell Barton
committed
x = tan(radians(60/2))*Half_Flat
verts.append([x,Half_Flat,-Half_Height])
Lowest_Z_Vert = min(Lowest_Z_Vert,-Half_Height)
Row += 1
Campbell Barton
committed
faces.extend(Build_Face_List_Quads(FaceStart,3,Row - 1))
Global_Head_Height = HEIGHT
Campbell Barton
committed
Tvert,tface = Mirror_Verts_Faces(verts,faces,'z',Lowest_Z_Vert)
verts.extend(Tvert)
faces.extend(tface)
Campbell Barton
committed
Tvert,tface = Mirror_Verts_Faces(verts,faces,'y')
verts.extend(Tvert)
faces.extend(tface)
Campbell Barton
committed
Campbell Barton
committed
#return verts,faces,TopBevelRadius
return S_verts,S_faces,TopBevelRadius
def add_Nylon_Head(OUTSIDE_RADIUS,Z_LOCATION = 0):
DIV = 36
verts = []
faces = []
Row = 0
INNER_HOLE = OUTSIDE_RADIUS - (OUTSIDE_RADIUS * (1.25/4.75))
EDGE_THICKNESS = (OUTSIDE_RADIUS * (0.4/4.75))
RAD1 = (OUTSIDE_RADIUS * (0.5/4.75))
OVER_ALL_HEIGTH = (OUTSIDE_RADIUS * (2.0/4.75))
Campbell Barton
committed
Height_Offset = Z_LOCATION
Lowest_Z_Vert = 0
Campbell Barton
committed
x = INNER_HOLE
z = (Height_Offset - OVER_ALL_HEIGTH) + EDGE_THICKNESS
verts.append([x,0.0,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Row += 1
Campbell Barton
committed
x = INNER_HOLE
z = (Height_Offset - OVER_ALL_HEIGTH)
verts.append([x,0.0,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Row += 1
Campbell Barton
committed
for i in range(180,80,-10):
x = sin(radians(i))*RAD1
z = cos(radians(i))*RAD1
verts.append([(OUTSIDE_RADIUS-RAD1)+x,0.0,((Height_Offset - OVER_ALL_HEIGTH)+RAD1)+z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Row += 1
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset
verts.append([x,0.0,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Row += 1
sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z')
sVerts.extend(verts) #add the start verts to the Spin verts to complete the loop
Campbell Barton
committed
faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV))
return Move_Verts_Up_Z(sVerts,0),faces,Lowest_Z_Vert
def add_Nylon_Part(OUTSIDE_RADIUS,Z_LOCATION = 0):
DIV = 36
verts = []
faces = []
Row = 0
INNER_HOLE = OUTSIDE_RADIUS - (OUTSIDE_RADIUS * (1.5/4.75))
EDGE_THICKNESS = (OUTSIDE_RADIUS * (0.4/4.75))
OVER_ALL_HEIGTH = (OUTSIDE_RADIUS * (2.0/4.75))
PART_THICKNESS = OVER_ALL_HEIGTH - EDGE_THICKNESS
PART_INNER_HOLE = (OUTSIDE_RADIUS * (2.5/4.75))
Campbell Barton
committed
Height_Offset = Z_LOCATION
Lowest_Z_Vert = 0
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset
verts.append([x,0.0,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Row += 1
Campbell Barton
committed
x = PART_INNER_HOLE
z = Height_Offset
verts.append([x,0.0,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Row += 1
Campbell Barton
committed
x = PART_INNER_HOLE
z = Height_Offset - PART_THICKNESS
verts.append([x,0.0,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Row += 1
Campbell Barton
committed
x = INNER_HOLE + EDGE_THICKNESS
z = Height_Offset - PART_THICKNESS
verts.append([x,0.0,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Row += 1
sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z')
sVerts.extend(verts) #add the start verts to the Spin verts to complete the loop
Campbell Barton
committed
faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV,1))
return sVerts,faces,0 - Lowest_Z_Vert
##########################################################################################
##########################################################################################
## Create Internal Thread
##########################################################################################
##########################################################################################
def Create_Internal_Thread_Start_Verts(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset):
Campbell Barton
committed
Campbell Barton
committed
Height_Offset = Height_Offset + PITCH #Move the offset up so that the verts start at
Campbell Barton
committed
Campbell Barton
committed
Height_Start = Height_Offset - PITCH
Height_Step = float(PITCH)/float(DIV)
Deg_Step = 360.0 /float(DIV)
Campbell Barton
committed
Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0
Campbell Barton
committed
Rank = float(OUTTER_RADIUS - INNER_RADIUS)/float(DIV)
for j in range(1): #FIXME - for j in range(1) what?!
