Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
print("version 3 imported")
import bpy
import time
import copy
from mathutils import *
from math import pi, sin, degrees, radians, atan2, copysign, cos, acos
from math import floor, ceil
from random import random, uniform, seed, choice, getstate, setstate, randint
from collections import deque, OrderedDict
tau = 2 * pi
# Initialise the split error and axis vectors
splitError = 0.0
zAxis = Vector((0, 0, 1))
yAxis = Vector((0, 1, 0))
xAxis = Vector((1, 0, 0))
# This class will contain a part of the tree which needs to be extended and the required tree parameters
class stemSpline:
def __init__(self, spline, curvature, curvatureV, attractUp, segments, maxSegs, segLength, childStems, stemRadStart, stemRadEnd, splineNum, ofst, pquat):
self.spline = spline
self.p = spline.bezier_points[-1]
self.curv = curvature
self.curvV = curvatureV
self.seg = segments
self.segMax = maxSegs
self.segL = segLength
self.children = childStems
self.radS = stemRadStart
self.radE = stemRadEnd
self.splN = splineNum
self.offsetLen = ofst
self.patentQuat = pquat
self.curvSignx = 1
self.curvSigny = 1
# This method determines the quaternion of the end of the spline
def quat(self):
if len(self.spline.bezier_points) == 1:
return ((self.spline.bezier_points[-1].handle_right - self.spline.bezier_points[-1].co).normalized()).to_track_quat('Z', 'Y')
return ((self.spline.bezier_points[-1].co - self.spline.bezier_points[-2].co).normalized()).to_track_quat('Z', 'Y')
# Determine the declination
def dec(self):
tempVec = zAxis.copy()
tempVec.rotate(self.quat())
return zAxis.angle(tempVec)
# Update the end of the spline and increment the segment count
def updateEnd(self):
self.p = self.spline.bezier_points[-1]
self.seg += 1
# This class contains the data for a point where a new branch will sprout
class childPoint:
def __init__(self, coords, quat, radiusPar, offset, sOfst, lengthPar, parBone):
self.co = coords
self.quat = quat
self.radiusPar = radiusPar
self.offset = offset
self.lengthPar = lengthPar
self.parBone = parBone
# This function calculates the shape ratio as defined in the paper
def shapeRatio(shape, ratio, pruneWidthPeak=0.0, prunePowerHigh=0.0, prunePowerLow=0.0, custom=None):
return 0.05 + 0.95*ratio #0.2 + 0.8*ratio
elif shape == 1:
return 0.2 + 0.8*sin(pi*ratio)
elif shape == 2:
return 0.2 + 0.8*sin(0.5*pi*ratio)
elif shape == 3:
return 1.0
elif shape == 4:
return 0.5 + 0.5*ratio
elif shape == 5:
if ratio <= 0.7:
return 0.05 + 0.95 * ratio/0.7
return 0.05 + 0.95 * (1.0 - ratio)/0.3
elif shape == 6:
return 1.0 - 0.8*ratio
elif shape == 7:
if ratio <= 0.7:
return 0.5 + 0.5*ratio/0.7
else:
return 0.5 + 0.5*(1.0 - ratio)/0.3
elif shape == 8:
r = 1 - ratio
if r == 1:
v = custom[3]
elif r >= custom[2]:
pos = (r - custom[2]) / (1 - custom[2])
#if (custom[0] >= custom[1] <= custom[3]) or (custom[0] <= custom[1] >= custom[3]):
pos = pos * pos
v = (pos * (custom[3] - custom[1])) + custom[1]
else:
pos = r / custom[2]
#if (custom[0] >= custom[1] <= custom[3]) or (custom[0] <= custom[1] >= custom[3]):
pos = 1 - (1 - pos) * (1 - pos)
v = (pos * (custom[1] - custom[0])) + custom[0]
return v
elif shape == 9:
if (ratio < (1 - pruneWidthPeak)) and (ratio > 0.0):
return ((ratio/(1 - pruneWidthPeak))**prunePowerHigh)
elif (ratio >= (1 - pruneWidthPeak)) and (ratio < 1.0):
return (((1 - ratio)/pruneWidthPeak)**prunePowerLow)
else:
return 0.0
elif shape == 10:
return 0.5 + 0.5 * (1 - ratio)
# This function determines the actual number of splits at a given point using the global error
def splits(n):
global splitError
nEff = round(n + splitError, 0)
def splits2(n):
r = random()
if r < n:
return 1
else:
return 0
def splits3(n):
ni = int(n)
nf = n - int(n)
r = random()
if r < nf:
return ni + 1
else:
return ni + 0
# Determine the declination from a given quaternion
def declination(quat):
tempVec = zAxis.copy()
tempVec.rotate(quat)
tempVec.normalize()
return degrees(acos(tempVec.z))
# Determines the angle of upward rotation of a segment due to attractUp
def curveUp(attractUp, quat, curveRes):
tempVec = yAxis.copy()
tempVec.rotate(quat)
tempVec.normalize()
dec = radians(declination(quat))
curveUpAng = attractUp*dec*abs(tempVec.z)/curveRes
if (-dec + curveUpAng) < -pi:
curveUpAng = -pi + dec
if (dec - curveUpAng) < 0:
curveUpAng = dec
return curveUpAng
# Evaluate a bezier curve for the parameter 0<=t<=1 along its length
def evalBez(p1, h1, h2, p2, t):
return ((1-t)**3)*p1 + (3*t*(1-t)**2)*h1 + (3*(t**2)*(1-t))*h2 + (t**3)*p2
# Evaluate the unit tangent on a bezier curve for t
def evalBezTan(p1, h1, h2, p2, t):
return ((-3*(1-t)**2)*p1 + (-6*t*(1-t) + 3*(1-t)**2)*h1 + (-3*(t**2) + 6*t*(1-t))*h2 + (3*t**2)*p2).normalized()
# Determine the range of t values along a splines length where child stems are formed
def findChildPoints(stemList, numChild):
numPoints = sum([len(n.spline.bezier_points) for n in stemList])
numSplines = len(stemList)
numSegs = numPoints - numSplines
numPerSeg = numChild/numSegs
numMain = round(numPerSeg*stemList[0].segMax, 0)
return [(a+1)/(numMain) for a in range(int(numMain))]
def findChildPoints2(stemList, numChild):
return [(a+1)/(numChild) for a in range(int(numChild))]
# Find the coordinates, quaternion and radius for each t on the stem
def interpStem1(stem, tVals, lPar, parRad):
points = stem.spline.bezier_points
numPoints = len(points)
checkVal = (stem.segMax - (numPoints - 1)) / stem.segMax
# Loop through all the parametric values to be determined
for t in tVals:
if t == 1.0:
index = numPoints-2
coord = points[-1].co
quat = (points[-1].handle_right - points[-1].co).to_track_quat('Z', 'Y')
radius = points[-1].radius
tempList.append(childPoint(coord, quat, (parRad, radius), t, lPar, 'bone'+(str(stem.splN).rjust(3, '0'))+'.'+(str(index).rjust(3, '0'))))
elif (t >= checkVal) and (t < 1.0):
scaledT = (t - checkVal) / ((1 - checkVal) + .0001)
length = (numPoints-1)*scaledT
index = int(length)
tTemp = length - index
coord = evalBez(points[index].co, points[index].handle_right, points[index+1].handle_left, points[index+1].co, tTemp)
quat = (evalBezTan(points[index].co, points[index].handle_right, points[index+1].handle_left, points[index+1].co, tTemp)).to_track_quat('Z', 'Y')
radius = (1-tTemp)*points[index].radius + tTemp*points[index+1].radius # Not sure if this is the parent radius at the child point or parent start radius
tempList.append(childPoint(coord, quat, (parRad, radius), t, lPar, 'bone'+(str(stem.splN).rjust(3, '0'))+'.'+(str(index).rjust(3, '0'))))
return tempList
def interpStem(stem, tVals, lPar, parRad, maxOffset, baseSize):
numSegs = len(points) - 1
stemLen = stem.segL * numSegs
checkBottom = stem.offsetLen / maxOffset
checkTop = checkBottom + (stemLen / maxOffset)
# Loop through all the parametric values to be determined
if (t >= checkBottom) and (t <= checkTop) and (t < 1.0):
scaledT = (t - checkBottom) / (checkTop - checkBottom)
ofst = ((t - baseSize) / (checkTop - baseSize)) * (1 - baseSize) + baseSize
length = numSegs * scaledT
tTemp = length - index
coord = evalBez(points[index].co, points[index].handle_right, points[index+1].handle_left, points[index+1].co, tTemp)
quat = (evalBezTan(points[index].co, points[index].handle_right, points[index+1].handle_left, points[index+1].co, tTemp)).to_track_quat('Z', 'Y')
radius = (1-tTemp)*points[index].radius + tTemp*points[index+1].radius # Not sure if this is the parent radius at the child point or parent start radius
tempList.append(childPoint(coord, quat, (parRad, radius), t, ofst, lPar, 'bone'+(str(stem.splN).rjust(3, '0'))+'.'+(str(index).rjust(3, '0'))))
#add stem at tip
index = numSegs-1
coord = points[-1].co
quat = (points[-1].handle_right - points[-1].co).to_track_quat('Z', 'Y')
radius = points[-1].radius
tempList.append(childPoint(coord, quat, (parRad, radius), 1, 1, lPar, 'bone'+(str(stem.splN).rjust(3, '0'))+'.'+(str(index).rjust(3, '0'))))
# round down bone number
def roundBone(bone, step):
bone_i = bone[:-3]
bone_n = int(bone[-3:])
bone_n = int(bone_n / step) * step
return bone_i + str(bone_n).rjust(3, '0')
# Convert a list of degrees to radians
def toRad(list):
return [radians(a) for a in list]
def anglemean(a1, a2, fac):
x1 = sin(a1)
y1 = cos(a1)
x2 = sin(a2)
y2 = cos(a2)
x = x1 + (x2 - x1) * fac
y = y1 + (y2 - y1) * fac
return atan2(x, y)
