Skip to content
Snippets Groups Projects
io_export_unreal_psk_psa.py 104 KiB
Newer Older
#====================== BEGIN GPL LICENSE BLOCK ============================
#
#  This program is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program.  If not, see <http://www.gnu.org/licenses/>.
#  All rights reserved.
#
#======================= END GPL LICENSE BLOCK =============================
bl_info = {
    "name": "Export Unreal Engine Format(.psk/.psa)",
    "author": "Darknet/Optimus_P-Fat/Active_Trash/Sinsoft/VendorX/Spoof",
Luca Bonavita's avatar
Luca Bonavita committed
    "location": "File > Export > Skeletal Mesh/Animation Data (.psk/.psa)",
    "description": "Export Skeleletal Mesh/Animation Data",
Luca Bonavita's avatar
Luca Bonavita committed
    "warning": "",
    "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"
                "Scripts/Import-Export/Unreal_psk_psa",
    "category": "Import-Export",
}
-- Unreal Skeletal Mesh and Animation Export (.psk  and .psa) export script v0.0.1 --<br>

- NOTES:
- This script Exports To Unreal's PSK and PSA file formats for Skeletal Meshes and Animations. <br>
- This script DOES NOT support vertex animation! These require completely different file formats. <br>

- v0.0.1
- Initial version

- v0.0.2
- This version adds support for more than one material index!

[ - Edit by: Darknet
- v0.0.3 - v0.0.12
- This will work on UT3 and it is a stable version that work with vehicle for testing.
- Main Bone fix no dummy needed to be there.
- Just bone issues position, rotation, and offset for psk.
- The armature bone position, rotation, and the offset of the bone is fix. It was to deal with skeleton mesh export for psk.
- Animation is fix for position, offset, rotation bone support one rotation direction when armature build.
- It will convert your mesh into triangular when exporting to psk file.
- Did not work with psa export yet.

- v0.0.13
- The animatoin will support different bone rotations when export the animation.

- v0.0.14
- Fixed Action set keys frames when there is no pose keys and it will ignore it.

- v0.0.15
- Fixed multiple objects when exporting to psk. Select one mesh to export to psk.
- ]

- v0.1.1
- Blender 2.50 svn (Support)

Credit to:
- export_cal3d.py (Position of the Bones Format)
- blender2md5.py (Animation Translation Format)
- export_obj.py (Blender 2.5/Pyhton 3.x Format)

- freenode #blendercoder -> user -> ideasman42

- Give Credit to those who work on this script.

- http://sinsoft.com

#===========================================================================
"""
NOTES for Jan 2012 refactor (Spoof)

    * THIS IS A WORK IN PROGRESS. These modifications were originally
    intended for internal use and are incomplete. Use at your own risk! *

TODO

- (Blender 2.62) changes to Matrix math
- (Blender 2.62) check for long names
- option to manually set the root bone for export

CHANGES

- new bone parsing to allow advanced rigging
- identification of armature and mesh
- removed the need to apply an action to the armature
- fixed anim rate to work correctly in UDK (no more FPS fudging)
- progress reporting while processing smooth groups
- more informative logging
- code refactor for clarity and modularity
    - naming conventions unified to use lowercase_with_underscore
    - C++ datatypes and PSK/PSA classes remain CamelCaseStyle for clarity
    - names such as 'ut' and 'unreal' unified to 'udk'
    - simplification of code structure
    - removed legacy code paths

USAGE

This version of the exporter is more selective over which bones are considered
part of the UDK skeletal mesh, and allows greater flexibility for adding
control bones to aid in animation.

Taking advantage of this script requires the following methodology:

    * Place all exportable bones into a bone hierarchy extending from a single
    root. This root bone must have use_deform enabled. All other root bones
    in the armature must disable use_deform. *

The script searches for a root bone with use_deform set true and considers all
bones parented to it as part of the UDK skeletal mesh. Thus only these bones
are exported and all other bones are ignored.

This removes many restrictions on the rigger/animator, who can add control
bone hierarchies to the rig, and keyframe any element into actions. With this
approach you can build complex animation rigs in a similar vein to the Rigify
add-on, by Nathan Vegdahl. However...

    * Rigify is incompatible with this script *

Rigify interlaces deformer bones within a single hierarchy making it difficult
to deconstruct for export. It also splits some meta-rig bones into multiple
deformer bones (bad for optimising a game character). I had partial success
writing a parser for the structure, but it was taking too much time and,
considering the other issues with Rigify, it was abandoned.
"""
#===========================================================================

John Phan's avatar
John Phan committed
import bmesh
import math
import random
John Phan's avatar
John Phan committed
from bpy.props import *
Campbell Barton's avatar
Campbell Barton committed
from struct import pack
# U = x / sqrt(x^2 + y^2 + z^2)
# V = y / sqrt(x^2 + y^2 + z^2)
#
# Triangles specifed counter clockwise for front face
#
SIZE_FQUAT              = 16
SIZE_FVECTOR            = 12
SIZE_VJOINTPOS          = 44
SIZE_ANIMINFOBINARY     = 168
SIZE_VCHUNKHEADER       = 32
SIZE_VMATERIAL          = 88
SIZE_VBONE              = 120
SIZE_FNAMEDBONEBINARY   = 120
SIZE_VRAWBONEINFLUENCE  = 12
SIZE_VQUATANIMKEY       = 32
SIZE_VVERTEX            = 16
SIZE_VPOINT             = 12
SIZE_VTRIANGLE          = 12

MaterialName            = []