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
if z > Height_Start:
z = Height_Start
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,z])
Height_Offset -= Crest_Height
Ret_Row += 1
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
Campbell Barton
committed
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,z ])
Height_Offset -= Crest_to_Root_Height
Ret_Row += 1
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
Campbell Barton
committed
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
if j == 0:
x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
verts.append([x,y,z ])
Height_Offset -= Root_Height
Ret_Row += 1
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
Campbell Barton
committed
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
if j == 0:
x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
verts.append([x,y,z ])
Height_Offset -= Root_to_Crest_Height
Ret_Row += 1
Campbell Barton
committed
return Ret_Row,Height_Offset
def Create_Internal_Thread_End_Verts(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset):
Campbell Barton
committed
Campbell Barton
committed
#Height_End = Height_Offset - PITCH - PITCH - PITCH- PITCH - PITCH- PITCH
Campbell Barton
committed
Height_End = Height_Offset - PITCH
#Height_End = -2.1
Height_Step = float(PITCH)/float(DIV)
Deg_Step = 360.0 /float(DIV)
Campbell Barton
committed
Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0
Campbell Barton
committed
Rank = float(OUTTER_RADIUS - INNER_RADIUS)/float(DIV)
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
if z < Height_End:
z = Height_End
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,z])
Height_Offset -= Crest_Height
Ret_Row += 1
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
Campbell Barton
committed
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,z ])
Height_Offset -= Crest_to_Root_Height
Ret_Row += 1
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
Campbell Barton
committed
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
if j == Num:
x = sin(radians(i*Deg_Step))*(INNER_RADIUS + (i*Rank))
y = cos(radians(i*Deg_Step))*(INNER_RADIUS + (i*Rank))
if j > Num:
x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS)
y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS )
Campbell Barton
committed
verts.append([x,y,z ])
Height_Offset -= Root_Height
Ret_Row += 1
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset - (Height_Step*i)
Campbell Barton
committed
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
if j == Num:
x = sin(radians(i*Deg_Step))*(INNER_RADIUS + (i*Rank))
y = cos(radians(i*Deg_Step))*(INNER_RADIUS + (i*Rank))
if j > Num:
x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS )
y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS )
Campbell Barton
committed
verts.append([x,y,z ])
Height_Offset -= Root_to_Crest_Height
Ret_Row += 1
Campbell Barton
committed
return Ret_Row,Height_End # send back Height End as this is the lowest point
def Create_Internal_Thread(INNER_DIA,OUTTER_DIA,PITCH,HEIGHT,CREST_PERCENT,ROOT_PERCENT,INTERNAL = 1):
verts = []
faces = []
Campbell Barton
committed
Campbell Barton
committed
INNER_RADIUS = INNER_DIA/2
OUTTER_RADIUS = OUTTER_DIA/2
Campbell Barton
committed
Deg_Step = 360.0 /float(DIV)
Height_Step = float(PITCH)/float(DIV)
Campbell Barton
committed
Num = int(round((HEIGHT- PITCH)/PITCH)) # less one pitch for the start and end that is 1/2 pitch high
Campbell Barton
committed
Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0
Campbell Barton
committed
Campbell Barton
committed
Row_Inc,Height_Offset = Create_Internal_Thread_Start_Verts(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset)
Row += Row_Inc
Campbell Barton
committed
Campbell Barton
committed
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,Height_Offset - (Height_Step*i) ])
Height_Offset -= Crest_Height
Row += 1
Campbell Barton
committed
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,Height_Offset - (Height_Step*i) ])
Height_Offset -= Crest_to_Root_Height
Row += 1
Campbell Barton
committed
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
verts.append([x,y,Height_Offset - (Height_Step*i) ])
Height_Offset -= Root_Height
Row += 1
Campbell Barton
committed