# This is the function which extends (or grows) a given stem.
def growSpline(n, stem, numSplit, splitAng, splitAngV, splineList, hType, splineToBone, closeTip, kp, splitHeight, outAtt, stemsegL,
lenVar, taperCrown, boneStep, rotate, rotateV):
#curv at base
sCurv = stem.curv
if (n == 0) and (kp <= splitHeight):
sCurv = 0.0
#curveangle = sCurv + (uniform(-stem.curvV, stem.curvV) * kp)
#curveVar = uniform(-stem.curvV, stem.curvV) * kp
curveangle = sCurv + (uniform(0, stem.curvV) * kp * stem.curvSignx)
curveVar = uniform(0, stem.curvV) * kp * stem.curvSigny
stem.curvSignx *= -1
stem.curvSigny *= -1
curveVarMat = Matrix.Rotation(curveVar, 3, 'Y')
# First find the current direction of the stem
dir = stem.quat()
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
if n == 0:
adir = zAxis.copy()
adir.rotate(dir)
ry = atan2(adir[0], adir[2])
adir.rotate(Euler((0, -ry, 0)))
rx = atan2(adir[1], adir[2])
dir = Euler((-rx, ry, 0), 'XYZ')
#length taperCrown
if n == 0:
dec = declination(dir) / 180
dec = dec ** 2
tf = 1 - (dec * taperCrown * 30)
tf = max(.1, tf)
else:
tf = 1.0
#outward attraction
if (n > 0) and (kp > 0) and (outAtt > 0):
p = stem.p.co.copy()
d = atan2(p[0], -p[1]) + tau
edir = dir.to_euler('XYZ', Euler((0, 0, d), 'XYZ'))
d = anglemean(edir[2], d, (kp * outAtt))
dirv = Euler((edir[0], edir[1], d), 'XYZ')
dir = dirv.to_quaternion()
#parent weight
# parWeight = kp * degrees(stem.curvV) * pi
# #parWeight = parWeight * kp
# #parWeight = kp
# if (n > 1) and (parWeight != 0):
# d1 = zAxis.copy()
# d2 = zAxis.copy()
# d1.rotate(dir)
# d2.rotate(stem.patentQuat)
#
# x = d1[0] + ((d2[0] - d1[0]) * parWeight)
# y = d1[1] + ((d2[1] - d1[1]) * parWeight)
# z = d1[2] + ((d2[2] - d1[2]) * parWeight)
#
# d3 = Vector((x, y, z))
# dir = d3.to_track_quat('Z', 'Y')
# If the stem splits, we need to add new splines etc
if numSplit > 0:
# Get the curve data
cuData = stem.spline.id_data.name
cu = bpy.data.curves[cuData]
#calc split angles
angle = choice([-1, 1]) * (splitAng + uniform(-splitAngV, splitAngV))
if n > 0:
#make branches flatter
angle *= max(1 - declination(dir) / 90, 0) * .67 + .33
spreadangle = choice([-1, 1]) * (splitAng + uniform(-splitAngV, splitAngV))
#branchRotMat = Matrix.Rotation(radians(uniform(0, 360)), 3, 'Z')
if not hasattr(stem, 'rLast'):
stem.rLast = radians(uniform(0, 360))
br = rotate[0] + uniform(-rotateV[0], rotateV[0])
branchRot = stem.rLast + br
branchRotMat = Matrix.Rotation(branchRot, 3, 'Z')
stem.rLast = branchRot
# Now for each split add the new spline and adjust the growth direction
for i in range(numSplit):
#find split scale
lenV = uniform(1 - lenVar, 1 + lenVar)
bScale = min(lenV * tf, 1)
newSpline = cu.splines.new('BEZIER')
newPoint = newSpline.bezier_points[-1]
(newPoint.co, newPoint.handle_left_type, newPoint.handle_right_type) = (stem.p.co, 'VECTOR', 'VECTOR')
newPoint.radius = (stem.radS*(1 - stem.seg/stem.segMax) + stem.radE*(stem.seg/stem.segMax)) * bScale
# Here we make the new "sprouting" stems diverge from the current direction
divRotMat = Matrix.Rotation(angle + curveangle, 3, 'X')
#horizontal curvature variation
dirVec.rotate(curveVarMat)
if n == 0: #Special case for trunk splits
dirVec.rotate(branchRotMat)
ang = pi - ((tau) / (numSplit + 1)) * (i+1)
dirVec.rotate(Matrix.Rotation(ang, 3, 'Z'))
spreadMat = Matrix.Rotation(spreadangle, 3, 'Y')
if n != 0: #Special case for trunk splits
dirVec.rotate(spreadMat)
dirVec.rotate(dir)
# Introduce upward curvature
upRotAxis = xAxis.copy()
upRotAxis.rotate(dirVec.to_track_quat('Z', 'Y'))
curveUpAng = curveUp(stem.vertAtt, dirVec.to_track_quat('Z', 'Y'), stem.segMax)
upRotMat = Matrix.Rotation(-curveUpAng, 3, upRotAxis)
# Make the growth vec the length of a stem segment
dirVec.normalize()
#split length variation
stemL = stemsegL * lenV
dirVec *= stemL * tf
ofst = stem.offsetLen + (stem.segL * (len(stem.spline.bezier_points) - 1))
##dirVec *= stem.segL
Andrew Hale
committed
# Get the end point position
end_co = stem.p.co.copy()
# Add the new point and adjust its coords, handles and radius
newSpline.bezier_points.add()
newPoint = newSpline.bezier_points[-1]
(newPoint.co, newPoint.handle_left_type, newPoint.handle_right_type) = (end_co + dirVec, hType, hType)
newPoint.radius = (stem.radS*(1 - (stem.seg + 1)/stem.segMax) + stem.radE*((stem.seg + 1)/stem.segMax)) * bScale
if (stem.seg == stem.segMax-1) and closeTip:
newPoint.radius = 0.0
# If this isn't the last point on a stem, then we need to add it to the list of stems to continue growing
#print(stem.seg != stem.segMax, stem.seg, stem.segMax)
#if stem.seg != stem.segMax: # if probs not nessesary
nstem = stemSpline(newSpline, stem.curv, stem.curvV, stem.vertAtt, stem.seg+1, stem.segMax, stemL, stem.children,
stem.radS * bScale, stem.radE * bScale, len(cu.splines)-1, ofst, stem.quat())
nstem.splitlast = 1#numSplit #keep track of numSplit for next stem
nstem.rLast = branchRot + pi
splineList.append(nstem)
bone = 'bone'+(str(stem.splN)).rjust(3, '0')+'.'+(str(len(stem.spline.bezier_points)-2)).rjust(3, '0')
bone = roundBone(bone, boneStep[n])
splineToBone.append((bone, False, True, len(stem.spline.bezier_points)-2))
# The original spline also needs to keep growing so adjust its direction too
divRotMat = Matrix.Rotation(-angle + curveangle, 3, 'X')
#horizontal curvature variation
dirVec.rotate(curveVarMat)
if n == 0: #Special case for trunk splits
dirVec.rotate(branchRotMat)
#spread
spreadMat = Matrix.Rotation(-spreadangle, 3, 'Y')
if n != 0: #Special case for trunk splits
dirVec.rotate(spreadMat)
stem.splitlast = 1#numSplit #keep track of numSplit for next stem
else:
# If there are no splits then generate the growth direction without accounting for spreading of stems
dirVec = zAxis.copy()
divRotMat = Matrix.Rotation(curveangle, 3, 'X')
#horizontal curvature variation
dirVec.rotate(curveVarMat)
stem.splitlast = 0#numSplit #keep track of numSplit for next stem
# Introduce upward curvature
upRotAxis.rotate(dirVec.to_track_quat('Z', 'Y'))
curveUpAng = curveUp(stem.vertAtt, dirVec.to_track_quat('Z', 'Y'), stem.segMax)
upRotMat = Matrix.Rotation(-curveUpAng, 3, upRotAxis)
Andrew Hale
committed
# Get the end point position
end_co = stem.p.co.copy()
stem.spline.bezier_points.add()
newPoint = stem.spline.bezier_points[-1]
(newPoint.co, newPoint.handle_left_type, newPoint.handle_right_type) = (end_co + dirVec, hType, hType)
newPoint.radius = stem.radS*(1 - (stem.seg + 1)/stem.segMax) + stem.radE*((stem.seg + 1)/stem.segMax)
if (stem.seg == stem.segMax-1) and closeTip:
newPoint.radius = 0.0
# There are some cases where a point cannot have handles as VECTOR straight away, set these now.
if len(stem.spline.bezier_points) == 2:
tempPoint = stem.spline.bezier_points[0]
(tempPoint.handle_left_type, tempPoint.handle_right_type) = ('VECTOR', 'VECTOR')
# Update the last point in the spline to be the newly added one
stem.updateEnd()
#return splineList
def genLeafMesh(leafScale, leafScaleX, leafScaleT, leafScaleV, loc, quat, offset, index, downAngle, downAngleV, rotate, rotateV, oldRot,
bend, leaves, leafShape, leafangle, horzLeaves):
if leafShape == 'hex':
verts = [Vector((0, 0, 0)), Vector((0.5, 0, 1/3)), Vector((0.5, 0, 2/3)), Vector((0, 0, 1)), Vector((-0.5, 0, 2/3)), Vector((-0.5, 0, 1/3))]
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 0], [0, 3]]
faces = [[0, 1, 2, 3], [0, 3, 4, 5]]
elif leafShape == 'rect':
#verts = [Vector((1, 0, 0)), Vector((1, 0, 1)), Vector((-1, 0, 1)), Vector((-1, 0, 0))]
verts = [Vector((.5, 0, 0)), Vector((.5, 0, 1)), Vector((-.5, 0, 1)), Vector((-.5, 0, 0))]
edges = [[0, 1], [1, 2], [2, 3], [3, 0]]
faces = [[0, 1, 2, 3]]
elif leafShape == 'dFace':
verts = [Vector((.5, .5, 0)), Vector((.5, -.5, 0)), Vector((-.5, -.5, 0)), Vector((-.5, .5, 0))]
edges = [[0, 1], [1, 2], [2, 3], [3, 0]]
faces = [[0, 3, 2, 1]]
elif leafShape == 'dVert':
verts = [Vector((0, 0, 1))]
edges = []
faces = []
normal = Vector((0, 0, 1))
rotMat = Matrix.Rotation(oldRot, 3, 'Y')
rotMat = Matrix.Rotation(oldRot, 3, 'Z')
# If the -ve flag for rotate is used we need to find which side of the stem the last child point was and then grow in the opposite direction.
if rotate < 0.0:
oldRot = -copysign(rotate + uniform(-rotateV, rotateV), oldRot)
else:
# If the special -ve flag for leaves is used we need a different rotation of the leaf geometry
if leaves == -1:
#oldRot = 0
rotMat = Matrix.Rotation(0, 3, 'Y')
elif leaves < -1:
oldRot += rotate / (-leaves - 1)
else:
oldRot += rotate + uniform(-rotateV, rotateV)
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
# if leaves < 0:
# rotMat = Matrix.Rotation(oldRot, 3, 'Y')
# else:
# rotMat = Matrix.Rotation(oldRot, 3, 'Z')
if leaves >= 0:
#downRotMat = Matrix.Rotation(downAngle+uniform(-downAngleV, downAngleV), 3, 'X')
if downAngleV > 0.0:
downV = -downAngleV * offset
else:
downV = uniform(-downAngleV, downAngleV)
downRotMat = Matrix.Rotation(downAngle + downV, 3, 'X')
#leaf scale variation
if (leaves < -1) and (rotate != 0):
f = 1 - abs((oldRot - (rotate / (-leaves - 1))) / (rotate / 2))
else:
f = offset
if leafScaleT < 0:
leafScale = leafScale * (1 - (1 - f) * -leafScaleT)
else:
leafScale = leafScale * (1 - f * leafScaleT)
leafScale = leafScale * uniform(1 - leafScaleV, 1 + leafScaleV)
if leafShape == 'dFace':
leafScale = leafScale * .1
# If the bending of the leaves is used we need to rotate them differently
normal = yAxis.copy()
orientationVec = zAxis.copy()
normal.rotate(quat)
orientationVec.rotate(quat)
thetaPos = atan2(loc.y, loc.x)
thetaBend = thetaPos - atan2(normal.y, normal.x)
rotateZ = Matrix.Rotation(bend*thetaBend, 3, 'Z')
normal.rotate(rotateZ)
orientationVec.rotate(rotateZ)
phiBend = atan2((normal.xy).length, normal.z)
orientation = atan2(orientationVec.y, orientationVec.x)
rotateZOrien = Matrix.Rotation(orientation, 3, 'X')
rotateX = Matrix.Rotation(bend*phiBend, 3, 'Z')
rotateZOrien2 = Matrix.Rotation(-orientation, 3, 'X')
# For each of the verts we now rotate and scale them, then append them to the list to be added to the mesh
for v in verts:
v.z *= leafScale
v.rotate(Euler((0, 0, radians(180))))
#leafangle
v.rotate(Matrix.Rotation(radians(-leafangle), 3, 'X'))
if rotate < 0:
v.rotate(Euler((0, 0, radians(90))))
if oldRot < 0:
v.rotate(Euler((0, 0, radians(180))))
if (leaves > 0) and (rotate > 0) and horzLeaves:
nRotMat = Matrix.Rotation(-oldRot + rotate, 3, 'Z')
v.rotate(nRotMat)
if leaves > 0:
v.rotate(downRotMat)
v.rotate(rotMat)
v.rotate(quat)
if (bend != 0.0) and (leaves > 0):
# Correct the rotation
v.rotate(rotateZ)
v.rotate(rotateZOrien)
v.rotate(rotateX)
v.rotate(rotateZOrien2)
if leafShape == 'dVert':
normal = verts[0]
normal.normalize()
v = loc
vertsList.append([v.x, v.y, v.z])
else:
for v in verts:
v += loc
vertsList.append([v.x, v.y, v.z])
for f in faces:
facesList.append([f[0] + index, f[1] + index, f[2] + index, f[3] + index])
return vertsList, facesList, normal, oldRot
Brendon Murphy
committed
def create_armature(armAnim, leafP, cu, frameRate, leafMesh, leafObj, leafVertSize, leaves, levelCount, splineToBone,
treeOb, wind, gust, gustF, af1, af2, af3, leafAnim, loopFrames, previewArm, armLevels, makeMesh, boneStep):
Brendon Murphy
committed
arm = bpy.data.armatures.new('tree')
armOb = bpy.data.objects.new('treeArm', arm)
bpy.context.scene.objects.link(armOb)
# Create a new action to store all animation
newAction = bpy.data.actions.new(name='windAction')
armOb.animation_data_create()
armOb.animation_data.action = newAction
arm.draw_type = 'STICK'
arm.use_deform_delay = True
# Add the armature modifier to the curve
armMod = treeOb.modifiers.new('windSway', 'ARMATURE')
if previewArm:
armMod.show_viewport = False
arm.draw_type = 'WIRE'
treeOb.hide = True
armMod.use_apply_on_spline = True
Brendon Murphy
committed
armMod.object = armOb
armMod.use_bone_envelopes = True
armMod.use_vertex_groups = False # curves don't have vertex groups (yet)
Brendon Murphy
committed
# If there are leaves then they need a modifier
if leaves:
armMod = leafObj.modifiers.new('windSway', 'ARMATURE')