#===========================================================================
# Custom exception class
#===========================================================================
class Error( Exception ):

    def __init__(self, message):
        self.message = message

#===========================================================================
# Verbose logging with loop truncation
#===========================================================================
def verbose( msg, iteration=-1, max_iterations=4, msg_truncated="..." ):

    if bpy.context.scene.udk_option_verbose == True:
        # limit the number of times a loop can output messages
        if iteration > max_iterations:
            return
        elif iteration == max_iterations:
            print(msg_truncated)
            return
#===========================================================================
# Log header/separator
#===========================================================================
def header( msg, justify='LEFT', spacer='_', cols=78 ):
    if justify == 'LEFT':
        s = '{:{spacer}<{cols}}'.format(msg+" ", spacer=spacer, cols=cols)
    elif justify == 'RIGHT':
        s = '{:{spacer}>{cols}}'.format(" "+msg, spacer=spacer, cols=cols)
    else:
        s = '{:{spacer}^{cols}}'.format(" "+msg+" ", spacer=spacer, cols=cols)

#===========================================================================
# Generic Object->Integer mapping
# the object must be usable as a dictionary key
#===========================================================================
    def __init__(self):
        self.dict = {}
        self.next = 0
    def get(self, obj):
        if obj in self.dict:
            return self.dict[obj]
        else:
            id = self.next
            self.next = self.next + 1
            self.dict[obj] = id
            return id
    def items(self):
        getval = operator.itemgetter(0)
        getkey = operator.itemgetter(1)
        return map(getval, sorted(self.dict.items(), key=getkey))
#===========================================================================
# RG - UNREAL DATA STRUCTS - CONVERTED FROM C STRUCTS GIVEN ON UDN SITE
# provided here: http://udn.epicgames.com/Two/BinaryFormatSpecifications.html
# updated UDK (Unreal Engine 3): http://udn.epicgames.com/Three/BinaryFormatSpecifications.html
#===========================================================================
        self.X = 0.0
        self.Y = 0.0
        self.Z = 0.0
        self.W = 1.0
    def dump(self):
        return pack('ffff', self.X, self.Y, self.Z, self.W)
    def __cmp__(self, other):
        return cmp(self.X, other.X) \
            or cmp(self.Y, other.Y) \
            or cmp(self.Z, other.Z) \
            or cmp(self.W, other.W)
    def __hash__(self):
        return hash(self.X) ^ hash(self.Y) ^ hash(self.Z) ^ hash(self.W)
    def __str__(self):
        return "[%f,%f,%f,%f](FQuat)" % (self.X, self.Y, self.Z, self.W)
    def __init__(self, X=0.0, Y=0.0, Z=0.0):
        self.X = X
        self.Y = Y
        self.Z = Z
    def dump(self):
        return pack('fff', self.X, self.Y, self.Z)
    def __cmp__(self, other):
        return cmp(self.X, other.X) \
            or cmp(self.Y, other.Y) \
            or cmp(self.Z, other.Z)
    def _key(self):
        return (type(self).__name__, self.X, self.Y, self.Z)
    def __hash__(self):
        return hash(self._key())
    def __eq__(self, other):
        if not hasattr(other, '_key'):
            return False
    def dot(self, other):
        return self.X * other.X + self.Y * other.Y + self.Z * other.Z
    def cross(self, other):
        return FVector(self.Y * other.Z - self.Z * other.Y,
                self.Z * other.X - self.X * other.Z,
                self.X * other.Y - self.Y * other.X)
    def sub(self, other):
        return FVector(self.X - other.X,
            self.Y - other.Y,
            self.Z - other.Z)
    def __init__(self):
        self.Orientation    = FQuat()
        self.Position       = FVector()
        self.Length         = 0.0
        self.XSize          = 0.0
        self.YSize          = 0.0
        self.ZSize          = 0.0
    def dump(self):
        return self.Orientation.dump() + self.Position.dump() + pack('4f', self.Length, self.XSize, self.YSize, self.ZSize)
    def __init__(self):
        self.Name           = ""    # length=64
        self.Group          = ""    # length=64
        self.TotalBones     = 0
        self.RootInclude    = 0
        self.KeyCompressionStyle = 0
        self.KeyQuotum      = 0
        self.KeyPrediction  = 0.0
        self.TrackTime      = 0.0
        self.AnimRate       = 0.0
        self.StartBone      = 0
        self.FirstRawFrame  = 0
        self.NumRawFrames   = 0
    def dump(self):
        return pack('64s64siiiifffiii', str.encode(self.Name), str.encode(self.Group), self.TotalBones, self.RootInclude, self.KeyCompressionStyle, self.KeyQuotum, self.KeyPrediction, self.TrackTime, self.AnimRate, self.StartBone, self.FirstRawFrame, self.NumRawFrames)
    def __init__(self, name, type_size):
        self.ChunkID        = str.encode(name)  # length=20
        self.TypeFlag       = 1999801           # special value
        self.DataSize       = type_size
        self.DataCount      = 0
    def dump(self):
        return pack('20siii', self.ChunkID, self.TypeFlag, self.DataSize, self.DataCount)
    def __init__(self):
        self.MaterialName   = ""    # length=64
        self.TextureIndex   = 0
        self.PolyFlags      = 0     # DWORD
        self.AuxMaterial    = 0
        self.AuxFlags       = 0     # DWORD
        self.LodBias        = 0
        self.LodStyle       = 0
    def dump(self):
        #print("DATA MATERIAL:",self.MaterialName)
        return pack('64siLiLii', str.encode(self.MaterialName), self.TextureIndex, self.PolyFlags, self.AuxMaterial, self.AuxFlags, self.LodBias, self.LodStyle)
Luca Bonavita's avatar
Luca Bonavita committed

    def __init__(self):
        self.Name           = ""    # length = 64
        self.Flags          = 0     # DWORD
        self.NumChildren    = 0
        self.ParentIndex    = 0
        self.BonePos        = VJointPos()
    def dump(self):
        return pack('64sLii', str.encode(self.Name), self.Flags, self.NumChildren, self.ParentIndex) + self.BonePos.dump()