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
verts.append([x,y,Height_Offset - (Height_Step*i) ])
Height_Offset -= Root_to_Crest_Height
Row += 1
Campbell Barton
committed
Row_Inc,Height_Offset = Create_Internal_Thread_End_Verts(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset)
Row += Row_Inc
Campbell Barton
committed
faces.extend(Build_Face_List_Quads(FaceStart,DIV,Row -1,INTERNAL))
Campbell Barton
committed
return verts,faces,0 - Height_Offset
def Nut_Mesh(props, context):
verts = []
faces = []
Head_Verts = []
Head_Faces= []
#sc = context.scene
New_Nut_Height = 5
Campbell Barton
committed
Face_Start = len(verts)
Thread_Verts,Thread_Faces,New_Nut_Height = Create_Internal_Thread(props.bf_Minor_Dia,props.bf_Major_Dia,props.bf_Pitch,props.bf_Hex_Nut_Height,props.bf_Crest_Percent,props.bf_Root_Percent,1)
verts.extend(Thread_Verts)
faces.extend(Copy_Faces(Thread_Faces,Face_Start))
Campbell Barton
committed
Face_Start = len(verts)
Head_Verts,Head_Faces,Lock_Nut_Rad = add_Hex_Nut(props.bf_Hex_Nut_Flat_Distance,props.bf_Major_Dia,New_Nut_Height)
verts.extend((Head_Verts))
faces.extend(Copy_Faces(Head_Faces,Face_Start))
Campbell Barton
committed
Campbell Barton
committed
if props.bf_Nut_Type == 'bf_Nut_Lock':
Face_Start = len(verts)
Campbell Barton
committed
Nylon_Head_Verts,Nylon_Head_faces,LowZ = add_Nylon_Head(Lock_Nut_Rad,0-New_Nut_Height)
verts.extend((Nylon_Head_Verts))
faces.extend(Copy_Faces(Nylon_Head_faces,Face_Start))
Campbell Barton
committed
Campbell Barton
committed
Nylon_Verts,Nylon_faces,Temp_LowZ = add_Nylon_Part(Lock_Nut_Rad,0-New_Nut_Height)
verts.extend((Nylon_Verts))
faces.extend(Copy_Faces(Nylon_faces,Face_Start))
Campbell Barton
committed
return Move_Verts_Up_Z(verts,0 - LowZ),faces
##########################################################################################
##########################################################################################
##########################################################################################
## Create Bolt
##########################################################################################
##########################################################################################
def Bolt_Mesh(props, context):
Campbell Barton
committed
verts = []
faces = []
Bit_Verts = []
Bit_Faces = []
Bit_Dia = 0.001
Head_Verts = []
Head_Faces= []
Head_Height = 0.0
#sc = context.scene
Campbell Barton
committed
ReSized_Allen_Bit_Flat_Distance = props.bf_Allen_Bit_Flat_Distance # set default
Head_Height = props.bf_Hex_Head_Height # will be changed by the Head Functions
Campbell Barton
committed
if props.bf_Bit_Type == 'bf_Bit_Allen' and props.bf_Head_Type == 'bf_Head_Pan':
#need to size Allen bit if it is too big.
if Allen_Bit_Dia(props.bf_Allen_Bit_Flat_Distance) > Max_Pan_Bit_Dia(props.bf_Pan_Head_Dia):
ReSized_Allen_Bit_Flat_Distance = Allen_Bit_Dia_To_Flat(Max_Pan_Bit_Dia(props.bf_Pan_Head_Dia)) * 1.05
Campbell Barton
committed
#print ("Resized Allen Bit Flat Distance to ",ReSized_Allen_Bit_Flat_Distance)
#bit Mesh
if props.bf_Bit_Type == 'bf_Bit_Allen':
Bit_Verts,Bit_Faces,Bit_Dia = Create_Allen_Bit(ReSized_Allen_Bit_Flat_Distance,props.bf_Allen_Bit_Depth)
Campbell Barton
committed
if props.bf_Bit_Type == 'bf_Bit_Philips':
Bit_Verts,Bit_Faces,Bit_Dia = Create_Phillips_Bit(props.bf_Philips_Bit_Dia,props.bf_Philips_Bit_Dia*(0.5/1.82),props.bf_Phillips_Bit_Depth)
Campbell Barton
committed
Campbell Barton
committed
if props.bf_Head_Type =='bf_Head_Hex':
Head_Verts,Head_Faces,Head_Height = Create_Hex_Head(props.bf_Hex_Head_Flat_Distance,Bit_Dia,props.bf_Shank_Dia,props.bf_Hex_Head_Height)
Campbell Barton
committed
elif props.bf_Head_Type == 'bf_Head_Cap':
Head_Verts,Head_Faces,Head_Height = Create_Cap_Head(Bit_Dia,props.bf_Cap_Head_Dia,props.bf_Shank_Dia,props.bf_Cap_Head_Height,props.bf_Cap_Head_Dia*(1.0/19.0),props.bf_Cap_Head_Dia*(1.0/19.0))
Campbell Barton
committed
elif props.bf_Head_Type =='bf_Head_Dome':
Head_Verts,Head_Faces,Head_Height = Create_Dome_Head(Bit_Dia,props.bf_Dome_Head_Dia,props.bf_Shank_Dia,props.bf_Hex_Head_Height,1,1,0)
Campbell Barton
committed
elif props.bf_Head_Type == 'bf_Head_Pan':
Head_Verts,Head_Faces,Head_Height = Create_Pan_Head(Bit_Dia,props.bf_Pan_Head_Dia,props.bf_Shank_Dia,props.bf_Hex_Head_Height,1,1,0)
