Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
self.modifiers_prev_viewport_state = []
if len(self.main_object.modifiers) > 0:
for m_idx in range(len(self.main_object.modifiers)):
self.modifiers_prev_viewport_state.append(self.main_object.modifiers[m_idx].show_viewport)
self.main_object.modifiers[m_idx].show_viewport = False
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[ob_original_splines.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[ob_original_splines.name]
if len(ob_original_splines.data.splines) >= 2:
bpy.ops.object.duplicate('INVOKE_REGION_WIN')
ob_splines = bpy.context.object
ob_splines.name = "SURFSKIO_NE_STR"
#### Get estimative merge distance (sum up the distances from the first point to all other points, then average them and then divide them).
first_point_dist_sum = 0
first_dist = 0
second_dist = 0
coords_first_pt = ob_splines.data.splines[0].bezier_points[0].co
for i in range(len(ob_splines.data.splines)):
sp = ob_splines.data.splines[i]
if coords_first_pt != sp.bezier_points[0].co:
first_dist = (coords_first_pt - sp.bezier_points[0].co).length
if coords_first_pt != sp.bezier_points[len(sp.bezier_points) - 1].co:
second_dist = (coords_first_pt - sp.bezier_points[len(sp.bezier_points) - 1].co).length
first_point_dist_sum += first_dist + second_dist
if i == 0:
if first_dist != 0:
shortest_dist = first_dist
elif second_dist != 0:
shortest_dist = second_dist
if shortest_dist > first_dist and first_dist != 0:
shortest_dist = first_dist
if shortest_dist > second_dist and second_dist != 0:
shortest_dist = second_dist
self.crosshatch_merge_distance = shortest_dist / 20
#### Recalculation of merge distance.
bpy.ops.object.duplicate('INVOKE_REGION_WIN')
ob_calc_merge_dist = bpy.context.object
ob_calc_merge_dist.name = "SURFSKIO_CALC_TMP"
objects_to_delete.append(ob_calc_merge_dist)
#### Smooth out strokes a little to improve crosshatch detection.
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='SELECT')
for i in range(4):
bpy.ops.curve.smooth('INVOKE_REGION_WIN')
bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
#### Convert curves into mesh.
ob_calc_merge_dist.data.resolution_u = 12
bpy.ops.object.convert(target='MESH', keep_original=False)
# Find "intersection-nodes".
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='SELECT')
bpy.ops.mesh.remove_doubles('INVOKE_REGION_WIN', mergedist=self.crosshatch_merge_distance)
bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
# Remove verts with less than three edges.
verts_edges_count = {}
for ed in ob_calc_merge_dist.data.edges:
v = ed.vertices
if v[0] not in verts_edges_count:
verts_edges_count[v[0]] = 0
if v[1] not in verts_edges_count:
verts_edges_count[v[1]] = 0
verts_edges_count[v[0]] += 1
verts_edges_count[v[1]] += 1
nodes_verts_coords = []
for v_idx in verts_edges_count:
v = ob_calc_merge_dist.data.vertices[v_idx]
if verts_edges_count[v_idx] < 3:
v.select = True
# Remove them.
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.mesh.delete('INVOKE_REGION_WIN', type='VERT')
bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='SELECT')
# Remove doubles to discard very near verts from calculations of distance.
bpy.ops.mesh.remove_doubles('INVOKE_REGION_WIN', mergedist=self.crosshatch_merge_distance * 4)
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
# Get all coords of the resulting nodes.
nodes_verts_coords = [(v.co[0], v.co[1], v.co[2]) for v in ob_calc_merge_dist.data.vertices]
#### Check if the strokes are a crosshatch.
if len(nodes_verts_coords) >= 3:
self.is_crosshatch = True
shortest_dist = None
for co_1 in nodes_verts_coords:
for co_2 in nodes_verts_coords:
if co_1 != co_2:
dist = (mathutils.Vector(co_1) - mathutils.Vector(co_2)).length
if shortest_dist != None:
if dist < shortest_dist:
shortest_dist = dist
else:
shortest_dist = dist
self.crosshatch_merge_distance = shortest_dist / 3
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[ob_splines.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[ob_splines.name]
#### Deselect all points.
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
#### Smooth splines in a localized way, to eliminate "saw-teeth" like shapes when there are many points.
for sp in ob_splines.data.splines:
angle_sum = 0
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
angle_limit = 2 # Degrees
for t in range(len(sp.bezier_points)):
if t <= len(sp.bezier_points) - 3: # Because on each iteration it checks the "next two points" of the actual. This way it doesn't go out of range.