#same as above - whatever - this is how Epic does it...
    def __init__(self):
        self.Name           = ""    # length = 64
        self.Flags          = 0     # DWORD
        self.NumChildren    = 0
        self.ParentIndex    = 0
        self.BonePos        = VJointPos()
        self.IsRealBone     = 0     # this is set to 1 when the bone is actually a bone in the mesh and not a dummy
    def dump(self):
        return pack('64sLii', str.encode(self.Name), self.Flags, self.NumChildren, self.ParentIndex) + self.BonePos.dump()
    def __init__(self):
        self.Weight         = 0.0
        self.PointIndex     = 0
        self.BoneIndex      = 0
    def dump(self):
        return pack('fii', self.Weight, self.PointIndex, self.BoneIndex)
    def __init__(self):
        self.Position       = FVector()
        self.Orientation    = FQuat()
        self.Time           = 0.0
    def dump(self):
        return self.Position.dump() + self.Orientation.dump() + pack('f', self.Time)
    def __init__(self):
        self.PointIndex     = 0     # WORD
        self.U              = 0.0
        self.V              = 0.0
        self.MatIndex       = 0     # BYTE
        self.Reserved       = 0     # BYTE
    def dump(self):
        return pack('HHffBBH', self.PointIndex, 0, self.U, self.V, self.MatIndex, self.Reserved, 0)
    def __cmp__(self, other):
        return cmp(self.PointIndex, other.PointIndex) \
            or cmp(self.U, other.U) \
            or cmp(self.V, other.V) \
            or cmp(self.MatIndex, other.MatIndex) \
            or cmp(self.Reserved, other.Reserved) \
    def _key(self):
        return (type(self).__name__, self.PointIndex, self.U, self.V, self.MatIndex, self.Reserved)
    def __hash__(self):
        return hash(self._key())
    def __eq__(self, other):
        if not hasattr(other, '_key'):
            return False
        return self._key() == other._key()
Luca Bonavita's avatar
Luca Bonavita committed

    def __init__(self):
        self.Point = FVector()
    def __cmp__(self, other):
        return cmp(self.Point, other.Point)
    def __hash__(self):
        return hash(self._key())
Luca Bonavita's avatar
Luca Bonavita committed

    def _key(self):
        return (type(self).__name__, self.Point)
Luca Bonavita's avatar
Luca Bonavita committed

    def __eq__(self, other):
        if not hasattr(other, '_key'):
            return False
        return self._key() == other._key()
    def __init__(self):
        self.Point = FVector()
    def dump(self):
        return self.Point.dump()
    def __cmp__(self, other):
        return cmp(self.Point, other.Point) \
    def _key(self):
        return (type(self).__name__, self.Point, self.SmoothGroup)
    def __hash__(self):
        return hash(self._key()) \
    def __eq__(self, other):
        if not hasattr(other, '_key'):
            return False
Luca Bonavita's avatar
Luca Bonavita committed

Luca Bonavita's avatar
Luca Bonavita committed

    def __init__(self):
        self.WedgeIndex0    = 0     # WORD
        self.WedgeIndex1    = 0     # WORD
        self.WedgeIndex2    = 0     # WORD
        self.MatIndex       = 0     # BYTE
        self.AuxMatIndex    = 0     # BYTE
        self.SmoothingGroups = 0    # DWORD
    def dump(self):
        return pack('HHHBBL', self.WedgeIndex0, self.WedgeIndex1, self.WedgeIndex2, self.MatIndex, self.AuxMatIndex, self.SmoothingGroups)
        #print("smooth",self.SmoothingGroups)
        #return pack('HHHBBI', self.WedgeIndex0, self.WedgeIndex1, self.WedgeIndex2, self.MatIndex, self.AuxMatIndex, self.SmoothingGroups)
Luca Bonavita's avatar
Luca Bonavita committed

# END UNREAL DATA STRUCTS
#===========================================================================
#===========================================================================
# RG - helper class to handle the normal way the UT files are stored
# as sections consisting of a header and then a list of data structures
#===========================================================================
class FileSection:
    def __init__(self, name, type_size):
        self.Header = VChunkHeader(name, type_size)
        self.Data   = []    # list of datatypes
    def dump(self):
        data = self.Header.dump()
        for i in range(len(self.Data)):
            data = data + self.Data[i].dump()
        return data
    def UpdateHeader(self):
        self.Header.DataCount = len(self.Data)

#===========================================================================
# PSK
#===========================================================================
class PSKFile:
    def __init__(self):
        self.GeneralHeader  = VChunkHeader("ACTRHEAD", 0)
        self.Points         = FileSection("PNTS0000", SIZE_VPOINT)              # VPoint
        self.Wedges         = FileSection("VTXW0000", SIZE_VVERTEX)             # VVertex
        self.Faces          = FileSection("FACE0000", SIZE_VTRIANGLE)           # VTriangle
        self.Materials      = FileSection("MATT0000", SIZE_VMATERIAL)           # VMaterial
        self.Bones          = FileSection("REFSKELT", SIZE_VBONE)               # VBone
        self.Influences     = FileSection("RAWWEIGHTS", SIZE_VRAWBONEINFLUENCE) # VRawBoneInfluence

