Newer
Older
# SPDX-License-Identifier: GPL-2.0-or-later
"author": "Vladimir Spivak (cwolf3d)",
"version": (1, 6, 1),
"location": "View3D > Add > Curve",
"description": "Adds Simple Curve",
"warning": "",
"doc_url": "{BLENDER_MANUAL_URL}/addons/add_curve/extra_objects.html",
"category": "Add Curve",
}
# ------------------------------------------------------------
from bpy_extras import object_utils
from bpy.types import (
Operator,
Menu,
Panel,
PropertyGroup,
)
from bpy.props import (
BoolProperty,
EnumProperty,
FloatProperty,
FloatVectorProperty,
IntProperty,
StringProperty,
PointerProperty,
)
from mathutils import (
Vector,
Matrix,
)
from math import (
sin, asin, sqrt,
acos, cos, pi,
radians, tan,
hypot,
)
# from bpy_extras.object_utils import *
# ------------------------------------------------------------
# Point:
def SimplePoint():
newpoints = []
newpoints.append([0.0, 0.0, 0.0])
return newpoints
# ------------------------------------------------------------
# Line:
def SimpleLine(c1=[0.0, 0.0, 0.0], c2=[2.0, 2.0, 2.0]):
newpoints = []
c3 = Vector(c2) - Vector(c1)
newpoints.append([0.0, 0.0, 0.0])
newpoints.append([c3[0], c3[1], c3[2]])
return newpoints
# ------------------------------------------------------------
# Angle:
def SimpleAngle(length=1.0, angle=45.0):
newpoints = []
angle = radians(angle)
newpoints.append([length, 0.0, 0.0])
newpoints.append([0.0, 0.0, 0.0])
newpoints.append([length * cos(angle), length * sin(angle), 0.0])
return newpoints
# ------------------------------------------------------------
# Distance:
def SimpleDistance(length=1.0, center=True):
newpoints = []
if center:
newpoints.append([-length / 2, 0.0, 0.0])
newpoints.append([length / 2, 0.0, 0.0])
else:
newpoints.append([0.0, 0.0, 0.0])
newpoints.append([length, 0.0, 0.0])
return newpoints
# ------------------------------------------------------------
# Circle:
def SimpleCircle(sides=4, radius=1.0):
newpoints = []
angle = radians(360) / sides
newpoints.append([radius, 0, 0])
Spivak Vladimir (cwolf3d)
committed
if radius != 0 :
j = 1
while j < sides:
t = angle * j
x = cos(t) * radius
y = sin(t) * radius
newpoints.append([x, y, 0])
j += 1
# ------------------------------------------------------------
# Ellipse:
def SimpleEllipse(a=2.0, b=1.0):
newpoints = []
newpoints.append([a, 0.0, 0.0])
newpoints.append([0.0, b, 0.0])
newpoints.append([-a, 0.0, 0.0])
newpoints.append([0.0, -b, 0.0])
return newpoints
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# ------------------------------------------------------------
# Arc:
def SimpleArc(sides=0, radius=1.0, startangle=0.0, endangle=45.0):
newpoints = []
startangle = radians(startangle)
endangle = radians(endangle)
sides += 1
angle = (endangle - startangle) / sides
x = cos(startangle) * radius
y = sin(startangle) * radius
newpoints.append([x, y, 0])
j = 1
while j < sides:
t = angle * j
x = cos(t + startangle) * radius
y = sin(t + startangle) * radius
newpoints.append([x, y, 0])
j += 1
x = cos(endangle) * radius
y = sin(endangle) * radius
newpoints.append([x, y, 0])
return newpoints