armMod.object = armOb
armMod.use_bone_envelopes = False
armMod.use_vertex_groups = True
Brendon Murphy
committed
# Make sure all objects are deselected (may not be required?)
for ob in bpy.data.objects:
ob.select = False
fps = bpy.context.scene.render.fps
animSpeed = (24 / fps) * frameRate
Brendon Murphy
committed
# Set the armature as active and go to edit mode to add bones
bpy.context.scene.objects.active = armOb
bpy.ops.object.mode_set(mode='EDIT')
# For all the splines in the curve we need to add bones at each bezier point
for i, parBone in enumerate(splineToBone):
if (i < levelCount[armLevels]) or (armLevels == -1) or (not makeMesh):
s = cu.splines[i]
b = None
# Get some data about the spline like length and number of points
numPoints = len(s.bezier_points) - 1
#find branching level
level = 0
for l, c in enumerate(levelCount):
if i < c:
level = l
break
level = min(level, 3)
step = boneStep[level]
# Calculate things for animation
Brendon Murphy
committed
if armAnim:
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
splineL = numPoints * ((s.bezier_points[0].co - s.bezier_points[1].co).length)
# Set the random phase difference of the animation
bxOffset = uniform(0, tau)
byOffset = uniform(0, tau)
# Set the phase multiplier for the spline
#bMult_r = (s.bezier_points[0].radius / max(splineL, 1e-6)) * (1 / 15) * (1 / frameRate)
#bMult = degrees(bMult_r) # This shouldn't have to be in degrees but it looks much better in animation
bMult = (1 / max(splineL ** .5, 1e-6)) * (1 / 4)
#print((1 / bMult) * tau) #print wavelength in frames
windFreq1 = bMult * animSpeed
windFreq2 = 0.7 * bMult * animSpeed
if loopFrames != 0:
bMult_l = 1 / (loopFrames / tau)
fRatio = max(1, round(windFreq1 / bMult_l))
fgRatio = max(1, round(windFreq2 / bMult_l))
windFreq1 = fRatio * bMult_l
windFreq2 = fgRatio * bMult_l
# For all the points in the curve (less the last) add a bone and name it by the spline it will affect
nx = 0
for n in range(0, numPoints, step):
oldBone = b
boneName = 'bone' + (str(i)).rjust(3, '0') + '.' + (str(n)).rjust(3, '0')
b = arm.edit_bones.new(boneName)
b.head = s.bezier_points[n].co
nx += step
nx = min(nx, numPoints)
b.tail = s.bezier_points[nx].co
b.head_radius = s.bezier_points[n].radius
b.tail_radius = s.bezier_points[n + 1].radius
b.envelope_distance = 0.001
# # If there are leaves then we need a new vertex group so they will attach to the bone
# if not leafAnim:
# if (len(levelCount) > 1) and (i >= levelCount[-2]) and leafObj:
# leafObj.vertex_groups.new(boneName)
# elif (len(levelCount) == 1) and leafObj:
# leafObj.vertex_groups.new(boneName)
# If this is first point of the spline then it must be parented to the level above it
if n == 0:
if parBone:
b.parent = arm.edit_bones[parBone]
# Otherwise, we need to attach it to the previous bone in the spline
else:
b.parent = oldBone
b.use_connect = True
# If there isn't a previous bone then it shouldn't be attached
if not oldBone:
b.use_connect = False
# Add the animation to the armature if required
if armAnim:
# Define all the required parameters of the wind sway by the dimension of the spline
#a0 = 4 * splineL * (1 - n / (numPoints + 1)) / max(s.bezier_points[n].radius, 1e-6)
a0 = 2 * (splineL / numPoints) * (1 - n / (numPoints + 1)) / max(s.bezier_points[n].radius, 1e-6)
a0 = a0 * min(step, numPoints)
#a0 = (splineL / numPoints) / max(s.bezier_points[n].radius, 1e-6)
a1 = (wind / 50) * a0
a2 = a1 * .65 #(windGust / 50) * a0 + a1 / 2
p = s.bezier_points[nx].co - s.bezier_points[n].co
p.normalize()
ag = (wind * gust / 50) * a0
a3 = -p[0] * ag
a4 = p[2] * ag
a1 = radians(a1)
a2 = radians(a2)
a3 = radians(a3)
a4 = radians(a4)
#wind bending
if loopFrames == 0:
swayFreq = gustF * (tau / fps) * frameRate #animSpeed # .075 # 0.02
else:
swayFreq = 1 / (loopFrames / tau)
# Prevent tree base from rotating
if (boneName == "bone000.000") or (boneName == "bone000.001"):
a1 = 0
a2 = 0
a3 = 0
a4 = 0
# Add new fcurves for each sway as well as the modifiers
swayX = armOb.animation_data.action.fcurves.new('pose.bones["' + boneName + '"].rotation_euler', 0)
swayY = armOb.animation_data.action.fcurves.new('pose.bones["' + boneName + '"].rotation_euler', 2)
swayXMod1 = swayX.modifiers.new(type='FNGENERATOR')
swayXMod2 = swayX.modifiers.new(type='FNGENERATOR')
swayYMod1 = swayY.modifiers.new(type='FNGENERATOR')
swayYMod2 = swayY.modifiers.new(type='FNGENERATOR')
# Set the parameters for each modifier
swayXMod1.amplitude = a1
swayXMod1.phase_offset = bxOffset
swayXMod1.phase_multiplier = windFreq1
swayXMod2.amplitude = a2
swayXMod2.phase_offset = 0.7 * bxOffset
swayXMod2.phase_multiplier = windFreq2
swayXMod2.use_additive = True
swayYMod1.amplitude = a1
swayYMod1.phase_offset = byOffset
swayYMod1.phase_multiplier = windFreq1
swayYMod2.amplitude = a2
swayYMod2.phase_offset = 0.7 * byOffset
swayYMod2.phase_multiplier = windFreq2
swayYMod2.use_additive = True
#wind bending
swayYMod3 = swayY.modifiers.new(type='FNGENERATOR')
swayYMod3.amplitude = a3
swayYMod3.phase_multiplier = swayFreq
swayYMod3.value_offset = .6 * a3
swayYMod3.use_additive = True
swayXMod3 = swayX.modifiers.new(type='FNGENERATOR')
swayXMod3.amplitude = a4
swayXMod3.phase_multiplier = swayFreq
swayXMod3.value_offset = .6 * a4
swayXMod3.use_additive = True
Brendon Murphy
committed
if leaves:
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
bonelist = [b.name for b in arm.edit_bones]
vertexGroups = OrderedDict()
for i, cp in enumerate(leafP):
# find leafs parent bone
leafParent = roundBone(cp.parBone, boneStep[armLevels])
idx = int(leafParent[4:-4])
while leafParent not in bonelist:
#find parent bone of parent bone
leafParent = splineToBone[idx]
idx = int(leafParent[4:-4])
if leafAnim:
bname = "leaf" + str(i)
b = arm.edit_bones.new(bname)
b.head = cp.co
b.tail = cp.co + Vector((0, 0, .02))
b.envelope_distance = 0.0
b.parent = arm.edit_bones[leafParent]
vertexGroups[bname] = [v.index for v in leafMesh.vertices[leafVertSize * i:(leafVertSize * i + leafVertSize)]]
if armAnim:
# Define all the required parameters of the wind sway by the dimension of the spline
a1 = wind * .25
a1 *= af1
bMult = (1 / animSpeed) * 6
bMult *= 1 / max(af2, .001)
ofstRand = af3
bxOffset = uniform(-ofstRand, ofstRand)
byOffset = uniform(-ofstRand, ofstRand)
# Add new fcurves for each sway as well as the modifiers
swayX = armOb.animation_data.action.fcurves.new('pose.bones["' + bname + '"].rotation_euler', 0)
swayY = armOb.animation_data.action.fcurves.new('pose.bones["' + bname + '"].rotation_euler', 2)
# Add keyframe so noise works
swayX.keyframe_points.add()
swayY.keyframe_points.add()
swayX.keyframe_points[0].co = (0, 0)
swayY.keyframe_points[0].co = (0, 0)
# Add noise modifiers
swayXMod = swayX.modifiers.new(type='NOISE')
swayYMod = swayY.modifiers.new(type='NOISE')
if loopFrames != 0:
swayXMod.use_restricted_range = True
swayXMod.frame_end = loopFrames
swayXMod.blend_in = 4
swayXMod.blend_out = 4
swayYMod.use_restricted_range = True
swayYMod.frame_end = loopFrames
swayYMod.blend_in = 4
swayYMod.blend_out = 4
swayXMod.scale = bMult
swayXMod.strength = a1
swayXMod.offset = bxOffset
swayYMod.scale = bMult
swayYMod.strength = a1
swayYMod.offset = byOffset
else:
if leafParent not in vertexGroups:
vertexGroups[leafParent] = []
vertexGroups[leafParent].extend([v.index for v in leafMesh.vertices[leafVertSize * i:(leafVertSize * i + leafVertSize)]])
for group in vertexGroups:
leafObj.vertex_groups.new(group)
leafObj.vertex_groups[group].add(vertexGroups[group], 1.0, 'ADD')
Brendon Murphy
committed
# Now we need the rotation mode to be 'XYZ' to ensure correct rotation
bpy.ops.object.mode_set(mode='OBJECT')
for p in armOb.pose.bones:
p.rotation_mode = 'XYZ'
treeOb.parent = armOb
def kickstart_trunk(addstem, levels, leaves, branches, cu, curve, curveRes, curveV, attractUp, length, lengthV, ratio, ratioPower, resU, scale0, scaleV0,
scaleVal, taper, minRadius, rootFlare):
Brendon Murphy
committed
newSpline = cu.splines.new('BEZIER')
cu.resolution_u = resU
newPoint = newSpline.bezier_points[-1]
newPoint.co = Vector((0, 0, 0))
newPoint.handle_right = Vector((0, 0, 1))
newPoint.handle_left = Vector((0, 0, -1))
# (newPoint.handle_right_type, newPoint.handle_left_type) = ('VECTOR', 'VECTOR')
branchL = scaleVal * length[0]
curveVal = curve[0] / curveRes[0]
#curveVal = curveVal * (branchL / scaleVal)
if levels == 1:
childStems = leaves
else:
childStems = branches[1]
startRad = scaleVal * ratio * scale0 * uniform(1-scaleV0, 1+scaleV0) ## * (scale0 + uniform(-scaleV0, scaleV0)) #
endRad = (startRad * (1 - taper[0])) ** ratioPower
startRad = max(startRad, minRadius)
endRad = max(endRad, minRadius)
newPoint.radius = startRad * rootFlare
Brendon Murphy
committed
addstem(
stemSpline(newSpline, curveVal, curveV[0] / curveRes[0], attractUp[0], 0, curveRes[0], branchL / curveRes[0],
childStems, startRad, endRad, 0, 0, None))
def fabricate_stems(addsplinetobone, addstem, baseSize, branches, childP, cu, curve, curveBack, curveRes, curveV, attractUp,
downAngle, downAngleV, leafDist, leaves, length, lengthV, levels, n, ratioPower, resU,
rotate, rotateV, scaleVal, shape, storeN, taper, shapeS, minRadius, radiusTweak, customShape, rMode, segSplits,
useOldDownAngle, useParentAngle, boneStep):
#prevent baseSize from going to 1.0
baseSize = min(0.999, baseSize)