p1 = sp.bezier_points[t]
p2 = sp.bezier_points[t + 1]
p3 = sp.bezier_points[t + 2]
vec_1 = p1.co - p2.co
vec_2 = p2.co - p3.co
if p2.co != p1.co and p2.co != p3.co:
angle = vec_1.angle(vec_2)
angle_sum += degrees(angle)
if angle_sum >= angle_limit: # If sum of angles is grater than the limit.
if (p1.co - p2.co).length <= self.crosshatch_merge_distance:
p1.select_control_point = True; p1.select_left_handle = True; p1.select_right_handle = True
p2.select_control_point = True; p2.select_left_handle = True; p2.select_right_handle = True
if (p1.co - p2.co).length <= self.crosshatch_merge_distance:
p3.select_control_point = True; p3.select_left_handle = True; p3.select_right_handle = True
angle_sum = 0
sp.bezier_points[0].select_control_point = False
sp.bezier_points[0].select_left_handle = False
sp.bezier_points[0].select_right_handle = False
sp.bezier_points[len(sp.bezier_points) - 1].select_control_point = False
sp.bezier_points[len(sp.bezier_points) - 1].select_left_handle = False
sp.bezier_points[len(sp.bezier_points) - 1].select_right_handle = False
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
#### Smooth out strokes a little to improve crosshatch detection.
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
for i in range(15):
bpy.ops.curve.smooth('INVOKE_REGION_WIN')
bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
#### Simplify the splines.
for sp in ob_splines.data.splines:
angle_sum = 0
sp.bezier_points[0].select_control_point = True
sp.bezier_points[0].select_left_handle = True
sp.bezier_points[0].select_right_handle = True
sp.bezier_points[len(sp.bezier_points) - 1].select_control_point = True
sp.bezier_points[len(sp.bezier_points) - 1].select_left_handle = True
sp.bezier_points[len(sp.bezier_points) - 1].select_right_handle = True
angle_limit = 15 # Degrees
for t in range(len(sp.bezier_points)):
if t <= len(sp.bezier_points) - 3: # Because on each iteration it checks the "next two points" of the actual. This way it doesn't go out of range.
p1 = sp.bezier_points[t]
p2 = sp.bezier_points[t + 1]
p3 = sp.bezier_points[t + 2]
vec_1 = p1.co - p2.co
vec_2 = p2.co - p3.co
if p2.co != p1.co and p2.co != p3.co:
angle = vec_1.angle(vec_2)
angle_sum += degrees(angle)
if angle_sum >= angle_limit: # If sum of angles is grater than the limit.
p1.select_control_point = True; p1.select_left_handle = True; p1.select_right_handle = True
p2.select_control_point = True; p2.select_left_handle = True; p2.select_right_handle = True
p3.select_control_point = True; p3.select_left_handle = True; p3.select_right_handle = True
angle_sum = 0
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.curve.select_all(action = 'INVERT')
bpy.ops.curve.delete(type='SELECTED')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
objects_to_delete.append(ob_splines)
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
#### Check if the strokes are a crosshatch.
if self.is_crosshatch:
all_points_coords = []
for i in range(len(ob_splines.data.splines)):
all_points_coords.append([])
all_points_coords[i] = [mathutils.Vector((x, y, z)) for x, y, z in [bp.co for bp in ob_splines.data.splines[i].bezier_points]]
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
all_intersections = []
checked_splines = []
for i in range(len(all_points_coords)):
for t in range(len(all_points_coords[i]) - 1):
bp1_co = all_points_coords[i][t]
bp2_co = all_points_coords[i][t + 1]
for i2 in range(len(all_points_coords)):
if i != i2 and not i2 in checked_splines:
for t2 in range(len(all_points_coords[i2]) - 1):
bp3_co = all_points_coords[i2][t2]
bp4_co = all_points_coords[i2][t2 + 1]
intersec_coords = mathutils.geometry.intersect_line_line(bp1_co, bp2_co, bp3_co, bp4_co)
if intersec_coords != None:
dist = (intersec_coords[0] - intersec_coords[1]).length
if dist <= self.crosshatch_merge_distance * 1.5:
temp_co, percent1 = mathutils.geometry.intersect_point_line(intersec_coords[0], bp1_co, bp2_co)
if (percent1 >= -0.02 and percent1 <= 1.02):
temp_co, percent2 = mathutils.geometry.intersect_point_line(intersec_coords[1], bp3_co, bp4_co)
if (percent2 >= -0.02 and percent2 <= 1.02):
all_intersections.append((i, t, percent1, ob_splines.matrix_world * intersec_coords[0])) # Format: spline index, first point index from corresponding segment, percentage from first point of actual segment, coords of intersection point.
