Skip to content
Snippets Groups Projects
mesh_surface_sketch.py 36.9 KiB
Newer Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
#
# ##### END GPL LICENSE BLOCK #####

# version 0.8 Beta

bl_addon_info = {
    'name': 'Mesh: Surface Sketch',
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
    'author': 'Eclectiel',
    'version': '0.8',
    'blender': (2, 5, 3),
    'location': 'View3D > EditMode > ToolShelf',
    'description': 'Draw meshes and re-topologies with Grease Pencil',
    'url': 'http://wiki.blender.org/index.php/Extensions:2.5/Py/' \
        'Scripts/Mesh/Surface_Sketch',
    'category': 'Mesh'}


import bpy
import math

from math import *


bpy.types.Scene.IntProperty(attr = "SURFSK_edges_U", name = "Cross", description = "Number of edge rings crossing the strokes (perpendicular to strokes direction)", default = 10, min = 0, max = 100000)
bpy.types.Scene.IntProperty(attr = "SURFSK_edges_V", name = "Follow", description = "Number of edge rings following the strokes (parallel to strokes direction)", default = 10, min = 0, max = 100000)
bpy.types.Scene.IntProperty(attr = "SURFSK_precision", name = "Precision", description = "Precision level of the surface calculation", default = 4, min = 0, max = 100000)
bpy.types.Scene.BoolProperty(attr = "SURFSK_keep_strokes", name = "Keep strokes", description = "Keeps the sketched strokes after adding the surface", default = False)




class View3DPanel(bpy.types.Panel):
    bl_space_type = 'VIEW_3D'
    bl_region_type = 'TOOLS'
    

class VIEW3D_PT_tools_SURF_SKETCH(View3DPanel):
    bl_context = "mesh_edit"
    bl_label = "Surface Sketching"
    
    def poll(self, context):
        return context.active_object

    def draw(self, context):
        layout = self.layout
        
        scn = context.scene
        ob = context.object
        
        col = layout.column(align=True)
        row = layout.row()
        row.separator()
        col.operator("GPENCIL_OT_SURFSK_add_surface", text="Add Surface")
        col.prop(scn, "SURFSK_edges_U")
        col.prop(scn, "SURFSK_edges_V")
        row.separator()
        col.prop(scn, "SURFSK_keep_strokes")
        col.separator()
        row.separator()
        col.operator("GPENCIL_OT_SURFSK_strokes_to_curves", text="Strokes to curves")
        


class GPENCIL_OT_SURFSK_add_surface(bpy.types.Operator):
    bl_idname = "GPENCIL_OT_SURFSK_add_surface"
    bl_label = "Surface generation from grease pencil strokes"
    bl_description = "Surface generation from grease pencil strokes"
    
    
    #### Get an ordered list of a chain of vertices.
    def get_ordered_verts(self, ob, all_selected_edges_idx, all_selected_verts_idx, first_vert_idx, middle_vertex_idx):
        # Order selected vertexes.
        verts_ordered = []
        verts_ordered.append(self.main_object.data.verts[first_vert_idx])
        prev_v = first_vert_idx
        prev_ed = None
        finish_while = False
        while True:
            edges_non_matched = 0
            for i in all_selected_edges_idx:
                if ob.data.edges[i] != prev_ed and ob.data.edges[i].verts[0] == prev_v and ob.data.edges[i].verts[1] in all_selected_verts_idx:
                    verts_ordered.append(self.main_object.data.verts[ob.data.edges[i].verts[1]])
                    prev_v = ob.data.edges[i].verts[1]
                    prev_ed = ob.data.edges[i]
                elif ob.data.edges[i] != prev_ed and ob.data.edges[i].verts[1] == prev_v and ob.data.edges[i].verts[0] in all_selected_verts_idx:
                    verts_ordered.append(self.main_object.data.verts[ob.data.edges[i].verts[0]])
                    prev_v = ob.data.edges[i].verts[0]
                    prev_ed = ob.data.edges[i]
                else:
                    edges_non_matched += 1
                    
                    if edges_non_matched == len(all_selected_edges_idx):
                        finish_while = True
                    
            if finish_while:
                break
        
        if middle_vertex_idx != None:
            verts_ordered.append(self.main_object.data.verts[middle_vertex_idx])
            verts_ordered.reverse()
        
        return verts_ordered
    
    
    #### Calculates length of a chain of points.
    def get_chain_length(self, verts_ordered):
        edges_lengths = []
        edges_lengths_sum = 0
        for i in range(0, len(verts_ordered)):
            if i == 0:
                prev_v = verts_ordered[i]
            else:
                v = verts_ordered[i]
                