        #RG - this mapping is not dumped, but is used internally to store the new point indices
        # for vertex groups calculated during the mesh dump, so they can be used again
        # to dump bone influences during the armature dump
        #
        # the key in this dictionary is the VertexGroup/Bone Name, and the value
        # is a list of tuples containing the new point index and the weight, in that order
        #
        # Layout:
        # { groupname : [ (index, weight), ... ], ... }
        #
        # { 'MyVertexGroup' : [ (0, 1.0), (5, 1.0), (3, 0.5) ] , 'OtherGroup' : [(2, 1.0)] }
    def AddPoint(self, p):
        self.Points.Data.append(p)
    def AddWedge(self, w):
        self.Wedges.Data.append(w)
    def AddFace(self, f):
        self.Faces.Data.append(f)
    def AddMaterial(self, m):
        self.Materials.Data.append(m)
    def AddBone(self, b):
        self.Bones.Data.append(b)
    def AddInfluence(self, i):
        self.Influences.Data.append(i)
    def UpdateHeaders(self):
        self.Points.UpdateHeader()
        self.Wedges.UpdateHeader()
        self.Faces.UpdateHeader()
        self.Materials.UpdateHeader()
        self.Bones.UpdateHeader()
        self.Influences.UpdateHeader()
    def dump(self):
        self.UpdateHeaders()
        data = self.GeneralHeader.dump() + self.Points.dump() + self.Wedges.dump() + self.Faces.dump() + self.Materials.dump() + self.Bones.dump() + self.Influences.dump()
        return data
    def GetMatByIndex(self, mat_index):
        if mat_index >= 0 and len(self.Materials.Data) > mat_index:
            return self.Materials.Data[mat_index]
        else:
            m = VMaterial()
            # modified by VendorX
            m.MaterialName = MaterialName[mat_index]
            self.AddMaterial(m)
            return m
    def PrintOut(self):
        print( "{:>16} {:}".format( "Points", len(self.Points.Data) ) )
        print( "{:>16} {:}".format( "Wedges", len(self.Wedges.Data) ) )
        print( "{:>16} {:}".format( "Faces", len(self.Faces.Data) ) )
        print( "{:>16} {:}".format( "Materials", len(self.Materials.Data) ) )
        print( "{:>16} {:}".format( "Bones", len(self.Bones.Data) ) )
        print( "{:>16} {:}".format( "Influences", len(self.Influences.Data) ) )

#===========================================================================
# PSA
#
# Notes from UDN:
#   The raw key array holds all the keys for all the bones in all the specified sequences,
#   For each AnimInfoBinary's sequence there are [Number of bones] times [Number of frames keys]
#   in the VQuatAnimKeys, laid out as tracks of [numframes] keys for each bone in the order of
#   the bones as defined in the array of FnamedBoneBinary in the PSA.
#   Once the data from the PSK (now digested into native skeletal mesh) and PSA (digested into
#   a native animation object containing one or more sequences) are associated together at runtime,
#   bones are linked up by name. Any bone in a skeleton (from the PSK) that finds no partner in
#   the animation sequence (from the PSA) will assume its reference pose stance ( as defined in
#   the offsets & rotations that are in the VBones making up the reference skeleton from the PSK)
#===========================================================================
class PSAFile:

    def __init__(self):
        self.GeneralHeader  = VChunkHeader("ANIMHEAD", 0)
        self.Bones          = FileSection("BONENAMES", SIZE_FNAMEDBONEBINARY)   #FNamedBoneBinary
        self.Animations     = FileSection("ANIMINFO", SIZE_ANIMINFOBINARY)      #AnimInfoBinary
        self.RawKeys        = FileSection("ANIMKEYS", SIZE_VQUATANIMKEY)        #VQuatAnimKey
        # this will take the format of key=Bone Name, value = (BoneIndex, Bone Object)
        # THIS IS NOT DUMPED

    def AddBone(self, b):
        self.Bones.Data.append(b)
    def AddAnimation(self, a):
        self.Animations.Data.append(a)
    def AddRawKey(self, k):
        self.RawKeys.Data.append(k)
    def UpdateHeaders(self):
        self.Bones.UpdateHeader()
        self.Animations.UpdateHeader()
        self.RawKeys.UpdateHeader()
    def GetBoneByIndex(self, bone_index):
        if bone_index >= 0 and len(self.Bones.Data) > bone_index:
            return self.Bones.Data[bone_index]
    def IsEmpty(self):
        return (len(self.Bones.Data) == 0 or len(self.Animations.Data) == 0)
    def StoreBone(self, b):
        self.BoneLookup[b.Name] = [-1, b]
    def UseBone(self, bone_name):
        if bone_name in self.BoneLookup:
            bone_data = self.BoneLookup[bone_name]
            if bone_data[0] == -1:
                bone_data[0] = len(self.Bones.Data)
                self.AddBone(bone_data[1])
                #self.Bones.Data.append(bone_data[1])
    def GetBoneByName(self, bone_name):
        if bone_name in self.BoneLookup:
            bone_data = self.BoneLookup[bone_name]
            return bone_data[1]
    def GetBoneIndex(self, bone_name):
        if bone_name in self.BoneLookup:
            bone_data = self.BoneLookup[bone_name]
            return bone_data[0]
    def dump(self):
        self.UpdateHeaders()
        return self.GeneralHeader.dump() + self.Bones.dump() + self.Animations.dump() + self.RawKeys.dump()
    def PrintOut(self):
        print( "{:>16} {:}".format( "Bones", len(self.Bones.Data) ) )
        print( "{:>16} {:}".format( "Animations", len(self.Animations.Data) ) )
        print( "{:>16} {:}".format( "Raw keys", len(self.RawKeys.Data) ) )

#===========================================================================
# Helpers to create bone structs
#===========================================================================
def make_vbone( name, parent_index, child_count, orientation_quat, position_vect ):
    bone                        = VBone()
    bone.Name                   = name
    bone.ParentIndex            = parent_index
    bone.NumChildren            = child_count
    bone.BonePos.Orientation    = orientation_quat
    bone.BonePos.Position.X     = position_vect.x
    bone.BonePos.Position.Y     = position_vect.y
    bone.BonePos.Position.Z     = position_vect.z
    #these values seem to be ignored?
    #bone.BonePos.Length = tail.length
    #bone.BonePos.XSize = tail.x
    #bone.BonePos.YSize = tail.y
    #bone.BonePos.ZSize = tail.z
    return bone

def make_namedbonebinary( name, parent_index, child_count, orientation_quat, position_vect, is_real ):
    bone                        = FNamedBoneBinary()
    bone.Name                   = name
    bone.ParentIndex            = parent_index
    bone.NumChildren            = child_count
    bone.BonePos.Orientation    = orientation_quat
    bone.BonePos.Position.X     = position_vect.x
    bone.BonePos.Position.Y     = position_vect.y
    bone.BonePos.Position.Z     = position_vect.z
    bone.IsRealBone             = is_real
    quat    = FQuat()
    #flip handedness for UT = set x,y,z to negative (rotate in other direction)
    quat.X  = -bquat.x
    quat.Y  = -bquat.y
    quat.Z  = -bquat.z
    quat.W  = bquat.w
    return quat
def make_fquat_default( bquat ):
    quat    = FQuat()
    #print(dir(bquat))
    quat.X  = bquat.x
    quat.Y  = bquat.y
    quat.Z  = bquat.z
    quat.W  = bquat.w
    return quat