all_intersections.append((i2, t2, percent2, ob_splines.matrix_world * intersec_coords[1]))
checked_splines.append(i)
all_intersections.sort(key = operator.itemgetter(0,1,2)) # Sort list by spline, then by corresponding first point index of segment, and then by percentage from first point of segment: elements 0 and 1 respectively.
self.crosshatch_strokes_coords = {}
for i in range(len(all_intersections)):
if not all_intersections[i][0] in self.crosshatch_strokes_coords:
self.crosshatch_strokes_coords[all_intersections[i][0]] = []
self.crosshatch_strokes_coords[all_intersections[i][0]].append(all_intersections[i][3]) # Save intersection coords.
else:
self.is_crosshatch = False
#### Delete all duplicates.
for o in objects_to_delete:
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[o.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[o.name]
bpy.ops.object.delete()
#### If the main object has modifiers, turn their "viewport view status" to what it was before the forced deactivation above.
if len(self.main_object.modifiers) > 0:
for m_idx in range(len(self.main_object.modifiers)):
self.main_object.modifiers[m_idx].show_viewport = self.modifiers_prev_viewport_state[m_idx]
return
#### Part of the Crosshatch process that is repeated when the operator is tweaked.
def crosshatch_surface_execute(self):
# If the main object uses modifiers deactivate them temporarily until the surface is joined. (without this the surface verts merging with the main object doesn't work well)
self.modifiers_prev_viewport_state = []
if len(self.main_object.modifiers) > 0:
for m_idx in range(len(self.main_object.modifiers)):
self.modifiers_prev_viewport_state.append(self.main_object.modifiers[m_idx].show_viewport)
self.main_object.modifiers[m_idx].show_viewport = False
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
me_name = "SURFSKIO_STK_TMP"
me = bpy.data.meshes.new(me_name)
all_verts_coords = []
all_edges = []
for st_idx in self.crosshatch_strokes_coords:
for co_idx in range(len(self.crosshatch_strokes_coords[st_idx])):
coords = self.crosshatch_strokes_coords[st_idx][co_idx]
all_verts_coords.append(coords)
if co_idx > 0:
all_edges.append((len(all_verts_coords) - 2, len(all_verts_coords) - 1))
me.from_pydata(all_verts_coords, all_edges, [])
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
ob = bpy.data.objects.new(me_name, me)
ob.data = me
bpy.context.scene.objects.link(ob)
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[ob.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[ob.name]
#### Get together each vert and its nearest, to the middle position.
verts = ob.data.vertices
checked_verts = []
for i in range(len(verts)):
shortest_dist = None
if not i in checked_verts:
for t in range(len(verts)):
if i != t and not t in checked_verts:
dist = (verts[i].co - verts[t].co).length
if shortest_dist != None:
if dist < shortest_dist:
shortest_dist = dist
nearest_vert = t
else:
shortest_dist = dist
nearest_vert = t
middle_location = (verts[i].co + verts[nearest_vert].co) / 2
verts[i].co = middle_location
verts[nearest_vert].co = middle_location
checked_verts.append(i)
checked_verts.append(nearest_vert)
#### Calculate average length between all the generated edges.
ob = bpy.context.object
lengths_sum = 0
for ed in ob.data.edges:
v1 = ob.data.vertices[ed.vertices[0]]
v2 = ob.data.vertices[ed.vertices[1]]
lengths_sum += (v1.co - v2.co).length
edges_count = len(ob.data.edges)
average_edge_length = lengths_sum / edges_count
bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='SELECT')
bpy.ops.mesh.remove_doubles('INVOKE_REGION_WIN', mergedist=average_edge_length / 15)
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
final_points_ob = bpy.context.scene.objects.active
#### Make a dictionary with the verts related to each vert.
related_key_verts = {}
for ed in final_points_ob.data.edges:
if not ed.vertices[0] in related_key_verts:
related_key_verts[ed.vertices[0]] = []
if not ed.vertices[1] in related_key_verts:
related_key_verts[ed.vertices[1]] = []
if not ed.vertices[1] in related_key_verts[ed.vertices[0]]:
related_key_verts[ed.vertices[0]].append(ed.vertices[1])
if not ed.vertices[0] in related_key_verts[ed.vertices[1]]:
related_key_verts[ed.vertices[1]].append(ed.vertices[0])
#### Get groups of verts forming each face.
faces_verts_idx = []
for v1 in related_key_verts: # verts-1 ....
for v2 in related_key_verts: # verts-2
if v1 != v2:
related_verts_in_common = []
v2_in_rel_v1 = False
v1_in_rel_v2 = False
for rel_v1 in related_key_verts[v1]:
if rel_v1 in related_key_verts[v2]: # Check if related verts of verts-1 are related verts of verts-2.