                v_difs = [prev_v.co[0] - v.co[0], prev_v.co[1] - v.co[1], prev_v.co[2] - v.co[2]]
                edge_length = abs(sqrt(v_difs[0] * v_difs[0] + v_difs[1] * v_difs[1] + v_difs[2] * v_difs[2]))
                
                edges_lengths.append(edge_length)
                edges_lengths_sum += edge_length
                
                prev_v = v
        
        return edges_lengths, edges_lengths_sum
    
    
    #### Calculates the proportion of the edges of a chain of edges, relative to the full chain length.
    def get_edges_proportions(self, edges_lengths, edges_lengths_sum, use_boundaries, fixed_edges_num):
        edges_proportions = []
        if use_boundaries:
            verts_count = 1
            for l in edges_lengths:
                edges_proportions.append(l / edges_lengths_sum)
                verts_count += 1
        else:
            verts_count = 1
            for n in range(0, fixed_edges_num):
                edges_proportions.append(1 / fixed_edges_num)
                verts_count += 1
        
        return edges_proportions
    
    
    #### Calculates the angle between two pairs of points in space.
    def orientation_difference(self, points_A_co, points_B_co): # each parameter should be a list with two elements, and each element should be a x,y,z coordinate.
        vec_A = points_A_co[0] - points_A_co[1]
        vec_B = points_B_co[0] - points_B_co[1]
        
        angle = vec_A.angle(vec_B)
        
        if angle > 0.5 * math.pi:
            angle = abs(angle - math.pi)
        
        return angle
        
    
    #### Calculate distance between two points
    def pts_distance(self, p1_co, p2_co):
        p_difs = [p1_co[0] - p2_co[0], p1_co[1] - p2_co[1], p1_co[2] - p2_co[2]]
        distance = abs(sqrt(p_difs[0] * p_difs[0] + p_difs[1] * p_difs[1] + p_difs[2] * p_difs[2]))
        
        return distance
        
    
    def execute(self, context):
        #### Selected edges.
        all_selected_edges_idx = []
        all_selected_verts = []
        all_verts_idx = []
        for ed in self.main_object.data.edges:
            if ed.selected:
                all_selected_edges_idx.append(ed.index)
                
                # Selected vertexes.
                if not ed.verts[0] in all_selected_verts:
                    all_selected_verts.append(self.main_object.data.verts[ed.verts[0]])
                if not ed.verts[1] in all_selected_verts:
                    all_selected_verts.append(self.main_object.data.verts[ed.verts[1]])
                    
                # All verts (both from each edge) to determine later which are at the tips (those not repeated twice).
                all_verts_idx.append(ed.verts[0])
                all_verts_idx.append(ed.verts[1])
        
        
        #### Identify the tips and "middle-vertex" that separates U from V, if there is one.
        all_chains_tips_idx = []
        for v_idx in all_verts_idx:
            if all_verts_idx.count(v_idx) < 2:
                all_chains_tips_idx.append(v_idx)
        
        edges_connected_to_tips = []
        for ed in self.main_object.data.edges:
            if (ed.verts[0] in all_chains_tips_idx or ed.verts[1] in all_chains_tips_idx) and not (ed.verts[0] in all_verts_idx and ed.verts[1] in all_verts_idx):
                edges_connected_to_tips.append(ed)
        
        middle_vertex_idx = None
        tips_to_discard_idx = []
        for ed_tips in edges_connected_to_tips:
            for ed_tips_b in edges_connected_to_tips:
                if (ed_tips != ed_tips_b):
                    if ed_tips.verts[0] in all_verts_idx and (((ed_tips.verts[1] == ed_tips_b.verts[0]) or ed_tips.verts[1] == ed_tips_b.verts[1])):
                        middle_vertex_idx = ed_tips.verts[1]
                        tips_to_discard_idx.append(ed_tips.verts[0])
                    elif ed_tips.verts[1] in all_verts_idx and (((ed_tips.verts[0] == ed_tips_b.verts[0]) or ed_tips.verts[0] == ed_tips_b.verts[1])):
                        middle_vertex_idx = ed_tips.verts[0]
                        tips_to_discard_idx.append(ed_tips.verts[1])
        
