Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
# Script copyright (C) 2006-2012, assimp team
# Script copyright (C) 2013 Blender Foundation
__all__ = (
"parse",
"data_types",
"FBXElem",
)
from struct import unpack
import array
import zlib
# at the end of each nested block, there is a NUL record to indicate
# that the sub-scope exists (i.e. to distinguish between P: and P : {})
# this NUL record is 13 bytes long.
_BLOCK_SENTINEL_LENGTH = 13
_BLOCK_SENTINEL_DATA = (b'\0' * _BLOCK_SENTINEL_LENGTH)
_IS_BIG_ENDIAN = (__import__("sys").byteorder != 'little')
from collections import namedtuple
FBXElem = namedtuple("FBXElem", ("id", "props", "props_type", "elems"))
del namedtuple
def read_uint(read):
return unpack(b'<I', read(4))[0]
def read_ubyte(read):
return unpack(b'B', read(1))[0]
def read_string_ubyte(read):
size = read_ubyte(read)
data = read(size)
return data
def unpack_array(read, array_type, array_stride, array_byteswap):
length = read_uint(read)
encoding = read_uint(read)
comp_len = read_uint(read)
data = read(comp_len)
if encoding == 0:
pass
elif encoding == 1:
data = zlib.decompress(data)
assert(length * array_stride == len(data))
data_array = array.array(array_type, data)
if array_byteswap and _IS_BIG_ENDIAN:
data_array.byteswap()
return data_array
read_data_dict = {
b'Y'[0]: lambda read, size: unpack(b'<h', read(2))[0], # 16 bit int
b'C'[0]: lambda read, size: unpack(b'?', read(1))[0], # 1 bit bool (yes/no)
b'I'[0]: lambda read, size: unpack(b'<i', read(4))[0], # 32 bit int
b'F'[0]: lambda read, size: unpack(b'<f', read(4))[0], # 32 bit float
b'D'[0]: lambda read, size: unpack(b'<d', read(8))[0], # 64 bit float
b'L'[0]: lambda read, size: unpack(b'<q', read(8))[0], # 64 bit int
b'R'[0]: lambda read, size: read(read_uint(read)), # binary data
b'S'[0]: lambda read, size: read(read_uint(read)), # string data
b'f'[0]: lambda read, size: unpack_array(read, 'f', 4, False), # array (float)
b'i'[0]: lambda read, size: unpack_array(read, 'i', 4, True), # array (int)
b'd'[0]: lambda read, size: unpack_array(read, 'd', 8, False), # array (double)
b'l'[0]: lambda read, size: unpack_array(read, 'q', 8, True), # array (long)
b'b'[0]: lambda read, size: read(size), # unknown
}
def read_elem(read, tell, use_namedtuple):
# [0] the offset at which this block ends
# [1] the number of properties in the scope
# [2] the length of the property list
end_offset = read_uint(read)
if end_offset == 0:
return None
prop_count = read_uint(read)
prop_length = read_uint(read)
elem_id = read_string_ubyte(read) # elem name of the scope/key
elem_props_type = bytearray(prop_count) # elem property types
elem_props_data = [None] * prop_count # elem properties (if any)
elem_subtree = [] # elem children (if any)
for i in range(prop_count):
data_type = read(1)[0]
elem_props_data[i] = read_data_dict[data_type](read, prop_length)
elem_props_type[i] = data_type
if tell() < end_offset:
while tell() < (end_offset - _BLOCK_SENTINEL_LENGTH):
elem_subtree.append(read_elem(read, tell, use_namedtuple))
if read(_BLOCK_SENTINEL_LENGTH) != _BLOCK_SENTINEL_DATA:
raise IOError("failed to read nested block sentinel, "
"expected all bytes to be 0")
if tell() != end_offset:
raise IOError("scope length not reached, something is wrong")
args = (elem_id, elem_props_data, elem_props_type, elem_subtree)
return FBXElem(*args) if use_namedtuple else args
def parse(fn, use_namedtuple=True):
# import time
# t = time.time()
root_elems = []
with open(fn, 'rb') as f:
read = f.read
tell = f.tell
HEAD_MAGIC = b'Kaydara FBX Binary\x20\x20\x00\x1a\x00'
if read(len(HEAD_MAGIC)) != HEAD_MAGIC:
raise IOError("Invalid header")
fbx_version = read_uint(read)
while True:
elem = read_elem(read, tell, use_namedtuple)
if elem is None:
break
root_elems.append(elem)
# print("done in %.4f sec" % (time.time() - t))
args = (b'', [], bytearray(0), root_elems)
return FBXElem(*args) if use_namedtuple else args, fbx_version
# Inline module, only for external use
# pyfbx.data_types
data_types = type(array)("data_types")
data_types.__dict__.update(
dict(
INT16 = b'Y'[0],
BOOL = b'C'[0],
INT32 = b'I'[0],
FLOAT32 = b'F'[0],
FLOAT64 = b'D'[0],
INT64 = b'L'[0],
BYTES = b'R'[0],
STRING = b'S'[0],
FLOAT32_ARRAY = b'f'[0],
INT32_ARRAY = b'i'[0],
FLOAT64_ARRAY = b'd'[0],
INT64_ARRAY = b'l'[0],
))