related_verts_in_common.append(rel_v1)
if v2 in related_key_verts[v1]:
v2_in_rel_v1 = True
if v1 in related_key_verts[v2]:
v1_in_rel_v2 = True
repeated_face = False
# If two verts have two related verts in common, they form a quad.
if len(related_verts_in_common) == 2:
# Check if the face is already saved.
for f_verts in faces_verts_idx:
repeated_verts = 0
if len(f_verts) == 4:
if v1 in f_verts: repeated_verts += 1
if v2 in f_verts: repeated_verts += 1
if related_verts_in_common[0] in f_verts: repeated_verts += 1
if related_verts_in_common[1] in f_verts: repeated_verts += 1
if repeated_verts == len(f_verts):
repeated_face = True
break
if not repeated_face:
faces_verts_idx.append([v1, related_verts_in_common[0], v2, related_verts_in_common[1]])
elif v2_in_rel_v1 and v1_in_rel_v2 and len(related_verts_in_common) == 1: # If Two verts have one related vert in common and they are related to each other, they form a triangle.
# Check if the face is already saved.
for f_verts in faces_verts_idx:
repeated_verts = 0
if len(f_verts) == 3:
if v1 in f_verts: repeated_verts += 1
if v2 in f_verts: repeated_verts += 1
if related_verts_in_common[0] in f_verts: repeated_verts += 1
if repeated_verts == len(f_verts):
repeated_face = True
break
if not repeated_face:
faces_verts_idx.append([v1, related_verts_in_common[0], v2])
#### Keep only the faces that don't overlap by ignoring quads that overlap with two adjacent triangles.
faces_to_not_include_idx = [] # Indices of faces_verts_idx to eliminate.
for i in range(len(faces_verts_idx)):
for t in range(len(faces_verts_idx)):
if i != t:
verts_in_common = 0
if len(faces_verts_idx[i]) == 4 and len(faces_verts_idx[t]) == 3:
for v_idx in faces_verts_idx[t]:
if v_idx in faces_verts_idx[i]:
verts_in_common += 1
if verts_in_common == 3: # If it doesn't have all it's vertices repeated in the other face.
if not i in faces_to_not_include_idx:
faces_to_not_include_idx.append(i)
#### Build surface.
all_surface_verts_co = []
verts_idx_translation = {}
for i in range(len(final_points_ob.data.vertices)):
coords = final_points_ob.data.vertices[i].co
all_surface_verts_co.append([coords[0], coords[1], coords[2]])
# Verts of each face.
all_surface_faces = []
for i in range(len(faces_verts_idx)):
if not i in faces_to_not_include_idx:
face = []
for v_idx in faces_verts_idx[i]:
face.append(v_idx)
all_surface_faces.append(face)
# Build the mesh.
surf_me_name = "SURFSKIO_surface"
me_surf = bpy.data.meshes.new(surf_me_name)
me_surf.from_pydata(all_surface_verts_co, [], all_surface_faces)
me_surf.update()
ob_surface = bpy.data.objects.new(surf_me_name, me_surf)
bpy.context.scene.objects.link(ob_surface)
# Delete final points temporal object
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[final_points_ob.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[final_points_ob.name]
bpy.ops.object.delete()
# Delete isolated verts if there are any.
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[ob_surface.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[ob_surface.name]
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.mesh.select_all(action='DESELECT')
bpy.ops.mesh.select_face_by_sides(type='NOTEQUAL')
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
bpy.ops.mesh.delete()
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
#### Join crosshatch results with original mesh.
# Calculate a distance to merge the verts of the crosshatch surface to the main object.
edges_length_sum = 0
for ed in ob_surface.data.edges:
edges_length_sum += (ob_surface.data.vertices[ed.vertices[0]].co - ob_surface.data.vertices[ed.vertices[1]].co).length
if len(ob_surface.data.edges) > 0:
average_surface_edges_length = edges_length_sum / len(ob_surface.data.edges)
else:
average_surface_edges_length = 0.0001
# Make dictionary with all the verts connected to each vert, on the new surface object.
surface_connected_verts = {}
for ed in ob_surface.data.edges:
if not ed.vertices[0] in surface_connected_verts:
surface_connected_verts[ed.vertices[0]] = []
surface_connected_verts[ed.vertices[0]].append(ed.vertices[1])
if not ed.vertices[1] in surface_connected_verts:
surface_connected_verts[ed.vertices[1]] = []
surface_connected_verts[ed.vertices[1]].append(ed.vertices[0])