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# ------------------------------------------------------------
# Sector:
def SimpleSector(sides=0, radius=1.0, startangle=0.0, endangle=45.0):
newpoints = []
startangle = radians(startangle)
endangle = radians(endangle)
sides += 1
newpoints.append([0, 0, 0])
angle = (endangle - startangle) / sides
x = cos(startangle) * radius
y = sin(startangle) * radius
newpoints.append([x, y, 0])
j = 1
while j < sides:
t = angle * j
x = cos(t + startangle) * radius
y = sin(t + startangle) * radius
newpoints.append([x, y, 0])
j += 1
x = cos(endangle) * radius
y = sin(endangle) * radius
newpoints.append([x, y, 0])
return newpoints
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# ------------------------------------------------------------
# Segment:
def SimpleSegment(sides=0, a=2.0, b=1.0, startangle=0.0, endangle=45.0):
newpoints = []
startangle = radians(startangle)
endangle = radians(endangle)
sides += 1
angle = (endangle - startangle) / sides
x = cos(startangle) * a
y = sin(startangle) * a
newpoints.append([x, y, 0])
j = 1
while j < sides:
t = angle * j
x = cos(t + startangle) * a
y = sin(t + startangle) * a
newpoints.append([x, y, 0])
j += 1
x = cos(endangle) * a
y = sin(endangle) * a
newpoints.append([x, y, 0])
x = cos(endangle) * b
y = sin(endangle) * b
newpoints.append([x, y, 0])
Spivak Vladimir (cwolf3d)
committed
j = sides - 1
while j > 0:
t = angle * j
x = cos(t + startangle) * b
y = sin(t + startangle) * b
newpoints.append([x, y, 0])
j -= 1
x = cos(startangle) * b
y = sin(startangle) * b
newpoints.append([x, y, 0])
return newpoints
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# ------------------------------------------------------------
# Rectangle:
def SimpleRectangle(width=2.0, length=2.0, rounded=0.0, center=True):
newpoints = []
r = rounded / 2
if center:
x = width / 2
y = length / 2
if rounded != 0.0:
newpoints.append([-x + r, y, 0.0])
newpoints.append([x - r, y, 0.0])
newpoints.append([x, y - r, 0.0])
newpoints.append([x, -y + r, 0.0])
newpoints.append([x - r, -y, 0.0])
newpoints.append([-x + r, -y, 0.0])
newpoints.append([-x, -y + r, 0.0])
newpoints.append([-x, y - r, 0.0])
else:
newpoints.append([-x, y, 0.0])
newpoints.append([x, y, 0.0])
newpoints.append([x, -y, 0.0])
newpoints.append([-x, -y, 0.0])
else:
x = width
y = length
if rounded != 0.0:
newpoints.append([r, y, 0.0])
newpoints.append([x - r, y, 0.0])
newpoints.append([x, y - r, 0.0])
newpoints.append([x, r, 0.0])
newpoints.append([x - r, 0.0, 0.0])
newpoints.append([r, 0.0, 0.0])
newpoints.append([0.0, r, 0.0])
newpoints.append([0.0, y - r, 0.0])
else:
newpoints.append([0.0, 0.0, 0.0])
newpoints.append([0.0, y, 0.0])
newpoints.append([x, y, 0.0])
newpoints.append([x, 0.0, 0.0])
return newpoints
# ------------------------------------------------------------
# Rhomb:
def SimpleRhomb(width=2.0, length=2.0, center=True):
newpoints = []
x = width / 2
y = length / 2
if center:
newpoints.append([-x, 0.0, 0.0])
newpoints.append([0.0, y, 0.0])
newpoints.append([x, 0.0, 0.0])
newpoints.append([0.0, -y, 0.0])
else:
newpoints.append([x, 0.0, 0.0])
newpoints.append([0.0, y, 0.0])
newpoints.append([x, length, 0.0])
newpoints.append([width, y, 0.0])
return newpoints
# ------------------------------------------------------------
# Polygon:
def SimplePolygon(sides=3, radius=1.0):
newpoints = []
angle = radians(360.0) / sides
j = 0
while j < sides:
t = angle * j
x = sin(t) * radius
y = cos(t) * radius
newpoints.append([x, y, 0.0])
j += 1
return newpoints
# ------------------------------------------------------------
# Polygon_ab:
def SimplePolygon_ab(sides=3, a=2.0, b=1.0):
newpoints = []
angle = radians(360.0) / sides
j = 0
while j < sides:
t = angle * j
x = sin(t) * a
y = cos(t) * b
newpoints.append([x, y, 0.0])
j += 1
return newpoints
# ------------------------------------------------------------
# Trapezoid:
def SimpleTrapezoid(a=2.0, b=1.0, h=1.0, center=True):
newpoints = []
x = a / 2
y = b / 2
r = h / 2
if center:
newpoints.append([-x, -r, 0.0])
newpoints.append([-y, r, 0.0])
newpoints.append([y, r, 0.0])
newpoints.append([x, -r, 0.0])
else:
newpoints.append([0.0, 0.0, 0.0])
newpoints.append([x - y, h, 0.0])
newpoints.append([x + y, h, 0.0])
newpoints.append([a, 0.0, 0.0])
return newpoints
# ------------------------------------------------------------
# get array of vertcoordinates according to splinetype
def vertsToPoints(Verts, splineType):
# main vars
vertArray = []
# array for BEZIER spline output (V3)
if splineType == 'BEZIER':
for v in Verts:
vertArray += v
# array for nonBEZIER output (V4)
else:
for v in Verts:
vertArray += v
if splineType == 'NURBS':
# for nurbs w=1
vertArray.append(1)
else:
# for poly w=0
vertArray.append(0)
return vertArray
# ------------------------------------------------------------
# Main Function
def main(context, self, use_enter_edit_mode):
# output splineType 'POLY' 'NURBS' 'BEZIER'
splineType = self.outputType
sides = abs(int((self.Simple_endangle - self.Simple_startangle) / 90))
# get verts
if self.Simple_Type == 'Point':
verts = SimplePoint()
if self.Simple_Type == 'Line':
verts = SimpleLine(self.location, self.Simple_endlocation)
if self.Simple_Type == 'Distance':
verts = SimpleDistance(self.Simple_length, self.Simple_center)
if self.Simple_Type == 'Angle':
verts = SimpleAngle(self.Simple_length, self.Simple_angle)
if self.Simple_Type == 'Circle':
if self.Simple_sides < 4:
self.Simple_sides = 4
Spivak Vladimir (cwolf3d)
committed
if self.Simple_radius == 0:
return {'FINISHED'}
verts = SimpleCircle(self.Simple_sides, self.Simple_radius)
if self.Simple_Type == 'Ellipse':
verts = SimpleEllipse(self.Simple_a, self.Simple_b)
if self.Simple_Type == 'Arc':
if self.Simple_sides < sides:
self.Simple_sides = sides
if self.Simple_radius == 0:
return {'FINISHED'}
verts = SimpleArc(
self.Simple_sides, self.Simple_radius,
self.Simple_startangle, self.Simple_endangle
)
if self.Simple_Type == 'Sector':
if self.Simple_sides < sides:
self.Simple_sides = sides
if self.Simple_radius == 0:
return {'FINISHED'}
verts = SimpleSector(
self.Simple_sides, self.Simple_radius,
self.Simple_startangle, self.Simple_endangle
)