        
        #### List with pairs of verts that belong to the tips of each selection chain (row).
        verts_tips_same_chain_idx = []
        if len(all_chains_tips_idx) >= 2:
            checked_v = []
            for i in range(0, len(all_chains_tips_idx)):
                if all_chains_tips_idx[i] not in checked_v:
                    v_chain = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, all_chains_tips_idx[i], middle_vertex_idx)
                    
                    verts_tips_same_chain_idx.append([v_chain[0].index, v_chain[len(v_chain) - 1].index])
                    
                    checked_v.append(v_chain[0].index)
                    checked_v.append(v_chain[len(v_chain) - 1].index)
        
        
        #### Selection tips (vertices)
        verts_tips_parsed_idx = []
        if len(all_chains_tips_idx) >= 2:
            for spec_v_idx in all_chains_tips_idx:
                if (spec_v_idx not in tips_to_discard_idx):
                    verts_tips_parsed_idx.append(spec_v_idx)
        
        
        #### Identify the type of selection made by the user.
        if middle_vertex_idx != None:
            if len(all_chains_tips_idx) == 4: # If there are 4 tips (two selection chains)
                selection_type = "TWO_CONNECTED"
            else:
                # The type of the selection was not identified, so the script stops.
                return
        else:
            if len(all_chains_tips_idx) == 2: # If there are 2 tips (one selection chain)
                selection_type = "SINGLE"
            elif len(all_chains_tips_idx) == 4: # If there are 4 tips (two selection chains)
                selection_type = "TWO_NOT_CONNECTED"
            elif len(all_chains_tips_idx) == 0:
                selection_type = "NO_SELECTION"
            else:
                # The type of the selection was not identified, so the script stops.
                return
        
        
        #### Check if it will be used grease pencil strokes or curves.
        selected_objs = bpy.context.selected_objects
        if len(selected_objs) > 1:
            for ob in selected_objs:
                if ob != bpy.context.scene.objects.active:
                    ob_gp_strokes = ob
            using_external_curves = True
            
            bpy.ops.object.editmode_toggle()
        else:
            #### Convert grease pencil strokes to curve.
            bpy.ops.gpencil.convert(type='CURVE')
            ob_gp_strokes = bpy.context.object
            using_external_curves = False
            
            bpy.ops.object.editmode_toggle()
        
        ob_gp_strokes.name = "SURFSK_temp_strokes"
        
        bpy.ops.object.select_name(name = ob_gp_strokes.name)
        bpy.context.scene.objects.active = bpy.context.scene.objects[ob_gp_strokes.name]
        
        
        #### If "Keep strokes" is active make a duplicate of the original strokes, which will be intact
        if bpy.context.scene.SURFSK_keep_strokes:
            bpy.ops.object.duplicate_move()
            bpy.context.object.name = "SURFSK_used_strokes"
            bpy.ops.object.editmode_toggle()
            bpy.ops.curve.smooth()
            bpy.ops.curve.smooth()
            bpy.ops.curve.smooth()
            bpy.ops.curve.smooth()
            bpy.ops.curve.smooth()
            bpy.ops.curve.smooth()
            bpy.ops.object.editmode_toggle()
            
            bpy.ops.object.select_name(name = ob_gp_strokes.name)
            bpy.context.scene.objects.active = bpy.context.scene.objects[ob_gp_strokes.name]
        
        
        #### Enter editmode for the new curve (converted from grease pencil strokes).
        bpy.ops.object.editmode_toggle()
        bpy.ops.curve.smooth()
        bpy.ops.curve.smooth()
        bpy.ops.curve.smooth()
        bpy.ops.curve.smooth()
        bpy.ops.curve.smooth()
        bpy.ops.curve.smooth()
        bpy.ops.object.editmode_toggle()
        
        
        selection_U_exists = False
        selection_U2_exists = False
        selection_V_exists = False
        selection_V2_exists = False
        #### Define what vertexes are at the tips of each selection and are not the middle-vertex.
        if selection_type == "TWO_CONNECTED":
            selection_U_exists = True
            selection_V_exists = True
            
            # Determine which selection is Selection-U and which is Selection-V.
            points_A = []
            points_B = []
            points_first_stroke_tips = []
            
            points_A.append(self.main_object.data.verts[verts_tips_parsed_idx[0]].co)
            points_A.append(self.main_object.data.verts[middle_vertex_idx].co)
            
            points_B.append(self.main_object.data.verts[verts_tips_parsed_idx[1]].co)
            points_B.append(self.main_object.data.verts[middle_vertex_idx].co)
            
            points_first_stroke_tips.append(ob_gp_strokes.data.splines[0].bezier_points[0].co)
            points_first_stroke_tips.append(ob_gp_strokes.data.splines[0].bezier_points[len(ob_gp_strokes.data.splines[0].bezier_points) - 1].co)
            