# Duplicate the new surface object, and use shrinkwrap to calculate later the nearest verts to the main object.
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.object.duplicate('INVOKE_REGION_WIN')
final_ob_duplicate = bpy.context.scene.objects.active
bpy.ops.object.modifier_add('INVOKE_REGION_WIN', type='SHRINKWRAP')
final_ob_duplicate.modifiers["Shrinkwrap"].wrap_method = "NEAREST_VERTEX"
final_ob_duplicate.modifiers["Shrinkwrap"].target = self.main_object
bpy.ops.object.modifier_apply('INVOKE_REGION_WIN', apply_as='DATA', modifier='Shrinkwrap')
# Make list with verts of original mesh as index and coords as value.
main_object_verts_coords = []
for v in self.main_object.data.vertices:
coords = self.main_object.matrix_world * v.co
for c in range(len(coords)): # To avoid problems when taking "-0.00" as a different value as "0.00".
if "%.3f" % coords[c] == "-0.00":
coords[c] = 0
main_object_verts_coords.append(["%.3f" % coords[0], "%.3f" % coords[1], "%.3f" % coords[2]])
tuple(main_object_verts_coords)
# Determine which verts will be merged, snap them to the nearest verts on the original verts, and get them selected.
crosshatch_verts_to_merge = []
if self.automatic_join:
for i in range(len(ob_surface.data.vertices)):
# Calculate the distance from each of the connected verts to the actual vert, and compare it with the distance they would have if joined. If they don't change much, that vert can be joined.
merge_actual_vert = True
if len(surface_connected_verts[i]) < 4:
for c_v_idx in surface_connected_verts[i]:
points_original = []
points_original.append(ob_surface.data.vertices[c_v_idx].co)
points_original.append(ob_surface.data.vertices[i].co)
points_target = []
points_target.append(ob_surface.data.vertices[c_v_idx].co)
points_target.append(final_ob_duplicate.data.vertices[i].co)
vec_A = points_original[0] - points_original[1]
vec_B = points_target[0] - points_target[1]
dist_A = (points_original[0] - points_original[1]).length
dist_B = (points_target[0] - points_target[1]).length
if not (points_original[0] == points_original[1] or points_target[0] == points_target[1]): # If any vector's length is zero.
angle = vec_A.angle(vec_B) / math.pi
else:
angle= 0
if dist_B > dist_A * 1.7 * self.join_stretch_factor or dist_B < dist_A / 2 / self.join_stretch_factor or angle >= 0.15 * self.join_stretch_factor: # Set a range of acceptable variation in the connected edges.
merge_actual_vert = False
break
else:
merge_actual_vert = False
if merge_actual_vert:
coords = final_ob_duplicate.data.vertices[i].co
for c in range(len(coords)): # To avoid problems when taking "-0.000" as a different value as "0.00".
if "%.3f" % coords[c] == "-0.00":
coords[c] = 0
comparison_coords = ["%.3f" % coords[0], "%.3f" % coords[1], "%.3f" % coords[2]]
if comparison_coords in main_object_verts_coords:
main_object_related_vert_idx = main_object_verts_coords.index(comparison_coords) # Get the index of the vert with those coords in the main object.
if self.main_object.data.vertices[main_object_related_vert_idx].select == True or self.main_object_selected_verts_count == 0:
ob_surface.data.vertices[i].co = final_ob_duplicate.data.vertices[i].co
ob_surface.data.vertices[i].select = True
crosshatch_verts_to_merge.append(i)
# Make sure the vert in the main object is selected, in case it wasn't selected and the "join crosshatch" option is active.
self.main_object.data.vertices[main_object_related_vert_idx].select = True
# Delete duplicated object.
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[final_ob_duplicate.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[final_ob_duplicate.name]
bpy.ops.object.delete()
# Join crosshatched surface and main object.
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[ob_surface.name].select = True
bpy.data.objects[self.main_object.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]
bpy.ops.object.join('INVOKE_REGION_WIN')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
# Perform Remove doubles to merge verts.
if not (self.automatic_join == False and self.main_object_selected_verts_count == 0):
bpy.ops.mesh.remove_doubles(mergedist=0.0001)
bpy.ops.mesh.select_all(action='DESELECT')
#### If the main object has modifiers, turn their "viewport view status" to what it was before the forced deactivation above.