Brendon Murphy
committed
# Store the old rotation to allow new stems to be rotated away from the previous one.
oldRotate = 0
Brendon Murphy
committed
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
#use fancy child point selection / rotation
if (n == 1) and (rMode != "original"):
childP_T = OrderedDict()
childP_L = []
for p in childP:
if p.offset == 1:
childP_L.append(p)
else:
if p.offset not in childP_T:
childP_T[p.offset] = [p]
else:
childP_T[p.offset].append(p)
childP_T = [childP_T[k] for k in sorted(childP_T.keys())]
childP = []
rot_a = []
for p in childP_T:
if rMode == "rotate":
if rotate[n] < 0.0:
oldRotate = -copysign(rotate[n], oldRotate)
else:
oldRotate += rotate[n]
bRotate = oldRotate + uniform(-rotateV[n], rotateV[n])
#choose start point whose angle is closest to the rotate angle
a1 = bRotate % tau
a_diff = []
for a in p:
a2 = atan2(a.co[0], -a.co[1])
d = min((a1-a2+tau)%tau, (a2-a1+tau)%tau)
a_diff.append(d)
idx = a_diff.index(min(a_diff))
#find actual rotate angle from branch location
br = p[idx]
b = br.co
vx = sin(bRotate)
vy = cos(bRotate)
v = Vector((vx, vy))
bD = ((b[0] * b[0] + b[1] * b[1]) ** .5)
bL = br.lengthPar * length[1] * shapeRatio(shape, (1 - br.offset) / (1 - baseSize), custom=customShape)
#account for down angle
if downAngleV[1] > 0:
downA = downAngle[n] + (-downAngleV[n] * (1 - (1 - br.offset) / (1 - baseSize)) ** 2)
else:
downA = downAngle[n]
if downA < (.5 * pi):
downA = sin(downA) ** 2
bL *= downA
bL *= 0.33
v *= (bD + bL)
bv = Vector((b[0], -b[1]))
cv = v - bv
a = atan2(cv[0], cv[1])
#rot_a.append(a)
# # add fill points at top #experimental
# fillHeight = 1 - degrees(rotateV[3])#0.8
# if fillHeight < 1:
# w = (p[0].offset - fillHeight) / (1- fillHeight)
# prob_b = random() < w
# else:
# prob_b = False
#
# if (p[0].offset > fillHeight): #prob_b and (len(p) > 1): ##(p[0].offset > fillHeight) and
# childP.append(p[randint(0, len(p)-1)])
# rot_a.append(bRotate)# + pi)
childP.append(p[idx])
rot_a.append(a)
else:
idx = randint(0, len(p)-1)
childP.append(p[idx])
#childP.append(p[idx])
childP.extend(childP_L)
rot_a.extend([0] * len(childP_L))
oldRotate = 0
for i, p in enumerate(childP):
Brendon Murphy
committed
# Add a spline and set the coordinate of the first point.
newSpline = cu.splines.new('BEZIER')
cu.resolution_u = resU
newPoint = newSpline.bezier_points[-1]
newPoint.co = p.co
tempPos = zAxis.copy()
# If the -ve flag for downAngle is used we need a special formula to find it
if useOldDownAngle:
if downAngleV[n] < 0.0:
downV = downAngleV[n] * (1 - 2 * (.2 + .8 * ((1 - p.offset) / (1 - baseSize))))
# Otherwise just find a random value
else:
downV = uniform(-downAngleV[n], downAngleV[n])
Brendon Murphy
committed
else:
if downAngleV[n] < 0.0:
downV = uniform(-downAngleV[n], downAngleV[n])
else:
downV = -downAngleV[n] * (1 - (1 - p.offset) / (1 - baseSize)) ** 2 #(110, 80) = (60, -50)
if p.offset == 1:
downRotMat = Matrix.Rotation(0, 3, 'X')
else:
downRotMat = Matrix.Rotation(downAngle[n] + downV, 3, 'X')
Brendon Murphy
committed
# If the -ve flag for rotate is used we need to find which side of the stem the last child point was and then grow in the opposite direction.
if rotate[n] < 0.0:
oldRotate = -copysign(rotate[n], oldRotate)
Brendon Murphy
committed
# Otherwise just generate a random number in the specified range
else:
oldRotate += rotate[n]
bRotate = oldRotate + uniform(-rotateV[n], rotateV[n])
if (n == 1) and (rMode == "rotate"):
bRotate = rot_a[i]
rotMat = Matrix.Rotation(bRotate, 3, 'Z')
Brendon Murphy
committed
# Rotate the direction of growth and set the new point coordinates
tempPos.rotate(downRotMat)
Brendon Murphy
committed
tempPos.rotate(rotMat)
#use quat angle
if (rMode == "rotate") and (n == 1) and (p.offset != 1):
if useParentAngle:
edir = p.quat.to_euler('XYZ', Euler((0, 0, bRotate), 'XYZ'))
edir[0] = 0
edir[1] = 0
edir[2] = -edir[2]
tempPos.rotate(edir)
dec = declination(p.quat)
tempPos.rotate(Matrix.Rotation(radians(dec), 3, 'X'))
edir[2] = -edir[2]
tempPos.rotate(edir)
else:
tempPos.rotate(p.quat)
Brendon Murphy
committed
newPoint.handle_right = p.co + tempPos
# Make length variation inversely proportional to segSplits
#lenV = (1 - min(segSplits[n], 1)) * lengthV[n]
# Find branch length and the number of child stems.
maxbL = scaleVal
for l in length[:n+1]:
maxbL *= l
lMax = length[n] # * uniform(1 - lenV, 1 + lenV)
if n == 1:
lShape = shapeRatio(shape, (1 - p.stemOffset) / (1 - baseSize), custom=customShape)
else:
lShape = shapeRatio(shapeS, (1 - p.stemOffset) / (1 - baseSize))
branchL = p.lengthPar * lMax * lShape
childStems = branches[min(3, n + 1)] * (0.1 + 0.9 * (branchL / maxbL))
# If this is the last level before leaves then we need to generate the child points differently
if (storeN == levels - 1):
Brendon Murphy
committed
if leaves < 0:
childStems = False
else:
childStems = leaves * (0.1 + 0.9 * (branchL / maxbL)) * shapeRatio(leafDist, (1 - p.offset))
Brendon Murphy
committed
#print("n=%d, levels=%d, n'=%d, childStems=%s"%(n, levels, storeN, childStems))
Brendon Murphy
committed
# Determine the starting and ending radii of the stem using the tapering of the stem
startRad = min((p.radiusPar[0] * ((branchL / p.lengthPar) ** ratioPower)) * radiusTweak[n], p.radiusPar[1])
if p.offset == 1:
startRad = p.radiusPar[1]
endRad = (startRad * (1 - taper[n])) ** ratioPower
startRad = max(startRad, minRadius)
endRad = max(endRad, minRadius)
Brendon Murphy
committed
newPoint.radius = startRad
# stem curvature
curveVal = curve[n] / curveRes[n]
curveVar = curveV[n] / curveRes[n]
#curveVal = curveVal * (branchL / scaleVal)
Brendon Murphy
committed
# Add the new stem to list of stems to grow and define which bone it will be parented to
addstem(
stemSpline(newSpline, curveVal, curveVar, attractUp[n], 0, curveRes[n], branchL / curveRes[n], childStems,
startRad, endRad, len(cu.splines) - 1, 0, p.quat))
bone = roundBone(p.parBone, boneStep[n-1])
if p.offset == 1:
isend = True
else:
isend = False
addsplinetobone((bone, isend))
Brendon Murphy
committed
def perform_pruning(baseSize, baseSplits, childP, cu, currentMax, currentMin, currentScale, curve, curveBack, curveRes,
deleteSpline, forceSprout, handles, n, oldMax, orginalSplineToBone, originalCo, originalCurv,
originalCurvV, originalHandleL, originalHandleR, originalLength, originalSeg, prune, prunePowerHigh,
prunePowerLow, pruneRatio, pruneWidth, pruneBase, pruneWidthPeak, randState, ratio, scaleVal, segSplits,
splineToBone, splitAngle, splitAngleV, st, startPrune, branchDist, length, splitByLen, closeTip, nrings,
splitBias, splitHeight, attractOut, rMode, lengthV, taperCrown, boneStep, rotate, rotateV):
Brendon Murphy
committed
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
while startPrune and ((currentMax - currentMin) > 0.005):
setstate(randState)
# If the search will halt after this iteration, then set the adjustment of stem length to take into account the pruning ratio
if (currentMax - currentMin) < 0.01:
currentScale = (currentScale - 1) * pruneRatio + 1
startPrune = False
forceSprout = True
# Change the segment length of the stem by applying some scaling
st.segL = originalLength * currentScale
# To prevent millions of splines being created we delete any old ones and replace them with only their first points to begin the spline again
if deleteSpline:
for x in splineList:
cu.splines.remove(x.spline)
newSpline = cu.splines.new('BEZIER')
newPoint = newSpline.bezier_points[-1]
newPoint.co = originalCo
newPoint.handle_right = originalHandleR
newPoint.handle_left = originalHandleL
(newPoint.handle_left_type, newPoint.handle_right_type) = ('VECTOR', 'VECTOR')
st.spline = newSpline
st.curv = originalCurv
st.curvV = originalCurvV
st.seg = originalSeg
st.p = newPoint
newPoint.radius = st.radS
splineToBone = orginalSplineToBone
# Initialise the spline list for those contained in the current level of branching
splineList = [st]
#split length variation
stemsegL = splineList[0].segL #initial segment length used for variation