            angle_A = self.orientation_difference(points_A, points_first_stroke_tips)
            angle_B = self.orientation_difference(points_B, points_first_stroke_tips)
            
            if angle_A < angle_B:
                first_vert_U_idx = verts_tips_parsed_idx[0]
                first_vert_V_idx = verts_tips_parsed_idx[1]
            else:
                first_vert_U_idx = verts_tips_parsed_idx[1]
                first_vert_V_idx = verts_tips_parsed_idx[0]
                
        elif selection_type == "SINGLE" or selection_type == "TWO_NOT_CONNECTED":
            first_sketched_point_first_stroke_co = ob_gp_strokes.data.splines[0].bezier_points[0].co
            last_sketched_point_first_stroke_co = ob_gp_strokes.data.splines[0].bezier_points[len(ob_gp_strokes.data.splines[0].bezier_points) - 1].co
            
            first_sketched_point_last_stroke_co = ob_gp_strokes.data.splines[len(ob_gp_strokes.data.splines) - 1].bezier_points[0].co
            
            # The tip of the selected vertices nearest to the first point of the first sketched stroke.
            prev_dist = 999999999999
            for i in range(0, len(verts_tips_same_chain_idx)):
                for v_idx in range(0, len(verts_tips_same_chain_idx[i])):
                    dist = self.pts_distance(first_sketched_point_first_stroke_co, self.main_object.data.verts[verts_tips_same_chain_idx[i][v_idx]].co)
                    if dist < prev_dist:
                        prev_dist = dist
                        
                        nearest_tip_first_st_first_pt_idx = i
                        
                        nearest_tip_first_pair_first_pt_idx = v_idx
                        
                        # Shortest distance to the first point of the first stroke  
                        shortest_distance_to_first_stroke = dist
            
            
            # The tip of the selected vertices nearest to the last point of the first sketched stroke.
            prev_dist = 999999999999
            for i in range(0, len(verts_tips_same_chain_idx)):
                for v_idx in range(0, len(verts_tips_same_chain_idx[i])):
                    dist = self.pts_distance(last_sketched_point_first_stroke_co, self.main_object.data.verts[verts_tips_same_chain_idx[i][v_idx]].co)
                    if dist < prev_dist:
                        prev_dist = dist
                        
                        nearest_tip_first_st_last_pt_pair_idx = i
                        nearest_tip_first_st_last_pt_point_idx = v_idx
            
            
            # The tip of the selected vertices nearest to the first point of the last sketched stroke.
            prev_dist = 999999999999
            for i in range(0, len(verts_tips_same_chain_idx)):
                for v_idx in range(0, len(verts_tips_same_chain_idx[i])):
                    dist = self.pts_distance(first_sketched_point_last_stroke_co, self.main_object.data.verts[verts_tips_same_chain_idx[i][v_idx]].co)
                    if dist < prev_dist:
                        prev_dist = dist
                        
                        nearest_tip_last_st_first_pt_pair_idx = i
                        nearest_tip_last_st_first_pt_point_idx = v_idx
            
            
            points_tips = []
            points_first_stroke_tips = []
            
            # Determine if the single selection will be treated as U or as V.
            edges_sum = 0
            for i in all_selected_edges_idx:
                edges_sum += self.pts_distance(self.main_object.data.verts[self.main_object.data.edges[i].verts[0]].co, self.main_object.data.verts[self.main_object.data.edges[i].verts[1]].co)
            
            average_edge_length = edges_sum / len(all_selected_edges_idx)
            
            
            
            # If the beginning of the first stroke is near enough to interpret things as an "extrude along strokes" instead of "extrude through strokes"
            if shortest_distance_to_first_stroke < average_edge_length / 3:
                selection_U_exists = False
                selection_V_exists = True
                
                first_vert_V_idx = verts_tips_same_chain_idx[nearest_tip_first_st_first_pt_idx][nearest_tip_first_pair_first_pt_idx]
                
                if selection_type == "TWO_NOT_CONNECTED":
                    selection_V2_exists = True
                    
                    first_vert_V2_idx = verts_tips_same_chain_idx[nearest_tip_first_st_last_pt_pair_idx][nearest_tip_first_st_last_pt_point_idx]
                    
                else:
                    selection_V2_exists = False
                
            else:
                selection_U_exists = True
                selection_V_exists = False
                
                points_tips.append(self.main_object.data.verts[verts_tips_same_chain_idx[nearest_tip_first_st_first_pt_idx][0]].co)
                points_tips.append(self.main_object.data.verts[verts_tips_same_chain_idx[nearest_tip_first_st_first_pt_idx][1]].co)
                
                points_first_stroke_tips.append(ob_gp_strokes.data.splines[0].bezier_points[0].co)
                points_first_stroke_tips.append(ob_gp_strokes.data.splines[0].bezier_points[len(ob_gp_strokes.data.splines[0].bezier_points) - 1].co)
                
                vec_A = points_tips[0] - points_tips[1]
                vec_B = points_first_stroke_tips[0] - points_first_stroke_tips[1]
                