if len(self.main_object.modifiers) > 0:
for m_idx in range(len(self.main_object.modifiers)):
self.main_object.modifiers[m_idx].show_viewport = self.modifiers_prev_viewport_state[m_idx]
return{'FINISHED'}
def rectangular_surface(self):
#### Selected edges.
all_selected_edges_idx = []
all_selected_verts = []
all_verts_idx = []
for ed in self.main_object.data.edges:
if ed.select:
all_selected_edges_idx.append(ed.index)
# Selected vertices.
if not ed.vertices[0] in all_selected_verts:
all_selected_verts.append(self.main_object.data.vertices[ed.vertices[0]])
if not ed.vertices[1] in all_selected_verts:
all_selected_verts.append(self.main_object.data.vertices[ed.vertices[1]])
# All verts (both from each edge) to determine later which are at the tips (those not repeated twice).
all_verts_idx.append(ed.vertices[0])
all_verts_idx.append(ed.vertices[1])
#### Identify the tips and "middle-vertex" that separates U from V, if there is one.
all_chains_tips_idx = []
for v_idx in all_verts_idx:
if all_verts_idx.count(v_idx) < 2:
all_chains_tips_idx.append(v_idx)
edges_connected_to_tips = []
for ed in self.main_object.data.edges:
if (ed.vertices[0] in all_chains_tips_idx or ed.vertices[1] in all_chains_tips_idx) and not (ed.vertices[0] in all_verts_idx and ed.vertices[1] in all_verts_idx):
edges_connected_to_tips.append(ed)
#### Check closed selections.
single_unselected_verts_and_neighbors = [] # List with groups of three verts, where the first element of the pair is the unselected vert of a closed selection and the other two elements are the selected neighbor verts (it will be useful to determine which selection chain the unselected vert belongs to, and determine the "middle-vertex")
# To identify a "closed" selection (a selection that is a closed chain except for one vertex) find the vertex in common that have the edges connected to tips. If there is a vertex in common, that one is the unselected vert that closes the selection or is a "middle-vertex".
single_unselected_verts = []
for ed in edges_connected_to_tips:
for ed_b in edges_connected_to_tips:
if ed != ed_b:
if ed.vertices[0] == ed_b.vertices[0] and not self.main_object.data.vertices[ed.vertices[0]].select and ed.vertices[0] not in single_unselected_verts:
single_unselected_verts_and_neighbors.append([ed.vertices[0], ed.vertices[1], ed_b.vertices[1]]) # The second element is one of the tips of the selected vertices of the closed selection.
single_unselected_verts.append(ed.vertices[0])
break
elif ed.vertices[0] == ed_b.vertices[1] and not self.main_object.data.vertices[ed.vertices[0]].select and ed.vertices[0] not in single_unselected_verts:
single_unselected_verts_and_neighbors.append([ed.vertices[0], ed.vertices[1], ed_b.vertices[0]])
single_unselected_verts.append(ed.vertices[0])
break
elif ed.vertices[1] == ed_b.vertices[0] and not self.main_object.data.vertices[ed.vertices[1]].select and ed.vertices[1] not in single_unselected_verts:
single_unselected_verts_and_neighbors.append([ed.vertices[1], ed.vertices[0], ed_b.vertices[1]])
single_unselected_verts.append(ed.vertices[1])
break
elif ed.vertices[1] == ed_b.vertices[1] and not self.main_object.data.vertices[ed.vertices[1]].select and ed.vertices[1] not in single_unselected_verts:
single_unselected_verts_and_neighbors.append([ed.vertices[1], ed.vertices[0], ed_b.vertices[0]])
single_unselected_verts.append(ed.vertices[1])
break
middle_vertex_idx = None
tips_to_discard_idx = []
# Check if there is a "middle-vertex", and get its index.
for i in range(0, len(single_unselected_verts_and_neighbors)):
actual_chain_verts = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, single_unselected_verts_and_neighbors[i][1], None, None)
if single_unselected_verts_and_neighbors[i][2] != actual_chain_verts[len(actual_chain_verts) - 1].index:
middle_vertex_idx = single_unselected_verts_and_neighbors[i][0]
tips_to_discard_idx.append(single_unselected_verts_and_neighbors[i][1])
tips_to_discard_idx.append(single_unselected_verts_and_neighbors[i][2])
#### List with pairs of verts that belong to the tips of each selection chain (row).
verts_tips_same_chain_idx = []
if len(all_chains_tips_idx) >= 2:
checked_v = []
for i in range(0, len(all_chains_tips_idx)):
if all_chains_tips_idx[i] not in checked_v:
v_chain = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, all_chains_tips_idx[i], middle_vertex_idx, None)
verts_tips_same_chain_idx.append([v_chain[0].index, v_chain[len(v_chain) - 1].index])
checked_v.append(v_chain[0].index)
checked_v.append(v_chain[len(v_chain) - 1].index)
#### Selection tips (vertices).
verts_tips_parsed_idx = []
if len(all_chains_tips_idx) >= 2:
for spec_v_idx in all_chains_tips_idx:
if (spec_v_idx not in tips_to_discard_idx):
verts_tips_parsed_idx.append(spec_v_idx)
#### Identify the type of selection made by the user.
if middle_vertex_idx != None:
if len(all_chains_tips_idx) == 4 and len(single_unselected_verts_and_neighbors) == 1: # If there are 4 tips (two selection chains), and there is only one single unselected vert (the middle vert).
selection_type = "TWO_CONNECTED"
else:
# The type of the selection was not identified, the script stops.
self.report({'WARNING'}, "The selection isn't valid.")