splineList[0].segL = stemsegL * uniform(1 - lengthV[n], 1 + lengthV[n]) #variation for first stem
Brendon Murphy
committed
# For each of the segments of the stem which must be grown we have to add to each spline in splineList
for k in range(curveRes[n]):
# Make a copy of the current list to avoid continually adding to the list we're iterating over
tempList = splineList[:]
# print('Leng: ', len(tempList))
#for curve variation
if curveRes[n] > 1:
kp = (k / (curveRes[n] - 1)) # * 2
else:
kp = 1.0
#split bias
splitValue = segSplits[n]
if n == 0:
splitValue = ((2 * splitBias) * (kp - .5) + 1) * splitValue
splitValue = max(splitValue, 0.0)
Brendon Murphy
committed
# For each of the splines in this list set the number of splits and then grow it
for spl in tempList:
#adjust numSplit
lastsplit = getattr(spl, 'splitlast', 0)
splitVal = splitValue
if lastsplit == 0:
splitVal = splitValue * 1.33
elif lastsplit == 1:
splitVal = splitValue * splitValue
Brendon Murphy
committed
if k == 0:
numSplit = 0
elif (n == 0) and (k < ((curveRes[n]-1) * splitHeight)) and (k != 1):
numSplit = 0
Brendon Murphy
committed
elif (k == 1) and (n == 0):
numSplit = baseSplits
elif (n == 0) and (k == int((curveRes[n]-1) * splitHeight) + 1) and (splitVal > 0): #allways split at splitHeight
numSplit = 1
Brendon Murphy
committed
else:
if (n >= 1) and splitByLen:
L = ((spl.segL * curveRes[n]) / scaleVal)
lf = 1
for l in length[:n+1]:
lf *= l
L = L / lf
numSplit = splits2(splitVal * L)
else:
numSplit = splits2(splitVal)
if (k == int(curveRes[n] / 2 + 0.5)) and (curveBack[n] != 0):
spl.curv += 2 * (curveBack[n] / curveRes[n]) #was -4 *
growSpline(n, spl, numSplit, splitAngle[n], splitAngleV[n], splineList, handles, splineToBone,
closeTip, kp, splitHeight, attractOut[n], stemsegL, lengthV[n], taperCrown, boneStep, rotate, rotateV)
Brendon Murphy
committed
# If pruning is enabled then we must to the check to see if the end of the spline is within the evelope
if prune:
# Check each endpoint to see if it is inside
for s in splineList:
coordMag = (s.spline.bezier_points[-1].co.xy).length
ratio = (scaleVal - s.spline.bezier_points[-1].co.z) / (scaleVal * max(1 - pruneBase, 1e-6))
Brendon Murphy
committed
# Don't think this if part is needed
if (n == 0) and (s.spline.bezier_points[-1].co.z < pruneBase * scaleVal):
insideBool = True # Init to avoid UnboundLocalError later
Brendon Murphy
committed
else:
insideBool = (
(coordMag / scaleVal) < pruneWidth * shapeRatio(9, ratio, pruneWidthPeak, prunePowerHigh,
Brendon Murphy
committed
prunePowerLow))
# If the point is not inside then we adjust the scale and current search bounds
if not insideBool:
oldMax = currentMax
currentMax = currentScale
currentScale = 0.5 * (currentMax + currentMin)
break
# If the scale is the original size and the point is inside then we need to make sure it won't be pruned or extended to the edge of the envelope
if insideBool and (currentScale != 1):
currentMin = currentScale
currentMax = oldMax
currentScale = 0.5 * (currentMax + currentMin)
if insideBool and ((currentMax - currentMin) == 1):
currentMin = 1
Brendon Murphy
committed
# If the search will halt on the next iteration then we need to make sure we sprout child points to grow the next splines or leaves
if (((currentMax - currentMin) < 0.005) or not prune) or forceSprout:
if (n == 0) and (rMode != "original"):
tVals = findChildPoints2(splineList, st.children)
else:
tVals = findChildPoints(splineList, st.children)
Brendon Murphy
committed
#print("debug tvals[%d] , splineList[%d], %s" % ( len(tVals), len(splineList), st.children))
# If leaves is -ve then we need to make sure the only point which sprouts is the end of the spline
if not st.children:
tVals = [1.0]
# remove some of the points because of baseSize
trimNum = int(baseSize * (len(tVals) + 1))
tVals = tVals[trimNum:]
#grow branches in rings
if (n == 0) and (nrings > 0):
#tVals = [(floor(t * nrings)) / nrings for t in tVals[:-1]]
tVals = [(floor(t * nrings) / nrings) * uniform(.995, 1.005) for t in tVals[:-1]]
tVals.append(1)
tVals = [t for t in tVals if t > baseSize]
#branch distribution
Brendon Murphy
committed
if n == 0:
tVals = [((t - baseSize) / (1 - baseSize)) for t in tVals]
if branchDist < 1.0:
tVals = [t ** (1 / branchDist) for t in tVals]
else:
tVals = [1 - (1 - t) ** branchDist for t in tVals]
tVals = [t * (1 - baseSize) + baseSize for t in tVals]
Brendon Murphy
committed
# For all the splines, we interpolate them and add the new points to the list of child points
maxOffset = max([s.offsetLen + (len(s.spline.bezier_points) - 1) * s.segL for s in splineList])
Brendon Murphy
committed
for s in splineList:
#print(str(n)+'level: ', s.segMax*s.segL)
childP.extend(interpStem(s, tVals, s.segMax * s.segL, s.radS, maxOffset, baseSize))
Brendon Murphy
committed
# Force the splines to be deleted
deleteSpline = True
# If pruning isn't enabled then make sure it doesn't loop
if not prune:
startPrune = False
return ratio, splineToBone
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
#calculate taper automaticly
def findtaper(length, taper, shape, shapeS, levels, customShape):
taperS = []
for i, t in enumerate(length):
if i == 0:
shp = 1.0
elif i == 1:
shp = shapeRatio(shape, 0, custom=customShape)
else:
shp = shapeRatio(shapeS, 0)
t = t * shp
taperS.append(t)
taperP = []
for i, t in enumerate(taperS):
pm = 1
for x in range(i+1):
pm *= taperS[x]
taperP.append(pm)
taperR = []
for i, t in enumerate(taperP):
t = sum(taperP[i:levels])
taperR.append(t)
taperT = []
for i, t in enumerate(taperR):
try:
t = taperP[i] / taperR[i]
except ZeroDivisionError:
t = 1.0
taperT.append(t)
taperT = [t * taper[i] for i, t in enumerate(taperT)]
return taperT
Brendon Murphy
committed
Campbell Barton
committed
global splitError
#startTime = time.time()
# Set the seed for repeatable results
seed(props.seed)#
Campbell Barton
committed
# Set all other variables
levels = props.levels#
length = props.length#
lengthV = props.lengthV#
taperCrown = props.taperCrown
Campbell Barton
committed
branches = props.branches#
curveRes = props.curveRes#
curve = toRad(props.curve)#
curveV = toRad(props.curveV)#
curveBack = toRad(props.curveBack)#
baseSplits = props.baseSplits#
segSplits = props.segSplits#
splitByLen = props.splitByLen
rMode = props.rMode
Campbell Barton
committed
splitAngle = toRad(props.splitAngle)#
splitAngleV = toRad(props.splitAngleV)#
scale = props.scale#
scaleV = props.scaleV#
attractUp = props.attractUp#
attractOut = props.attractOut
Campbell Barton
committed
shape = int(props.shape)#
shapeS = int(props.shapeS)#
customShape = props.customShape
branchDist = props.branchDist
nrings = props.nrings
Campbell Barton
committed
baseSize = props.baseSize
baseSize_s = props.baseSize_s
splitHeight = props.splitHeight
splitBias = props.splitBias
Campbell Barton
committed
ratio = props.ratio
minRadius = props.minRadius
closeTip = props.closeTip
rootFlare = props.rootFlare
autoTaper = props.autoTaper
Campbell Barton
committed
taper = props.taper#
radiusTweak = props.radiusTweak
Campbell Barton
committed
ratioPower = props.ratioPower#
downAngle = toRad(props.downAngle)#
downAngleV = toRad(props.downAngleV)#
rotate = toRad(props.rotate)#
rotateV = toRad(props.rotateV)#
scale0 = props.scale0#
scaleV0 = props.scaleV0#
prune = props.prune#
pruneWidth = props.pruneWidth#
pruneBase = props.pruneBase
Campbell Barton
committed
pruneWidthPeak = props.pruneWidthPeak#
prunePowerLow = props.prunePowerLow#
prunePowerHigh = props.prunePowerHigh#
pruneRatio = props.pruneRatio#
leafDownAngle = radians(props.leafDownAngle)
leafDownAngleV = radians(props.leafDownAngleV)
leafRotate = radians(props.leafRotate)
leafRotateV = radians(props.leafRotateV)
Campbell Barton
committed
leafScale = props.leafScale#
leafScaleX = props.leafScaleX#
leafScaleT = props.leafScaleT
leafScaleV = props.leafScaleV
Campbell Barton
committed
leafShape = props.leafShape
leafDupliObj = props.leafDupliObj
Campbell Barton
committed