Campbell Barton
committed
elif props.bf_Head_Type == 'bf_Head_CounterSink':
Head_Verts,Head_Faces,Head_Height = Create_CounterSink_Head(Bit_Dia,props.bf_CounterSink_Head_Dia,props.bf_Shank_Dia,props.bf_CounterSink_Head_Dia,props.bf_CounterSink_Head_Dia*(0.09/6.31))
#Head_Verts,Head_Faces,Head_Height = Create_CounterSink_Head(Bit_Dia,props.bf_CounterSink_Head_Dia,props.bf_Shank_Dia,props.bf_CounterSink_Head_Dia,props.bf_CounterSink_Head_Dia*(1.0/19.0))
Face_Start = len(verts)
verts.extend(Move_Verts_Up_Z(Bit_Verts,Head_Height))
faces.extend(Copy_Faces(Bit_Faces,Face_Start))
Face_Start = len(verts)
verts.extend(Move_Verts_Up_Z(Head_Verts,Head_Height))
faces.extend(Copy_Faces(Head_Faces,Face_Start))
Face_Start = len(verts)
Thread_Verts,Thread_Faces,Thread_Height = Create_External_Thread(props.bf_Shank_Dia,props.bf_Shank_Length,props.bf_Minor_Dia,props.bf_Major_Dia,props.bf_Pitch,props.bf_Thread_Length,props.bf_Crest_Percent,props.bf_Root_Percent)
verts.extend(Move_Verts_Up_Z(Thread_Verts,00))
faces.extend(Copy_Faces(Thread_Faces,Face_Start))
Campbell Barton
committed
return Move_Verts_Up_Z(verts,Thread_Height),faces
# calculates the matrix for the new object
# depending on user pref
def align_matrix(context):
loc = Matrix.Translation(context.scene.cursor_location)
obj_align = context.user_preferences.edit.object_align
if (context.space_data.type == 'VIEW_3D'
and obj_align == 'VIEW'):
rot = context.space_data.region_3d.view_matrix.to_3x3().inverted().to_4x4()
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
else:
rot = Matrix()
align_matrix = loc * rot
return align_matrix
# Create a new mesh (object) from verts/edges/faces.
# verts/edges/faces ... List of vertices/edges/faces for the
# new mesh (as used in from_pydata).
# name ... Name of the new mesh (& object).
# edit ... Replace existing mesh data.
# Note: Using "edit" will destroy/delete existing mesh data.
def create_mesh_object(context, verts, edges, faces, name, edit, align_matrix):
scene = context.scene
obj_act = scene.objects.active
# Can't edit anything, unless we have an active obj.
if edit and not obj_act:
return None
# Create new mesh
mesh = bpy.data.meshes.new(name)
# Make a mesh from a list of verts/edges/faces.
mesh.from_pydata(verts, edges, faces)
# Update mesh geometry after adding stuff.
mesh.update()
# Deselect all objects when in object mode
if bpy.ops.object.select_all.poll():
bpy.ops.object.select_all(action='DESELECT')
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
if edit:
# Replace geometry of existing object
# Use the active obj and select it.
ob_new = obj_act
ob_new.select = True
if obj_act.mode == 'OBJECT':
# Get existing mesh datablock.
old_mesh = ob_new.data
# Set object data to nothing
ob_new.data = None
# Clear users of existing mesh datablock.
old_mesh.user_clear()
# Remove old mesh datablock if no users are left.
if (old_mesh.users == 0):
bpy.data.meshes.remove(old_mesh)
# Assign new mesh datablock.
ob_new.data = mesh
else:
# Create new object
ob_new = bpy.data.objects.new(name, mesh)
# Link new object to the given scene and select it.
scene.objects.link(ob_new)
ob_new.select = True
# Place the object at the 3D cursor location.
# apply viewRotaion
ob_new.matrix_world = align_matrix
if obj_act and obj_act.mode == 'EDIT':
if not edit:
# We are in EditMode, switch to ObjectMode.
bpy.ops.object.mode_set(mode='OBJECT')
# Select the active object as well.
obj_act.select = True
# Apply location of new object.
scene.update()
# Join new object into the active.
bpy.ops.object.join()
# Switching back to EditMode.
bpy.ops.object.mode_set(mode='EDIT')
ob_new = obj_act
else:
# We are in ObjectMode.
# Make the new object the active one.
scene.objects.active = ob_new
return ob_new
def Create_New_Mesh(props, context, align_matrix):
verts = []
faces = []
Campbell Barton
committed
if props.bf_Model_Type == 'bf_Model_Bolt':
#print('Create Bolt')
verts, faces = Bolt_Mesh(props, context)
Campbell Barton
committed
if props.bf_Model_Type == 'bf_Model_Nut':
#print('Create Nut')
verts, faces = Nut_Mesh(props, context)
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
obj = create_mesh_object(context, verts, [], faces,sObjName,
props.edit, align_matrix)
Campbell Barton
committed