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
self.cleanup_on_interruption()
self.stopping_errors = True
return{'CANCELLED'}
else:
if len(all_chains_tips_idx) == 2: # If there are 2 tips
selection_type = "SINGLE"
elif len(all_chains_tips_idx) == 4: # If there are 4 tips
selection_type = "TWO_NOT_CONNECTED"
elif len(all_chains_tips_idx) == 0:
if len(self.main_splines.data.splines) > 1:
selection_type = "NO_SELECTION"
else:
# If the selection was not identified and there is only one stroke, there's no possibility to build a surface, so the script is interrupted.
self.report({'WARNING'}, "The selection isn't valid.")
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
self.cleanup_on_interruption()
self.stopping_errors = True
return{'CANCELLED'}
else:
# The type of the selection was not identified, the script stops.
self.report({'WARNING'}, "The selection isn't valid.")
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
self.cleanup_on_interruption()
self.stopping_errors = True
return{'CANCELLED'}
#### If the selection type is TWO_NOT_CONNECTED and there is only one stroke, stop the script.
if selection_type == "TWO_NOT_CONNECTED" and len(self.main_splines.data.splines) == 1:
self.report({'WARNING'}, "At least two strokes are needed when there are two not connected selections.")
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
self.cleanup_on_interruption()
self.stopping_errors = True
return{'CANCELLED'}
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[self.main_splines.name].select = True
bpy.context.scene.objects.active = bpy.context.scene.objects[self.main_splines.name]
#### Enter editmode for the new curve (converted from grease pencil strokes), to smooth it out.
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
bpy.ops.curve.smooth('INVOKE_REGION_WIN')
bpy.ops.curve.smooth('INVOKE_REGION_WIN')
bpy.ops.curve.smooth('INVOKE_REGION_WIN')
bpy.ops.curve.smooth('INVOKE_REGION_WIN')
bpy.ops.curve.smooth('INVOKE_REGION_WIN')
bpy.ops.curve.smooth('INVOKE_REGION_WIN')
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
self.selection_U_exists = False
self.selection_U2_exists = False
self.selection_V_exists = False
self.selection_V2_exists = False
self.selection_U_is_closed = False
self.selection_U2_is_closed = False
self.selection_V_is_closed = False
self.selection_V2_is_closed = False
#### Define what vertices are at the tips of each selection and are not the middle-vertex.
if selection_type == "TWO_CONNECTED":
self.selection_U_exists = True
self.selection_V_exists = True
closing_vert_U_idx = None
closing_vert_V_idx = None
closing_vert_U2_idx = None
closing_vert_V2_idx = None
# Determine which selection is Selection-U and which is Selection-V.
points_A = []
points_B = []
points_first_stroke_tips = []
points_A.append(self.main_object.matrix_world * self.main_object.data.vertices[verts_tips_parsed_idx[0]].co)
points_A.append(self.main_object.matrix_world * self.main_object.data.vertices[middle_vertex_idx].co)
points_B.append(self.main_object.matrix_world * self.main_object.data.vertices[verts_tips_parsed_idx[1]].co)
points_B.append(self.main_object.matrix_world * self.main_object.data.vertices[middle_vertex_idx].co)
points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[0].co)
points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[len(self.main_splines.data.splines[0].bezier_points) - 1].co)
angle_A = self.orientation_difference(points_A, points_first_stroke_tips)
angle_B = self.orientation_difference(points_B, points_first_stroke_tips)
if angle_A < angle_B:
first_vert_U_idx = verts_tips_parsed_idx[0]
first_vert_V_idx = verts_tips_parsed_idx[1]
else:
first_vert_U_idx = verts_tips_parsed_idx[1]
first_vert_V_idx = verts_tips_parsed_idx[0]
elif selection_type == "SINGLE" or selection_type == "TWO_NOT_CONNECTED":
first_sketched_point_first_stroke_co = self.main_splines.data.splines[0].bezier_points[0].co
last_sketched_point_first_stroke_co = self.main_splines.data.splines[0].bezier_points[len(self.main_splines.data.splines[0].bezier_points) - 1].co
first_sketched_point_last_stroke_co = self.main_splines.data.splines[len(self.main_splines.data.splines) - 1].bezier_points[0].co
if len(self.main_splines.data.splines) > 1:
first_sketched_point_second_stroke_co = self.main_splines.data.splines[1].bezier_points[0].co
last_sketched_point_second_stroke_co = self.main_splines.data.splines[1].bezier_points[len(self.main_splines.data.splines[1].bezier_points) - 1].co
single_unselected_neighbors = [] # Only the neighbors of the single unselected verts.