bend = props.bend#
leafangle = props.leafangle
horzLeaves = props.horzLeaves
Campbell Barton
committed
leafDist = int(props.leafDist)#
bevelRes = props.bevelRes#
resU = props.resU#
Campbell Barton
committed
useArm = props.useArm
previewArm = props.previewArm
Campbell Barton
committed
armAnim = props.armAnim
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
leafAnim = props.leafAnim
frameRate = props.frameRate
loopFrames = props.loopFrames
#windSpeed = props.windSpeed
#windGust = props.windGust
wind = props.wind
gust = props.gust
gustF = props.gustF
af1 = props.af1
af2 = props.af2
af3 = props.af3
makeMesh = props.makeMesh
armLevels = props.armLevels
boneStep = props.boneStep
useOldDownAngle = props.useOldDownAngle
useParentAngle = props.useParentAngle
if not makeMesh:
boneStep = [1, 1, 1, 1]
#taper
if autoTaper:
taper = findtaper(length, taper, shape, shapeS, levels, customShape)
#pLevels = branches[0]
#taper = findtaper(length, taper, shape, shapeS, pLevels, customShape)
Campbell Barton
committed
leafObj = None
Campbell Barton
committed
# Some effects can be turned ON and OFF, the necessary variables are changed here
if not props.bevel:
bevelDepth = 0.0
else:
bevelDepth = 1.0
Campbell Barton
committed
if not props.showLeaves:
leaves = 0
else:
leaves = props.leaves
Campbell Barton
committed
if props.handleType == '0':
handles = 'AUTO'
else:
handles = 'VECTOR'
for ob in bpy.data.objects:
ob.select = False
# Initialise the tree object and curve and adjust the settings
cu = bpy.data.curves.new('tree', 'CURVE')
treeOb = bpy.data.objects.new('tree', cu)
Campbell Barton
committed
bpy.context.scene.objects.link(treeOb)
# treeOb.location=bpy.context.scene.cursor_location attractUp
Campbell Barton
committed
cu.dimensions = '3D'
cu.fill_mode = 'FULL'
cu.bevel_depth = bevelDepth
cu.bevel_resolution = bevelRes
cu.use_uv_as_generated = True
Campbell Barton
committed
# Fix the scale of the tree now
scaleVal = scale + uniform(-scaleV, scaleV)
scaleVal += copysign(1e-6, scaleVal) # Move away from zero to avoid div by zero
Campbell Barton
committed
pruneBase = min(pruneBase, baseSize)
Campbell Barton
committed
# If pruning is turned on we need to draw the pruning envelope
if prune:
enHandle = 'VECTOR'
enNum = 128
enCu = bpy.data.curves.new('envelope', 'CURVE')
enOb = bpy.data.objects.new('envelope', enCu)
Campbell Barton
committed
enOb.parent = treeOb
bpy.context.scene.objects.link(enOb)
newSpline = enCu.splines.new('BEZIER')
newPoint = newSpline.bezier_points[-1]
newPoint.co = Vector((0, 0, scaleVal))
(newPoint.handle_right_type, newPoint.handle_left_type) = (enHandle, enHandle)
Campbell Barton
committed
# Set the coordinates by varying the z value, envelope will be aligned to the x-axis
for c in range(enNum):
newSpline.bezier_points.add()
Campbell Barton
committed
ratioVal = (c+1)/(enNum)
zVal = scaleVal - scaleVal*(1-pruneBase)*ratioVal
newPoint.co = Vector((scaleVal*pruneWidth*shapeRatio(9, ratioVal, pruneWidthPeak, prunePowerHigh, prunePowerLow), 0, zVal))
(newPoint.handle_right_type, newPoint.handle_left_type) = (enHandle, enHandle)
Campbell Barton
committed
newSpline = enCu.splines.new('BEZIER')
newPoint = newSpline.bezier_points[-1]
newPoint.co = Vector((0, 0, scaleVal))
(newPoint.handle_right_type, newPoint.handle_left_type) = (enHandle, enHandle)
Campbell Barton
committed
# Create a second envelope but this time on the y-axis
for c in range(enNum):
newSpline.bezier_points.add()
Campbell Barton
committed
ratioVal = (c+1)/(enNum)
zVal = scaleVal - scaleVal*(1-pruneBase)*ratioVal
newPoint.co = Vector((0, scaleVal*pruneWidth*shapeRatio(9, ratioVal, pruneWidthPeak, prunePowerHigh, prunePowerLow), zVal))
(newPoint.handle_right_type, newPoint.handle_left_type) = (enHandle, enHandle)
Campbell Barton
committed
childP = []
stemList = []
levelCount = []
Campbell Barton
committed
splineToBone = deque([''])
addsplinetobone = splineToBone.append
# Each of the levels needed by the user we grow all the splines
Campbell Barton
committed
for n in range(levels):
storeN = n
stemList = deque()
addstem = stemList.append
# If n is used as an index to access parameters for the tree it must be at most 3 or it will reference outside the array index
Campbell Barton
committed
splitError = 0.0
#closeTip only on last level
closeTipp = all([(n == levels-1), closeTip])
Campbell Barton
committed
# If this is the first level of growth (the trunk) then we need some special work to begin the tree
if n == 0:
kickstart_trunk(addstem, levels, leaves, branches, cu, curve, curveRes, curveV, attractUp, length, lengthV, ratio, ratioPower, resU,
scale0, scaleV0, scaleVal, taper, minRadius, rootFlare)
Campbell Barton
committed
# If this isn't the trunk then we may have multiple stem to intialise
else:
# For each of the points defined in the list of stem starting points we need to grow a stem.
fabricate_stems(addsplinetobone, addstem, baseSize, branches, childP, cu, curve, curveBack,
curveRes, curveV, attractUp, downAngle, downAngleV, leafDist, leaves, length, lengthV,
levels, n, ratioPower, resU, rotate, rotateV, scaleVal, shape, storeN,
taper, shapeS, minRadius, radiusTweak, customShape, rMode, segSplits,
useOldDownAngle, useParentAngle, boneStep)
#change base size for each level
if n > 0:
baseSize *= baseSize_s #decrease at each level
if (n == levels - 1):
baseSize = 0
Campbell Barton
committed
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
childP = []
# Now grow each of the stems in the list of those to be extended
for st in stemList:
# When using pruning, we need to ensure that the random effects will be the same for each iteration to make sure the problem is linear.
randState = getstate()
startPrune = True
lengthTest = 0.0
# Store all the original values for the stem to make sure we have access after it has been modified by pruning
originalLength = st.segL
originalCurv = st.curv
originalCurvV = st.curvV
originalSeg = st.seg
originalHandleR = st.p.handle_right.copy()
originalHandleL = st.p.handle_left.copy()
originalCo = st.p.co.copy()
currentMax = 1.0
currentMin = 0.0
currentScale = 1.0
oldMax = 1.0
deleteSpline = False
orginalSplineToBone = copy.copy(splineToBone)
forceSprout = False
# Now do the iterative pruning, this uses a binary search and halts once the difference between upper and lower bounds of the search are less than 0.005
Brendon Murphy
committed
ratio, splineToBone = perform_pruning(baseSize, baseSplits, childP, cu, currentMax, currentMin,
currentScale, curve, curveBack, curveRes, deleteSpline, forceSprout,
handles, n, oldMax, orginalSplineToBone, originalCo, originalCurv,
originalCurvV, originalHandleL, originalHandleR, originalLength,
originalSeg, prune, prunePowerHigh, prunePowerLow, pruneRatio,
pruneWidth, pruneBase, pruneWidthPeak, randState, ratio, scaleVal, segSplits,
splineToBone, splitAngle, splitAngleV, st, startPrune,
branchDist, length, splitByLen, closeTipp, nrings, splitBias, splitHeight, attractOut, rMode, lengthV,
taperCrown, boneStep, rotate, rotateV)
Campbell Barton
committed
levelCount.append(len(cu.splines))
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
# If we need to add leaves, we do it here
leafVerts = []
leafFaces = []
leafNormals = []
leafMesh = None # in case we aren't creating leaves, we'll still have the variable
leafP = []
if leaves:
oldRot = 0.0
n = min(3, n+1)
# For each of the child points we add leaves
for cp in childP:
# If the special flag is set then we need to add several leaves at the same location
if leaves < 0:
oldRot = -leafRotate / 2
for g in range(abs(leaves)):
(vertTemp, faceTemp, normal, oldRot) = genLeafMesh(leafScale, leafScaleX, leafScaleT, leafScaleV, cp.co, cp.quat, cp.offset,
len(leafVerts), leafDownAngle, leafDownAngleV, leafRotate, leafRotateV,
oldRot, bend, leaves, leafShape, leafangle, horzLeaves)
Campbell Barton
committed
leafVerts.extend(vertTemp)
leafFaces.extend(faceTemp)
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
leafNormals.extend(normal)
leafP.append(cp)