if self.Simple_Type == 'Segment':
if self.Simple_sides < sides:
self.Simple_sides = sides
Spivak Vladimir (cwolf3d)
committed
if self.Simple_a == 0 or self.Simple_b == 0 or self.Simple_a == self.Simple_b:
Spivak Vladimir (cwolf3d)
committed
if self.Simple_a > self.Simple_b:
verts = SimpleSegment(
self.Simple_sides, self.Simple_a, self.Simple_b,
self.Simple_startangle, self.Simple_endangle
)
Spivak Vladimir (cwolf3d)
committed
if self.Simple_a < self.Simple_b:
verts = SimpleSegment(
self.Simple_sides, self.Simple_b, self.Simple_a,
self.Simple_startangle, self.Simple_endangle
)
if self.Simple_Type == 'Rectangle':
verts = SimpleRectangle(
self.Simple_width, self.Simple_length,
self.Simple_rounded, self.Simple_center
)
if self.Simple_Type == 'Rhomb':
verts = SimpleRhomb(
self.Simple_width, self.Simple_length, self.Simple_center
)
if self.Simple_Type == 'Polygon':
if self.Simple_sides < 3:
self.Simple_sides = 3
verts = SimplePolygon(
self.Simple_sides, self.Simple_radius
)
if self.Simple_Type == 'Polygon_ab':
if self.Simple_sides < 3:
self.Simple_sides = 3
verts = SimplePolygon_ab(
self.Simple_sides, self.Simple_a, self.Simple_b
)
if self.Simple_Type == 'Trapezoid':
verts = SimpleTrapezoid(
self.Simple_a, self.Simple_b, self.Simple_h, self.Simple_center
)
# turn verts into array
vertArray = vertsToPoints(verts, splineType)
# create object
if bpy.context.mode == 'EDIT_CURVE':
Curve = context.active_object
newSpline = Curve.data.splines.new(type=splineType) # spline
else:
name = self.Simple_Type # Type as name
dataCurve = bpy.data.curves.new(name, type='CURVE') # curve data block
newSpline = dataCurve.splines.new(type=splineType) # spline
# create object with new Curve
Curve = object_utils.object_data_add(context, dataCurve, operator=self) # place in active scene
Curve.select_set(True)
Spivak Vladimir (cwolf3d)
committed
for spline in Curve.data.splines:
if spline.type == 'BEZIER':
for point in spline.bezier_points:
point.select_control_point = False
point.select_left_handle = False
point.select_right_handle = False
else:
for point in spline.points:
point.select = False
# create spline from vertarray
Spivak Vladimir (cwolf3d)
committed
all_points = []
if splineType == 'BEZIER':
newSpline.bezier_points.add(int(len(vertArray) * 0.33))
newSpline.bezier_points.foreach_set('co', vertArray)
for point in newSpline.bezier_points:
point.handle_right_type = self.handleType
point.handle_left_type = self.handleType
Spivak Vladimir (cwolf3d)
committed
point.select_control_point = True
point.select_left_handle = True
point.select_right_handle = True
all_points.append(point)
else:
newSpline.points.add(int(len(vertArray) * 0.25 - 1))
newSpline.points.foreach_set('co', vertArray)
newSpline.use_endpoint_u = True
Spivak Vladimir (cwolf3d)
committed
for point in newSpline.points:
all_points.append(point)
point.select = True
n = len(all_points)
if splineType == 'BEZIER':
if self.Simple_Type == 'Circle' or self.Simple_Type == 'Arc' or \
self.Simple_Type == 'Sector' or self.Simple_Type == 'Segment' or \
self.Simple_Type == 'Ellipse':
for p in all_points:
p.handle_right_type = 'FREE'
p.handle_left_type = 'FREE'
if self.Simple_Type == 'Circle':
i = 0
for p1 in all_points:
if i != (n - 1):
p2 = all_points[i + 1]
u1 = asin(p1.co.y / self.Simple_radius)
u2 = asin(p2.co.y / self.Simple_radius)
if p1.co.x > 0 and p2.co.x < 0:
u1 = acos(p1.co.x / self.Simple_radius)
u2 = acos(p2.co.x / self.Simple_radius)
elif p1.co.x < 0 and p2.co.x > 0:
u1 = acos(p1.co.x / self.Simple_radius)
u2 = acos(p2.co.x / self.Simple_radius)
u = u2 - u1
if u < 0:
u = -u
l = 4 / 3 * tan(1 / 4 * u) * self.Simple_radius
v1 = Vector((-p1.co.y, p1.co.x, 0))
v1.normalize()
v2 = Vector((-p2.co.y, p2.co.x, 0))
v2.normalize()
vh1 = v1 * l
vh2 = v2 * l
v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
p1.handle_right = v1
p2.handle_left = v2
if i == (n - 1):
p2 = all_points[0]
u1 = asin(p1.co.y / self.Simple_radius)
u2 = asin(p2.co.y / self.Simple_radius)
if p1.co.x > 0 and p2.co.x < 0:
u1 = acos(p1.co.x / self.Simple_radius)
u2 = acos(p2.co.x / self.Simple_radius)
elif p1.co.x < 0 and p2.co.x > 0:
u1 = acos(p1.co.x / self.Simple_radius)
u2 = acos(p2.co.x / self.Simple_radius)
u = u2 - u1
if u < 0:
u = -u
l = 4 / 3 * tan(1 / 4 * u) * self.Simple_radius
v1 = Vector((-p1.co.y, p1.co.x, 0))
v1.normalize()
v2 = Vector((-p2.co.y, p2.co.x, 0))
v2.normalize()
vh1 = v1 * l
vh2 = v2 * l
v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
p1.handle_right = v1
p2.handle_left = v2
i += 1
if self.Simple_Type == 'Ellipse':
all_points[0].handle_right = Vector((self.Simple_a, self.Simple_b * d, 0))
all_points[0].handle_left = Vector((self.Simple_a, -self.Simple_b * d, 0))
all_points[1].handle_right = Vector((-self.Simple_a * d, self.Simple_b, 0))
all_points[1].handle_left = Vector((self.Simple_a * d, self.Simple_b, 0))
all_points[2].handle_right = Vector((-self.Simple_a, -self.Simple_b * d, 0))
all_points[2].handle_left = Vector((-self.Simple_a, self.Simple_b * d, 0))
all_points[3].handle_right = Vector((self.Simple_a * d, -self.Simple_b, 0))
all_points[3].handle_left = Vector((-self.Simple_a * d, -self.Simple_b, 0))
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
if self.Simple_Type == 'Arc':
i = 0
for p1 in all_points:
if i != (n - 1):
p2 = all_points[i + 1]
u1 = asin(p1.co.y / self.Simple_radius)
u2 = asin(p2.co.y / self.Simple_radius)
if p1.co.x > 0 and p2.co.x < 0:
u1 = acos(p1.co.x / self.Simple_radius)
u2 = acos(p2.co.x / self.Simple_radius)
elif p1.co.x < 0 and p2.co.x > 0:
u1 = acos(p1.co.x / self.Simple_radius)
u2 = acos(p2.co.x / self.Simple_radius)
u = u2 - u1
if u < 0:
u = -u
l = 4 / 3 * tan(1 / 4 * u) * self.Simple_radius
v1 = Vector((-p1.co.y, p1.co.x, 0))
v1.normalize()
v2 = Vector((-p2.co.y, p2.co.x, 0))
v2.normalize()
vh1 = v1 * l
vh2 = v2 * l
if self.Simple_startangle < self.Simple_endangle:
v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
p1.handle_right = v1
p2.handle_left = v2
else:
v1 = Vector((p1.co.x, p1.co.y, 0)) - vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) + vh2
p1.handle_right = v1
p2.handle_left = v2
i += 1
Spivak Vladimir (cwolf3d)
committed
all_points[0].handle_left_type = 'VECTOR'