#===========================================================================
#RG - check to make sure face isnt a line
#===========================================================================
def is_1d_face( face, mesh ):
    #ID Vertex of id point
    v0 = face.vertices[0]
    v1 = face.vertices[1]
    v2 = face.vertices[2]
    return (mesh.vertices[v0].co == mesh.vertices[v1].co \
        or mesh.vertices[v1].co == mesh.vertices[v2].co \
        or mesh.vertices[v2].co == mesh.vertices[v0].co)
    return False

#===========================================================================
# Smoothing group
# (renamed to seperate it from VVertex.SmoothGroup)
#===========================================================================
class SmoothingGroup:
    def __init__(self):
        self.faces              = []
        self.neighboring_faces  = []
        self.neighboring_groups = []
        self.id                 = -1
        self.local_id           = SmoothingGroup.static_id
        SmoothingGroup.static_id += 1
    def __cmp__(self, other):
        if isinstance(other, SmoothingGroup):
            return cmp( self.local_id, other.local_id )
        return -1
    def __hash__(self):
        return hash(self.local_id)

    # searches neighboring faces to determine which smoothing group ID can be used
    def get_valid_smoothgroup_id(self):
        temp_id = 1
        for group in self.neighboring_groups:
            if group is not None and group.id == temp_id:
                if temp_id < 0x80000000:
                    temp_id = temp_id << 1
                else:
                    raise Error("Smoothing Group ID Overflowed, Smoothing Group evidently has more than 31 neighboring groups")
    def make_neighbor(self, new_neighbor):
        if new_neighbor not in self.neighboring_groups:
            self.neighboring_groups.append( new_neighbor )

    def contains_face(self, face):
        return (face in self.faces)
    def add_neighbor_face(self, face):
        if not face in self.neighboring_faces:
            self.neighboring_faces.append( face )
    def add_face(self, face):
        if not face in self.faces:
            self.faces.append( face )

def determine_edge_sharing( mesh ):
    for edge in mesh.edges:
        edge_sharing_list[edge.key] = []
    for face in mesh.tessfaces:
        for key in face.edge_keys:
            if not face in edge_sharing_list[key]:
                edge_sharing_list[key].append(face) # mark this face as sharing this edge
    """ Temp replacement for mesh.findEdges().
        This is painfully slow.
    """
    for edge in mesh.edges:
        v = edge.vertices
        if key[0] == v[0] and key[1] == v[1]:
            return edge.index

def add_face_to_smoothgroup( mesh, face, edge_sharing_list, smoothgroup ):
    if face in smoothgroup.faces:
        return

    smoothgroup.add_face(face)
        if edge_id is not None:
            # not sharp
            if not( mesh.edges[edge_id].use_edge_sharp):
                for shared_face in edge_sharing_list[key]:
                    if shared_face != face:
                        # recursive
                        add_face_to_smoothgroup( mesh, shared_face, edge_sharing_list, smoothgroup )
            # sharp
            else:
                for shared_face in edge_sharing_list[key]:
                    if shared_face != face:
                        smoothgroup.add_neighbor_face( shared_face )

def determine_smoothgroup_for_face( mesh, face, edge_sharing_list, smoothgroup_list ):
    for group in smoothgroup_list:
        if (face in group.faces):
            return
    smoothgroup = SmoothingGroup();
    add_face_to_smoothgroup( mesh, face, edge_sharing_list, smoothgroup )
    if not smoothgroup in smoothgroup_list:
        smoothgroup_list.append( smoothgroup )

def build_neighbors_tree( smoothgroup_list ):

    for group in smoothgroup_list:
        for face in group.neighboring_faces:
            for neighbor_group in smoothgroup_list:
                if neighbor_group.contains_face( face ) and neighbor_group not in group.neighboring_groups:
                    group.make_neighbor( neighbor_group )
                    neighbor_group.make_neighbor( group )

#===========================================================================
# parse_smooth_groups
#===========================================================================
def parse_smooth_groups( mesh ):
    t                   = time.clock()
    smoothgroup_list    = []
    edge_sharing_list   = determine_edge_sharing(mesh)
    #print("faces:",len(mesh.tessfaces))
    interval =  math.floor(len(mesh.tessfaces) / 100)
    if interval == 0: #if the faces are few do this
        interval =  math.floor(len(mesh.tessfaces) / 10)
    #print("FACES:",len(mesh.tessfaces),"//100 =" "interval:",interval)
    for face in mesh.tessfaces:
        #print(dir(face))
        determine_smoothgroup_for_face(mesh, face, edge_sharing_list, smoothgroup_list)
        # progress indicator, writes to console without scrolling
        if face.index > 0 and (face.index % interval) == 0:
            print("Processing... {}%\r".format( int(face.index / len(mesh.tessfaces) * 100) ), end='')
            sys.stdout.flush()
    print("Completed" , ' '*20)
    verbose("len(smoothgroup_list)={}".format(len(smoothgroup_list)))
    build_neighbors_tree(smoothgroup_list)
    for group in smoothgroup_list:
        group.get_valid_smoothgroup_id()
    print("Smooth group parsing completed in {:.2f}s".format(time.clock() - t))
    return smoothgroup_list