# Otherwise just add the leaves like splines.
else:
(vertTemp, faceTemp, normal, oldRot) = genLeafMesh(leafScale, leafScaleX, leafScaleT, leafScaleV, cp.co, cp.quat, cp.offset,
len(leafVerts), leafDownAngle, leafDownAngleV, leafRotate, leafRotateV,
oldRot, bend, leaves, leafShape, leafangle, horzLeaves)
leafVerts.extend(vertTemp)
leafFaces.extend(faceTemp)
leafNormals.extend(normal)
leafP.append(cp)
# Create the leaf mesh and object, add geometry using from_pydata, edges are currently added by validating the mesh which isn't great
leafMesh = bpy.data.meshes.new('leaves')
leafObj = bpy.data.objects.new('leaves', leafMesh)
bpy.context.scene.objects.link(leafObj)
leafObj.parent = treeOb
leafMesh.from_pydata(leafVerts, (), leafFaces)
#set vertex normals for dupliVerts
if leafShape == 'dVert':
leafMesh.vertices.foreach_set('normal', leafNormals)
# enable duplication
if leafShape == 'dFace':
leafObj.dupli_type = "FACES"
leafObj.use_dupli_faces_scale = True
leafObj.dupli_faces_scale = 10.0
try:
bpy.data.objects[leafDupliObj].parent = leafObj
except KeyError:
pass
elif leafShape == 'dVert':
leafObj.dupli_type = "VERTS"
leafObj.use_dupli_vertices_rotation = True
try:
bpy.data.objects[leafDupliObj].parent = leafObj
except KeyError:
pass
#add leaf UVs
if leafShape == 'rect':
leafMesh.uv_textures.new("leafUV")
uvlayer = leafMesh.uv_layers.active.data
u1 = .5 * (1 - leafScaleX)
u2 = 1 - u1
for i in range(0, len(leafFaces)):
uvlayer[i*4 + 0].uv = Vector((u2, 0))
uvlayer[i*4 + 1].uv = Vector((u2, 1))
uvlayer[i*4 + 2].uv = Vector((u1, 1))
uvlayer[i*4 + 3].uv = Vector((u1, 0))
elif leafShape == 'hex':
leafMesh.uv_textures.new("leafUV")
uvlayer = leafMesh.uv_layers.active.data
u1 = .5 * (1 - leafScaleX)
u2 = 1 - u1
for i in range(0, int(len(leafFaces) / 2)):
uvlayer[i*8 + 0].uv = Vector((.5, 0))
uvlayer[i*8 + 1].uv = Vector((u1, 1/3))
uvlayer[i*8 + 2].uv = Vector((u1, 2/3))
uvlayer[i*8 + 3].uv = Vector((.5, 1))
uvlayer[i*8 + 4].uv = Vector((.5, 0))
uvlayer[i*8 + 5].uv = Vector((.5, 1))
uvlayer[i*8 + 6].uv = Vector((u2, 2/3))
uvlayer[i*8 + 7].uv = Vector((u2, 1/3))
leafMesh.validate()
leafVertSize = {'hex': 6, 'rect': 4, 'dFace': 4, 'dVert': 1}[leafShape]
armLevels = min(armLevels, levels)
armLevels -= 1
# unpack vars from splineToBone
splineToBone1 = splineToBone
splineToBone = [s[0] if len(s) > 1 else s for s in splineToBone1]
isend = [s[1] if len(s) > 1 else False for s in splineToBone1]
issplit = [s[2] if len(s) > 2 else False for s in splineToBone1]
splitPidx = [s[3] if len(s) > 2 else 0 for s in splineToBone1]
# If we need an armature we add it
Campbell Barton
committed
if useArm:
# Create the armature and objects
create_armature(armAnim, leafP, cu, frameRate, leafMesh, leafObj, leafVertSize, leaves, levelCount, splineToBone,
treeOb, wind, gust, gustF, af1, af2, af3, leafAnim, loopFrames, previewArm, armLevels, makeMesh, boneStep)
Campbell Barton
committed
#print(time.time()-startTime)
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
#mesh branches
if makeMesh:
t1 = time.time()
treeMesh = bpy.data.meshes.new('treemesh')
treeObj = bpy.data.objects.new('treemesh', treeMesh)
bpy.context.scene.objects.link(treeObj)
treeVerts = []
treeEdges = []
root_vert = []
vert_radius = []
vertexGroups = OrderedDict()
lastVerts = []
for i, curve in enumerate(cu.splines):
points = curve.bezier_points
#find branching level
level = 0
for l, c in enumerate(levelCount):
if i < c:
level = l
break
level = min(level, 3)
step = boneStep[level]
vindex = len(treeVerts)
p1 = points[0]
#add extra vertex for splits
if issplit[i]:
pb = int(splineToBone[i][4:-4])
pn = splitPidx[i] #int(splineToBone[i][-3:])
p_1 = cu.splines[pb].bezier_points[pn]
p_2 = cu.splines[pb].bezier_points[pn+1]
p = evalBez(p_1.co, p_1.handle_right, p_2.handle_left, p_2.co, 1 - 1/(resU + 1))
treeVerts.append(p)
root_vert.append(False)
vert_radius.append((p1.radius * .75, p1.radius * .75))
treeEdges.append([vindex,vindex+1])
vindex += 1
if isend[i]:
parent = lastVerts[int(splineToBone[i][4:-4])]
vindex -= 1
else:
#add first point
treeVerts.append(p1.co)
root_vert.append(True)
vert_radius.append((p1.radius, p1.radius))
# #add extra vertex for splits
# if issplit[i]:
# p2 = points[1]
# p = evalBez(p1.co, p1.handle_right, p2.handle_left, p2.co, .001)
# treeVerts.append(p)
# root_vert.append(False)
# vert_radius.append((p1.radius, p1.radius)) #(p1.radius * .95, p1.radius * .95)
# treeEdges.append([vindex,vindex+1])
# vindex += 1
#dont make vertex group if above armLevels
if (i >= levelCount[armLevels]):
idx = i
groupName = splineToBone[idx]
g = True
while groupName not in vertexGroups:
#find parent bone of parent bone
b = splineToBone[idx]
idx = int(b[4:-4])
groupName = splineToBone[idx]
else:
g = False
for n, p2 in enumerate(points[1:]):
if not g:
groupName = 'bone' + (str(i)).rjust(3, '0') + '.' + (str(n)).rjust(3, '0')
groupName = roundBone(groupName, step)
if groupName not in vertexGroups:
vertexGroups[groupName] = []
# parent first vert in split to parent branch bone
if issplit[i] and n == 0:
if g:
vertexGroups[groupName].append(vindex - 1)
else:
vertexGroups[splineToBone[i]].append(vindex - 1)
for f in range(1, resU+1):
pos = f / resU
p = evalBez(p1.co, p1.handle_right, p2.handle_left, p2.co, pos)
radius = p1.radius + (p2.radius - p1.radius) * pos
treeVerts.append(p)
root_vert.append(False)
vert_radius.append((radius, radius))
if (isend[i]) and (n == 0) and (f == 1):
edge = [parent, n * resU + f + vindex]
else:
edge = [n * resU + f + vindex - 1, n * resU + f + vindex]
#add vert to group
vertexGroups[groupName].append(n * resU + f + vindex - 1)
treeEdges.append(edge)
vertexGroups[groupName].append(n * resU + resU + vindex)
p1 = p2
lastVerts.append(len(treeVerts)-1)
treeMesh.from_pydata(treeVerts, treeEdges, ())
for group in vertexGroups:
treeObj.vertex_groups.new(group)
treeObj.vertex_groups[group].add(vertexGroups[group], 1.0, 'ADD')
#add armature
if useArm:
armMod = treeObj.modifiers.new('windSway', 'ARMATURE')
if previewArm:
bpy.data.objects['treeArm'].hide = True
bpy.data.armatures['tree'].draw_type = 'STICK'
armMod.object = bpy.data.objects['treeArm']
armMod.use_bone_envelopes = False
armMod.use_vertex_groups = True
treeObj.parent = bpy.data.objects['treeArm']
#add skin modifier and set data
skinMod = treeObj.modifiers.new('Skin', 'SKIN')
skinMod.use_smooth_shade = True
if previewArm:
skinMod.show_viewport = False
skindata = treeObj.data.skin_vertices[0].data
for i, radius in enumerate(vert_radius):
skindata[i].radius = radius
skindata[i].use_root = root_vert[i]
print("mesh time", time.time() - t1)