for verts_neig_idx in single_unselected_verts_and_neighbors:
single_unselected_neighbors.append(verts_neig_idx[1])
single_unselected_neighbors.append(verts_neig_idx[2])
all_chains_tips_and_middle_vert = []
for v_idx in all_chains_tips_idx:
if v_idx not in single_unselected_neighbors:
all_chains_tips_and_middle_vert.append(v_idx)
all_chains_tips_and_middle_vert += single_unselected_verts
all_participating_verts = all_chains_tips_and_middle_vert + all_verts_idx
# The tip of the selected vertices nearest to the first point of the first sketched stroke.
nearest_tip_to_first_st_first_pt_idx, shortest_distance_to_first_stroke = self.shortest_distance(self.main_object, first_sketched_point_first_stroke_co, all_chains_tips_and_middle_vert)
# If the nearest tip is not from a closed selection, get the opposite tip vertex index.
if nearest_tip_to_first_st_first_pt_idx not in single_unselected_verts or nearest_tip_to_first_st_first_pt_idx == middle_vertex_idx:
nearest_tip_to_first_st_first_pt_opposite_idx = self.opposite_tip(nearest_tip_to_first_st_first_pt_idx, verts_tips_same_chain_idx)
# The tip of the selected vertices nearest to the last point of the first sketched stroke.
nearest_tip_to_first_st_last_pt_idx, temp_dist = self.shortest_distance(self.main_object, last_sketched_point_first_stroke_co, all_chains_tips_and_middle_vert)
# The tip of the selected vertices nearest to the first point of the last sketched stroke.
nearest_tip_to_last_st_first_pt_idx, shortest_distance_to_last_stroke = self.shortest_distance(self.main_object, first_sketched_point_last_stroke_co, all_chains_tips_and_middle_vert)
if len(self.main_splines.data.splines) > 1:
# The selected vertex nearest to the first point of the second sketched stroke. (This will be useful to determine the direction of the closed selection V when extruding along strokes)
nearest_vert_to_second_st_first_pt_idx, temp_dist = self.shortest_distance(self.main_object, first_sketched_point_second_stroke_co, all_verts_idx)
# The selected vertex nearest to the first point of the second sketched stroke. (This will be useful to determine the direction of the closed selection V2 when extruding along strokes)
nearest_vert_to_second_st_last_pt_idx, temp_dist = self.shortest_distance(self.main_object, last_sketched_point_second_stroke_co, all_verts_idx)
# Determine if the single selection will be treated as U or as V.
edges_sum = 0
for i in all_selected_edges_idx:
edges_sum += ((self.main_object.matrix_world * self.main_object.data.vertices[self.main_object.data.edges[i].vertices[0]].co) - (self.main_object.matrix_world * self.main_object.data.vertices[self.main_object.data.edges[i].vertices[1]].co)).length
average_edge_length = edges_sum / len(all_selected_edges_idx)
# Get shortest distance from the first point of the last stroke to any participating vertex.
temp_idx, shortest_distance_to_last_stroke = self.shortest_distance(self.main_object, first_sketched_point_last_stroke_co, all_participating_verts)
if shortest_distance_to_first_stroke < average_edge_length / 4 and shortest_distance_to_last_stroke < average_edge_length and len(self.main_splines.data.splines) > 1: # If the beginning of the first stroke is near enough, and its orientation difference with the first edge of the nearest selection chain is not too high, interpret things as an "extrude along strokes" instead of "extrude through strokes"
self.selection_U_exists = False
self.selection_V_exists = True
if nearest_tip_to_first_st_first_pt_idx not in single_unselected_verts or nearest_tip_to_first_st_first_pt_idx == middle_vertex_idx: # If the first selection is not closed.
self.selection_V_is_closed = False
first_neighbor_V_idx = None
closing_vert_U_idx = None
closing_vert_U2_idx = None
closing_vert_V_idx = None
closing_vert_V2_idx = None
first_vert_V_idx = nearest_tip_to_first_st_first_pt_idx