#===========================================================================
# http://en.wikibooks.org/wiki/Blender_3D:_Blending_Into_Python/Cookbook#Triangulate_NMesh
# blender 2.50 format using the Operators/command convert the mesh to tri mesh
#===========================================================================
def triangulate_mesh( object ):
    verbose(header("triangulateNMesh"))
    #print(type(object))
    scene = bpy.context.scene
    me_ob       = object.copy()
    me_ob.data = object.to_mesh(bpy.context.scene, True, 'PREVIEW') #write data object
    bpy.context.scene.objects.link(me_ob)
    bpy.context.scene.update()
    bpy.ops.object.mode_set(mode='OBJECT')
    for i in scene.objects:
        i.select = False # deselect all objects
    me_ob.select            = True
    scene.objects.active    = me_ob
    print("Copy and Convert mesh just incase any way...")
    bpy.ops.object.mode_set(mode='EDIT')
    bpy.ops.mesh.select_all(action='SELECT')# select all the face/vertex/edge
    bpy.ops.object.mode_set(mode='EDIT')
    bpy.ops.mesh.quads_convert_to_tris()
    bpy.context.scene.update()
    bpy.ops.object.mode_set(mode='OBJECT')
    bpy.context.scene.udk_option_triangulate = True
    me_ob.data = me_ob.to_mesh(bpy.context.scene, True, 'PREVIEW') #write data object
    bpy.context.scene.update()
    return me_ob
#copy mesh data and then merge them into one object
def meshmerge(selectedobjects):
John Phan's avatar
John Phan committed
    bpy.ops.object.mode_set(mode='OBJECT') #object mode and not edit mode
    cloneobjects = [] #object holder for copying object data
    if len(selectedobjects) > 1:
John Phan's avatar
John Phan committed
        print("selectedobjects:",len(selectedobjects)) #print select object
        count = 0 #reset count
            #print("Index:",count)
            if selectedobjects[count] is not None:
                me_da = selectedobjects[count].data.copy() #copy data
                me_ob = selectedobjects[count].copy() #copy object
                #note two copy two types else it will use the current data or mesh
John Phan's avatar
John Phan committed
                me_ob.data = me_da #assign the data
                bpy.context.scene.objects.link(me_ob)#link the object to the scene #current object location
John Phan's avatar
John Phan committed
                print("Index:",count,"clone object",me_ob.name) #print clone object
                cloneobjects.append(me_ob) #add object to the array
        for i in bpy.data.objects: i.select = False #deselect all objects
        count = 0 #reset count
John Phan's avatar
John Phan committed
        #begin merging the mesh together as one
        for count in range(len( cloneobjects)):
            if count == 0:
                bpy.context.scene.objects.active = cloneobjects[count]
                print("Set Active Object:",cloneobjects[count].name)
            cloneobjects[count].select = True
John Phan's avatar
John Phan committed
        bpy.ops.object.join() #join object together
        if len(cloneobjects) > 1:
            bpy.types.Scene.udk_copy_merge = True
    return cloneobjects[0]
#sort the mesh center top list and not center at the last array. Base on order while select to merge mesh to make them center.
def sortmesh(selectmesh):
    print("MESH SORTING...")
    centermesh = []
    notcentermesh = []
    for countm in range(len(selectmesh)):
John Phan's avatar
John Phan committed
        #if object are center add here
        if selectmesh[countm].location.x == 0 and selectmesh[countm].location.y == 0 and selectmesh[countm].location.z == 0:
            centermesh.append(selectmesh[countm])
John Phan's avatar
John Phan committed
        else:#if not add here for not center
            notcentermesh.append(selectmesh[countm])
    selectmesh = []
    for countm in range(len(centermesh)):
        selectmesh.append(centermesh[countm])
    for countm in range(len(notcentermesh)):
        selectmesh.append(notcentermesh[countm])
John Phan's avatar
John Phan committed
    if len(selectmesh) == 1: #if there one mesh just do some here
        return selectmesh[0] #return object mesh
John Phan's avatar
John Phan committed
        return meshmerge(selectmesh) #return merge object mesh
#===========================================================================
# parse_mesh
#===========================================================================
def parse_mesh( mesh, psk ):
    #bpy.ops.object.mode_set(mode='OBJECT')
    #error ? on commands for select object?
    print(header("MESH", 'RIGHT'))
    print("Mesh object:", mesh.name)
    scene = bpy.context.scene
    for i in scene.objects: i.select = False # deselect all objects
    scene.objects.active    = mesh
    setmesh = mesh
    mesh = triangulate_mesh(mesh)
    if bpy.types.Scene.udk_copy_merge == True:
        bpy.context.scene.objects.unlink(setmesh)
    #print("FACES----:",len(mesh.data.tessfaces))
    verbose("Working mesh object: {}".format(mesh.name))
    #collect a list of the material names
    print("Materials...")
    mat_slot_index = 0

    for slot in mesh.material_slots:

        print("  Material {} '{}'".format(mat_slot_index, slot.name))
        MaterialName.append(slot.name)
        #if slot.material.texture_slots[0] is not None:
            #if slot.material.texture_slots[0].texture.image.filepath is not None:
                #print("    Texture path {}".format(slot.material.texture_slots[0].texture.image.filepath))
        #create the current material
        v_material              = psk.GetMatByIndex(mat_slot_index)
        v_material.MaterialName = slot.name
        v_material.TextureIndex = mat_slot_index
        v_material.AuxMaterial  = mat_slot_index
        mat_slot_index += 1
        verbose("    PSK index {}".format(v_material.TextureIndex))