all_points[-1].handle_right_type = 'VECTOR'
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
if self.Simple_Type == 'Sector':
i = 0
for p1 in all_points:
if i == 0:
p1.handle_right_type = 'VECTOR'
p1.handle_left_type = 'VECTOR'
elif i != (n - 1):
p2 = all_points[i + 1]
u1 = asin(p1.co.y / self.Simple_radius)
u2 = asin(p2.co.y / self.Simple_radius)
if p1.co.x > 0 and p2.co.x < 0:
u1 = acos(p1.co.x / self.Simple_radius)
u2 = acos(p2.co.x / self.Simple_radius)
elif p1.co.x < 0 and p2.co.x > 0:
u1 = acos(p1.co.x / self.Simple_radius)
u2 = acos(p2.co.x / self.Simple_radius)
u = u2 - u1
if u < 0:
u = -u
l = 4 / 3 * tan(1 / 4 * u) * self.Simple_radius
v1 = Vector((-p1.co.y, p1.co.x, 0))
v1.normalize()
v2 = Vector((-p2.co.y, p2.co.x, 0))
v2.normalize()
vh1 = v1 * l
vh2 = v2 * l
if self.Simple_startangle < self.Simple_endangle:
v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
p1.handle_right = v1
p2.handle_left = v2
else:
v1 = Vector((p1.co.x, p1.co.y, 0)) - vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) + vh2
p1.handle_right = v1
p2.handle_left = v2
i += 1
Spivak Vladimir (cwolf3d)
committed
all_points[0].handle_left_type = 'VECTOR'
all_points[0].handle_right_type = 'VECTOR'
all_points[1].handle_left_type = 'VECTOR'
all_points[-1].handle_right_type = 'VECTOR'
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
if self.Simple_Type == 'Segment':
i = 0
if self.Simple_a > self.Simple_b:
Segment_a = self.Simple_a
Segment_b = self.Simple_b
if self.Simple_a < self.Simple_b:
Segment_b = self.Simple_a
Segment_a = self.Simple_b
for p1 in all_points:
if i < (n / 2 - 1):
p2 = all_points[i + 1]
u1 = asin(p1.co.y / Segment_a)
u2 = asin(p2.co.y / Segment_a)
if p1.co.x > 0 and p2.co.x < 0:
u1 = acos(p1.co.x / Segment_a)
u2 = acos(p2.co.x / Segment_a)
elif p1.co.x < 0 and p2.co.x > 0:
u1 = acos(p1.co.x / Segment_a)
u2 = acos(p2.co.x / Segment_a)
u = u2 - u1
if u < 0:
u = -u
l = 4 / 3 * tan(1 / 4 * u) * Segment_a
v1 = Vector((-p1.co.y, p1.co.x, 0))
v1.normalize()
v2 = Vector((-p2.co.y, p2.co.x, 0))
v2.normalize()
vh1 = v1 * l
vh2 = v2 * l
if self.Simple_startangle < self.Simple_endangle:
v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
p1.handle_right = v1
p2.handle_left = v2
else:
v1 = Vector((p1.co.x, p1.co.y, 0)) - vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) + vh2
p1.handle_right = v1
p2.handle_left = v2
elif i != (n / 2 - 1) and i != (n - 1):
p2 = all_points[i + 1]
u1 = asin(p1.co.y / Segment_b)
u2 = asin(p2.co.y / Segment_b)
if p1.co.x > 0 and p2.co.x < 0:
u1 = acos(p1.co.x / Segment_b)
u2 = acos(p2.co.x / Segment_b)
elif p1.co.x < 0 and p2.co.x > 0:
u1 = acos(p1.co.x / Segment_b)
u2 = acos(p2.co.x / Segment_b)
u = u2 - u1
if u < 0:
u = -u
l = 4 / 3 * tan(1 / 4 * u) * Segment_b
v1 = Vector((-p1.co.y, p1.co.x, 0))
v1.normalize()
v2 = Vector((-p2.co.y, p2.co.x, 0))
v2.normalize()
vh1 = v1 * l
vh2 = v2 * l
if self.Simple_startangle < self.Simple_endangle:
v1 = Vector((p1.co.x, p1.co.y, 0)) - vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) + vh2
p1.handle_right = v1
p2.handle_left = v2
else:
v1 = Vector((p1.co.x, p1.co.y, 0)) + vh1
v2 = Vector((p2.co.x, p2.co.y, 0)) - vh2
p1.handle_right = v1
p2.handle_left = v2
i += 1
all_points[0].handle_left_type = 'VECTOR'
all_points[n - 1].handle_right_type = 'VECTOR'
all_points[int(n / 2) - 1].handle_right_type = 'VECTOR'
all_points[int(n / 2)].handle_left_type = 'VECTOR'
# set newSpline Options
newSpline.use_cyclic_u = self.use_cyclic_u
newSpline.use_endpoint_u = self.endp_u
newSpline.order_u = self.order_u
# set curve Options
Curve.data.dimensions = self.shape
Curve.data.use_path = True
if self.shape == '3D':
Curve.data.fill_mode = 'FULL'
else:
Curve.data.fill_mode = 'BOTH'
# move and rotate spline in edit mode
if bpy.context.mode == 'EDIT_CURVE':
if self.align == "WORLD":
location = self.location - context.active_object.location
bpy.ops.transform.translate(value = location, orient_type='GLOBAL')
bpy.ops.transform.rotate(value = self.rotation[0], orient_axis = 'X', orient_type='GLOBAL')
bpy.ops.transform.rotate(value = self.rotation[1], orient_axis = 'Y', orient_type='GLOBAL')
bpy.ops.transform.rotate(value = self.rotation[2], orient_axis = 'Z', orient_type='GLOBAL')
elif self.align == "VIEW":
bpy.ops.transform.translate(value = self.location)
bpy.ops.transform.rotate(value = self.rotation[0], orient_axis = 'X')
bpy.ops.transform.rotate(value = self.rotation[1], orient_axis = 'Y')
bpy.ops.transform.rotate(value = self.rotation[2], orient_axis = 'Z')
elif self.align == "CURSOR":
location = context.active_object.location
self.location = bpy.context.scene.cursor.location - location
self.rotation = bpy.context.scene.cursor.rotation_euler
bpy.ops.transform.translate(value = self.location)
bpy.ops.transform.rotate(value = self.rotation[0], orient_axis = 'X')
bpy.ops.transform.rotate(value = self.rotation[1], orient_axis = 'Y')
bpy.ops.transform.rotate(value = self.rotation[2], orient_axis = 'Z')
oper1 = self.layout.operator(Simple.bl_idname, text="Angle", icon="DRIVER_ROTATIONAL_DIFFERENCE")
oper1.use_cyclic_u = False
oper2 = self.layout.operator(Simple.bl_idname, text="Arc", icon="MOD_THICKNESS")
oper2.use_cyclic_u = False
oper3 = self.layout.operator(Simple.bl_idname, text="Circle", icon="ANTIALIASED")
oper3.use_cyclic_u = True
oper4 = self.layout.operator(Simple.bl_idname, text="Distance", icon="DRIVER_DISTANCE")
oper4.use_cyclic_u = False
oper5 = self.layout.operator(Simple.bl_idname, text="Ellipse", icon="MESH_TORUS")
oper5.use_cyclic_u = True
oper6 = self.layout.operator(Simple.bl_idname, text="Line", icon="MOD_SIMPLIFY")
oper6.use_cyclic_u = False
oper6.shape = '3D'
oper7 = self.layout.operator(Simple.bl_idname, text="Point", icon="LAYER_ACTIVE")
oper7.use_cyclic_u = False
oper8 = self.layout.operator(Simple.bl_idname, text="Polygon", icon="SEQ_CHROMA_SCOPE")
oper8.use_cyclic_u = True
oper9 = self.layout.operator(Simple.bl_idname, text="Polygon ab", icon="SEQ_CHROMA_SCOPE")
oper9.Simple_Type = "Polygon_ab"
oper9.use_cyclic_u = True
oper10 = self.layout.operator(Simple.bl_idname, text="Rectangle", icon="MESH_PLANE")
oper10.Simple_Type = "Rectangle"
oper10.use_cyclic_u = True
