Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
# Script copyright (C) Campbell Barton, Bastien Montagne
import array
import datetime
import math
import os
import time
import collections
from collections import namedtuple, OrderedDict
import itertools
from itertools import zip_longest, chain
import bpy
import bpy_extras
from bpy.types import Object, Bone
from mathutils import Vector, Matrix
from . import encode_bin, data_types
# "Constants"
FBX_VERSION = 7400
FBX_HEADER_VERSION = 1003
FBX_SCENEINFO_VERSION = 100
FBX_TEMPLATES_VERSION = 100
FBX_MODELS_VERSION = 232
FBX_GEOMETRY_VERSION = 124
FBX_GEOMETRY_NORMAL_VERSION = 102
FBX_GEOMETRY_BINORMAL_VERSION = 102
FBX_GEOMETRY_TANGENT_VERSION = 102
FBX_GEOMETRY_SMOOTHING_VERSION = 102
FBX_GEOMETRY_VCOLOR_VERSION = 101
FBX_GEOMETRY_UV_VERSION = 101
FBX_GEOMETRY_MATERIAL_VERSION = 101
FBX_GEOMETRY_LAYER_VERSION = 100
FBX_POSE_BIND_VERSION = 100
FBX_DEFORMER_SKIN_VERSION = 101
FBX_DEFORMER_CLUSTER_VERSION = 100
FBX_MATERIAL_VERSION = 102
FBX_TEXTURE_VERSION = 202
FBX_NAME_CLASS_SEP = b"\x00\x01"
FBX_KTIME = 46186158000 # This is the number of "ktimes" in one second (yep, precision over the nanosecond...)
MAT_CONVERT_LAMP = Matrix.Rotation(math.pi / 2.0, 4, 'X') # Blender is -Z, FBX is -Y.
MAT_CONVERT_CAMERA = Matrix.Rotation(math.pi / 2.0, 4, 'Y') # Blender is -Z, FBX is +X.
#MAT_CONVERT_BONE = Matrix.Rotation(math.pi / -2.0, 4, 'X') # Blender is +Y, FBX is +Z.
MAT_CONVERT_BONE = Matrix()
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# Lamps.
FBX_LIGHT_TYPES = {
'POINT': 0, # Point.
'SUN': 1, # Directional.
'SPOT': 2, # Spot.
'HEMI': 1, # Directional.
'AREA': 3, # Area.
}
FBX_LIGHT_DECAY_TYPES = {
'CONSTANT': 0, # None.
'INVERSE_LINEAR': 1, # Linear.
'INVERSE_SQUARE': 2, # Quadratic.
'CUSTOM_CURVE': 2, # Quadratic.
'LINEAR_QUADRATIC_WEIGHTED': 2, # Quadratic.
}
##### Misc utilities #####
# Note: this could be in a utility (math.units e.g.)...
UNITS = {
"meter": 1.0, # Ref unit!
"kilometer": 0.001,
"millimeter": 1000.0,
"foot": 1.0 / 0.3048,
"inch": 1.0 / 0.0254,
"turn": 1.0, # Ref unit!
"degree": 360.0,
"radian": math.pi * 2.0,
"second": 1.0, # Ref unit!
"ktime": FBX_KTIME,
}
def units_convert(val, u_from, u_to):
"""Convert value."""
conv = UNITS[u_to] / UNITS[u_from]
return val * conv
def units_convert_iter(it, u_from, u_to):
"""Convert value."""
conv = UNITS[u_to] / UNITS[u_from]
return (v * conv for v in it)
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def matrix_to_array(mat):
"""Concatenate matrix's columns into a single, flat tuple"""
# blender matrix is row major, fbx is col major so transpose on write
return tuple(f for v in mat.transposed() for f in v)
RIGHT_HAND_AXES = {
# Up, Front -> FBX values (tuples of (axis, sign), Up, Front, Coord).
# Note: Since we always stay in right-handed system, third coord sign is always positive!
('X', 'Y'): ((0, 1), (1, 1), (2, 1)),
('X', '-Y'): ((0, 1), (1, -1), (2, 1)),
('X', 'Z'): ((0, 1), (2, 1), (1, 1)),
('X', '-Z'): ((0, 1), (2, -1), (1, 1)),
('-X', 'Y'): ((0, -1), (1, 1), (2, 1)),
('-X', '-Y'): ((0, -1), (1, -1), (2, 1)),
('-X', 'Z'): ((0, -1), (2, 1), (1, 1)),
('-X', '-Z'): ((0, -1), (2, -1), (1, 1)),
('Y', 'X'): ((1, 1), (0, 1), (2, 1)),
('Y', '-X'): ((1, 1), (0, -1), (2, 1)),
('Y', 'Z'): ((1, 1), (2, 1), (0, 1)),
('Y', '-Z'): ((1, 1), (2, -1), (0, 1)),
('-Y', 'X'): ((1, -1), (0, 1), (2, 1)),
('-Y', '-X'): ((1, -1), (0, -1), (2, 1)),
('-Y', 'Z'): ((1, -1), (2, 1), (0, 1)),
('-Y', '-Z'): ((1, -1), (2, -1), (0, 1)),
('Z', 'X'): ((2, 1), (0, 1), (1, 1)),
('Z', '-X'): ((2, 1), (0, -1), (1, 1)),
('Z', 'Y'): ((2, 1), (1, 1), (0, 1)), # Blender system!
('Z', '-Y'): ((2, 1), (1, -1), (0, 1)),
('-Z', 'X'): ((2, -1), (0, 1), (1, 1)),
('-Z', '-X'): ((2, -1), (0, -1), (1, 1)),
('-Z', 'Y'): ((2, -1), (1, 1), (0, 1)),
('-Z', '-Y'): ((2, -1), (1, -1), (0, 1)),
}
##### UIDs code. #####
# ID class (mere int).
class UID(int):
pass
# UIDs storage.
_keys_to_uids = {}
_uids_to_keys = {}
def _key_to_uid(uids, key):
# TODO: Check this is robust enough for our needs!
# Note: We assume we have already checked the related key wasn't yet in _keys_to_uids!
# As int64 is signed in FBX, we keep uids below 2**63...
if isinstance(key, int) and 0 <= key < 2**63:
# We can use value directly as id!
uid = key
else:
uid = hash(key)
if uid < 0:
uid = -uid
if uid >= 2**63:
uid //= 2
# Make sure our uid *is* unique.
if uid in uids:
inc = 1 if uid < 2**62 else -1
while uid in uids:
uid += inc
if 0 > uid >= 2**63:
# Note that this is more that unlikely, but does not harm anyway...
raise ValueError("Unable to generate an UID for key {}".format(key))
return UID(uid)
def get_fbxuid_from_key(key):
"""
Return an UID for given key, which is assumed hasable.
"""
Loading
Loading full blame...