    #END slot in mesh.material_slots
    # object_mat = mesh.materials[0]
    #object_material_index = mesh.active_material_index
    #FIXME ^ this is redundant due to "= face.material_index" in face loop

    wedges          = ObjMap()
John Phan's avatar
John Phan committed
    points          = ObjMap() #vertex
John Phan's avatar
John Phan committed
    sys.setrecursionlimit(1000000)
    smoothgroup_list = parse_smooth_groups(mesh.data)
    print("{} faces".format(len(mesh.data.tessfaces)))
    print("Smooth groups active:", bpy.context.scene.udk_option_smoothing_groups)
        for smooth_group in smoothgroup_list:
            if smooth_group.contains_face(face):
                smoothgroup_id = smooth_group.id
                break

        #print ' -- Dumping UVs -- '
        #print current_face.uv_textures
        # modified by VendorX
        object_material_index = face.material_index
        if len(face.vertices) != 3:
            raise Error("Non-triangular face (%i)" % len(face.vertices))

        #RG - apparently blender sometimes has problems when you do quad to triangle
        #   conversion, and ends up creating faces that have only TWO points -
        #   one of the points is simply in the vertex list for the face twice.
        #   This is bad, since we can't get a real face normal for a LINE, we need
        #   a plane for this. So, before we add the face to the list of real faces,
        #   ensure that the face is actually a plane, and not a line. If it is not
        #   planar, just discard it and notify the user in the console after we're
        #   done dumping the rest of the faces
            #get or create the current material
            psk.GetMatByIndex(object_material_index)

            face_index  = face.index
            has_uv      = False
            face_uv     = None
                uv_layer    = mesh.data.tessface_uv_textures.active
                face_uv     = uv_layer.data[face_index]
                #size(data) is number of texture faces. Each face has UVs
                #print("DATA face uv: ",len(faceUV.uv), " >> ",(faceUV.uv[0][0]))
            for i in range(3):
                vert_index  = face.vertices[i]
                vert        = mesh.data.vertices[vert_index]
                uv          = []
                #assumes 3 UVs Per face (for now)
                if (has_uv):
                    if len(face_uv.uv) != 3:
                        print("WARNING: face has more or less than 3 UV coordinates - writing 0,0...")
                        uv = [0.0, 0.0]
                    else:
                        uv = [face_uv.uv[i][0],face_uv.uv[i][1]] #OR bottom works better # 24 for cube
                else:
                    #print ("No UVs?")
                    uv = [0.0, 0.0]
                #flip V coordinate because UEd requires it and DOESN'T flip it on its own like it
                #does with the mesh Y coordinates. this is otherwise known as MAGIC-2
                uv[1] = 1.0 - uv[1]
                # clamp UV coords if udk_option_clamp_uv is True
                if bpy.context.scene.udk_option_clamp_uv:
                    if (uv[0] > 1):
                        uv[0] = 1
                    if (uv[0] < 0):
                        uv[0] = 0
                    if (uv[1] > 1):
                        uv[1] = 1
                    if (uv[1] < 0):
                        uv[1] = 0
                # RE - Append untransformed vector (for normal calc below)
                # TODO: convert to Blender.Mathutils
                vect_list.append( FVector(vert.co.x, vert.co.y, vert.co.z) )
                # Transform position for export
                #vpos = vert.co * object_material_index

                #should fixed this!!
                vpos = mesh.matrix_local * vert.co
                if bpy.context.scene.udk_option_scale < 0 or bpy.context.scene.udk_option_scale > 1:
John Phan's avatar
John Phan committed
                    #print("OK!")
                    vpos.x = vpos.x * bpy.context.scene.udk_option_scale
                    vpos.y = vpos.y * bpy.context.scene.udk_option_scale
                    vpos.z = vpos.z * bpy.context.scene.udk_option_scale
                #print("scale pos:", vpos)
                # Create the point
                p               = VPoint()
                p.Point.X       = vpos.x
                p.Point.Y       = vpos.y
                p.Point.Z       = vpos.z
                if bpy.context.scene.udk_option_smoothing_groups:#is this necessary?
                    p.SmoothGroup = smoothgroup_id

                lPoint          = VPointSimple()
                lPoint.Point.X  = vpos.x
                lPoint.Point.Y  = vpos.y
                lPoint.Point.Z  = vpos.z
                if lPoint in points_linked:
                    if not(p in points_linked[lPoint]):
                        points_linked[lPoint].append(p)
                else:
                    points_linked[lPoint] = [p]
                # Create the wedge
                w               = VVertex()
                w.MatIndex      = object_material_index
                w.PointIndex    = points.get(p) # store keys
                w.U             = uv[0]
                w.V             = uv[1]
                if bpy.context.scene.udk_option_smoothing_groups:#is this necessary?
                    w.SmoothGroup = smoothgroup_id
                index_wedge = wedges.get(w)
                wedge_list.append(index_wedge)
                #print results
                #print("result PointIndex={}, U={:.6f}, V={:.6f}, wedge_index={}".format(
                #   w.PointIndex,
                #   w.U,
                #   w.V,
                #   index_wedge))
            #END for i in range(3)