oper11 = self.layout.operator(Simple.bl_idname, text="Rhomb", icon="DECORATE_ANIMATE")
oper11.use_cyclic_u = True
oper12 = self.layout.operator(Simple.bl_idname, text="Sector", icon="CON_SHRINKWRAP")
oper12.use_cyclic_u = True
oper13 = self.layout.operator(Simple.bl_idname, text="Segment", icon="MOD_SIMPLEDEFORM")
oper13.use_cyclic_u = True
oper14 = self.layout.operator(Simple.bl_idname, text="Trapezoid", icon="MOD_EDGESPLIT")
oper14.Simple_Type = "Trapezoid"
oper14.use_cyclic_u = True
# ------------------------------------------------------------
# Simple operator
class Simple(Operator, object_utils.AddObjectHelper):
bl_label = "Simple Curve"
bl_description = "Construct a Simple Curve"
bl_options = {'REGISTER', 'UNDO', 'PRESET'}
name="Simple",
default=True,
description="Simple Curve"
)
name="Change",
default=False,
description="Change Simple Curve"
)
name="Delete",
description="Delete Simple Curve"
)
Types = [('Point', "Point", "Construct a Point"),
('Line', "Line", "Construct a Line"),
('Distance', "Distance", "Construct a two point Distance"),
('Angle', "Angle", "Construct an Angle"),
('Circle', "Circle", "Construct a Circle"),
('Ellipse', "Ellipse", "Construct an Ellipse"),
('Arc', "Arc", "Construct an Arc"),
('Sector', "Sector", "Construct a Sector"),
('Segment', "Segment", "Construct a Segment"),
('Rectangle', "Rectangle", "Construct a Rectangle"),
('Rhomb', "Rhomb", "Construct a Rhomb"),
('Polygon', "Polygon", "Construct a Polygon"),
('Polygon_ab', "Polygon ab", "Construct a Polygon ab"),
('Trapezoid', "Trapezoid", "Construct a Trapezoid")
]
name="Type",
description="Form of Curve to create",
items=Types
)
Simple_endlocation : FloatVectorProperty(
name="",
description="End location",
default=(2.0, 2.0, 2.0),
subtype='TRANSLATION'
)
name="Side a",
default=2.0,
min=0.0, soft_min=0.0,
unit='LENGTH',
description="a side Value"
)
name="Side b",
default=1.0,
min=0.0, soft_min=0.0,
unit='LENGTH',
description="b side Value"
)
name="Height",
default=1.0,
unit='LENGTH',
description="Height of the Trapezoid - distance between a and b"
)
name="Angle",
default=45.0,
description="Angle"
)
Simple_startangle : FloatProperty(
name="Start angle",
default=0.0,
min=-360.0, soft_min=-360.0,
max=360.0, soft_max=360.0,
description="Start angle"
)
Simple_endangle : FloatProperty(
name="End angle",
default=45.0,
min=-360.0, soft_min=-360.0,
max=360.0, soft_max=360.0,
description="End angle"
)
name="Sides",
default=3,
min=0, soft_min=0,
description="Sides"
)
name="Radius",
default=1.0,
min=0.0, soft_min=0.0,
unit='LENGTH',
description="Radius"
)
name="Length center",
default=True,
description="Length center"
)
Angle_types = [('Degrees', "Degrees", "Use Degrees"),
('Radians', "Radians", "Use Radians")]
Simple_degrees_or_radians : EnumProperty(
name="Degrees or radians",
description="Degrees or radians",
items=Angle_types
)
name="Width",
default=2.0,
min=0.0, soft_min=0,
unit='LENGTH',
description="Width"
)
name="Length",
default=2.0,
min=0.0, soft_min=0.0,
unit='LENGTH',
description="Length"
)
name="Rounded",
default=0.0,
min=0.0, soft_min=0.0,
unit='LENGTH',