            # Determine face vertex order
            # TODO: convert to Blender.Mathutils
            # get normal from blender
            no = face.normal
            # convert to FVector
            norm = FVector(no[0], no[1], no[2])
            # Calculate the normal of the face in blender order
            tnorm = vect_list[1].sub(vect_list[0]).cross(vect_list[2].sub(vect_list[1]))
            # RE - dot the normal from blender order against the blender normal
            # this gives the product of the two vectors' lengths along the blender normal axis
            # all that matters is the sign
            dot = norm.dot(tnorm)

            tri = VTriangle()
            # RE - magic: if the dot product above > 0, order the vertices 2, 1, 0
            #      if the dot product above < 0, order the vertices 0, 1, 2
            #      if the dot product is 0, then blender's normal is coplanar with the face
            #      and we cannot deduce which side of the face is the outside of the mesh
            if dot > 0:
                (tri.WedgeIndex2, tri.WedgeIndex1, tri.WedgeIndex0) = wedge_list
            elif dot < 0:
                (tri.WedgeIndex0, tri.WedgeIndex1, tri.WedgeIndex2) = wedge_list
            else:
                dindex0 = face.vertices[0];
                dindex1 = face.vertices[1];
                dindex2 = face.vertices[2];
                mesh.data.vertices[dindex0].select = True
                mesh.data.vertices[dindex1].select = True
                mesh.data.vertices[dindex2].select = True
                raise Error("Normal coplanar with face! points: %s, %s, %s" % (str(mesh.data.vertices[dindex0].co),
                                                                               str(mesh.data.vertices[dindex1].co),
                                                                               str(mesh.data.vertices[dindex2].co)))
            face.select = True
            if face.use_smooth == True:
                tri.SmoothingGroups = 1
            else:
                tri.SmoothingGroups = 0
            tri.MatIndex = object_material_index

            if bpy.context.scene.udk_option_smoothing_groups:
                tri.SmoothingGroups = smoothgroup_id
                print("Bool Smooth")
        #END if not is_1d_face(current_face, mesh.data)
    print("{} points".format(len(points.dict)))
    for point in points.items():
        psk.AddPoint(point)
    if len(points.dict) > 32767:
       raise Error("Mesh vertex limit exceeded! {} > 32767".format(len(points.dict)))
    print("{} wedges".format(len(wedges.dict)))
    for wedge in wedges.items():
        psk.AddWedge(wedge)
    # alert the user to degenerate face issues
    if discarded_face_count > 0:
        print("WARNING: Mesh contained degenerate faces (non-planar)")
        print("      Discarded {} faces".format(discarded_face_count))

    #RG - walk through the vertex groups and find the indexes into the PSK points array
    #for them, then store that index and the weight as a tuple in a new list of
    #verts for the group that we can look up later by bone name, since Blender matches
    #verts to bones for influences by having the VertexGroup named the same thing as
    #the bone

    #[print(x, len(points_linked[x])) for x in points_linked]
    #print("pointsindex length ",len(points_linked))
    #vertex group
    # all vertex groups of the mesh (obj)...
    for obj_vertex_group in mesh.vertex_groups:
        #print("  bone group build:",obj_vertex_group.name)#print bone name
        #print(dir(obj_vertex_group))
        verbose("obj_vertex_group.name={}".format(obj_vertex_group.name))
        # all vertices in the mesh...
        for vertex in mesh.data.vertices:
            #print(dir(vertex))
            # all groups this vertex is a member of...
            for vgroup in vertex.groups:
                if vgroup.group == obj_vertex_group.index:
                    vertex_weight   = vgroup.weight
                    p               = VPointSimple()
                    vpos            = mesh.matrix_local * vertex.co
                    if bpy.context.scene.udk_option_scale < 0 or bpy.context.scene.udk_option_scale > 1:
                        vpos.x = vpos.x * bpy.context.scene.udk_option_scale
                        vpos.y = vpos.y * bpy.context.scene.udk_option_scale
                        vpos.z = vpos.z * bpy.context.scene.udk_option_scale
                    p.Point.X       = vpos.x
                    #print(p)
                    #print(len(points_linked[p]))
                    try: #check if point doesn't give error
                        for point in points_linked[p]:
                            point_index = points.get(point) #point index
                            v_item      = (point_index, vertex_weight)
                            vertex_list.append(v_item)
                    except Exception:#if get error ignore them #not safe I think
                        print("Error link points!")
                        pass
        #bone name, [point id and wieght]
        #print("Add Vertex Group:",obj_vertex_group.name, " No. Points:",len(vertex_list))
        psk.VertexGroups[obj_vertex_group.name] = vertex_list
    # remove the temporary triangulated mesh
    if bpy.context.scene.udk_option_triangulate == True:
        verbose("Removing temporary triangle mesh: {}".format(mesh.name))
        bpy.ops.object.mode_set(mode='OBJECT')    # OBJECT mode
        mesh.parent = None                        # unparent to avoid phantom links
        bpy.context.scene.objects.unlink(mesh)    # unlink

#===========================================================================
# Collate bones that belong to the UDK skeletal mesh
#===========================================================================
def parse_armature( armature, psk, psa ):
    print(header("ARMATURE", 'RIGHT'))
    verbose("Armature object: {} Armature data: {}".format(armature.name, armature.data.name))
    # generate a list of root bone candidates
    root_candidates = [b for b in armature.data.bones if b.parent is None and b.use_deform == True]
    # should be a single, unambiguous result
    if len(root_candidates) == 0:
        raise Error("Cannot find root for UDK bones. The root bone must use deform.")
    if len(root_candidates) > 1:
        raise Error("Ambiguous root for UDK. More than one root bone is using deform.")
    # prep for bone collection
    udk_root_bone   = root_candidates[0]
    udk_bones       = []
    BoneUtil.static_bone_id = 0 # replaces global
    # traverse bone chain
    print("{: <3} {: <48} {: <20}".format("ID", "Bone", "Status"))
    print()
    recurse_bone(udk_root_bone, udk_bones, psk, psa, 0, armature.matrix_local)
    # final validation
    if len(udk_bones) < 3:
        raise Error("Less than three bones may crash UDK (legacy issue?)")
    # return a list of bones making up the entire udk skel
    # this is passed to parse_animation instead of working from keyed bones in the action
    return udk_bones

#===========================================================================
# bone              current bone
# bones             bone list
# psk               the PSK file object
# psa               the PSA file object
# indent            text indent for recursive log
#===========================================================================
def recurse_bone( bone, bones, psk, psa, parent_id, parent_matrix, indent="" ):
    bones.append(bone);

    if not bone.use_deform:
        status = "No effect"
    if bone.parent is not None:
Loading
Loading full blame...