                # Compare the direction of the selection and the first grease pencil stroke to determine which is the "first" vertex of the selection.
                if vec_A.dot(vec_B) < 0:
                    first_vert_U_idx = verts_tips_same_chain_idx[nearest_tip_first_st_first_pt_idx][1]
                else:
                    first_vert_U_idx = verts_tips_same_chain_idx[nearest_tip_first_st_first_pt_idx][0]
            
                if selection_type == "TWO_NOT_CONNECTED":
                    selection_U2_exists = True
                    
                    first_vert_U2_idx = verts_tips_same_chain_idx[nearest_tip_last_st_first_pt_pair_idx][nearest_tip_last_st_first_pt_point_idx]
                else:
                    selection_U2_exists = False
                
        elif selection_type == "NO_SELECTION":
            selection_U_exists = False
            selection_V_exists = False
        
        
        #### Get an ordered list of the vertices of Selection-U.
        if selection_U_exists:
            verts_ordered_U = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_U_idx, middle_vertex_idx)
            
        #### Get an ordered list of the vertices of Selection-U.
        if selection_U2_exists:
            verts_ordered_U2 = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_U2_idx, middle_vertex_idx)
        
        #### Get an ordered list of the vertices of Selection-V.
        if selection_V_exists:
            verts_ordered_V = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_V_idx, middle_vertex_idx)
        
        #### Get an ordered list of the vertices of Selection-U.
        if selection_V2_exists:
            verts_ordered_V2 = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_V2_idx, middle_vertex_idx)
        
        
        #### Calculate edges U proportions.
        
        # Sum selected edges U lengths.
        edges_lengths_U = []
        edges_lengths_sum_U = 0
        
        if selection_U_exists:
            edges_lengths_U, edges_lengths_sum_U = self.get_chain_length(verts_ordered_U)
        
        # Sum selected edges V lengths.
        edges_lengths_V = []
        edges_lengths_sum_V = 0
        
        if selection_V_exists:
            edges_lengths_V, edges_lengths_sum_V = self.get_chain_length(verts_ordered_V)
        
        bpy.ops.object.editmode_toggle()
        for i in range(0, int(bpy.context.scene.SURFSK_precision)):
          bpy.ops.curve.subdivide()
        bpy.ops.object.editmode_toggle()

        # Proportions U.
        edges_proportions_U = []
        edges_proportions_U = self.get_edges_proportions(edges_lengths_U, edges_lengths_sum_U, selection_U_exists, bpy.context.scene.SURFSK_edges_U)
        verts_count_U = len(edges_proportions_U) + 1
        
        # Proportions V.
        edges_proportions_V = []
        edges_proportions_V = self.get_edges_proportions(edges_lengths_V, edges_lengths_sum_V, selection_V_exists, bpy.context.scene.SURFSK_edges_V)
        verts_count_V = len(edges_proportions_V) + 1
        
        
        
        #### Get ordered lists of points on each sketched curve that mimics the proportions of the edges in the vertex selection.
        sketched_splines = ob_gp_strokes.data.splines
        sketched_splines_lengths = []
        sketched_splines_parsed = []
        for sp_idx in range(0, len(sketched_splines)):
            # Calculate spline length
            sketched_splines_lengths.append(0)
            for i in range(0, len(sketched_splines[sp_idx].bezier_points)):
                if i == 0:
                    prev_p = sketched_splines[sp_idx].bezier_points[i]
                else:
                    p = sketched_splines[sp_idx].bezier_points[i]
                    
                    p_difs = [prev_p.co[0] - p.co[0], prev_p.co[1] - p.co[1], prev_p.co[2] - p.co[2]]
                    edge_length = abs(sqrt(p_difs[0] * p_difs[0] + p_difs[1] * p_difs[1] + p_difs[2] * p_difs[2]))
                    
                    sketched_splines_lengths[sp_idx] += edge_length
                    
                    prev_p = p
            
            # Calculate vertex positions with apropriate edge proportions, and ordered, for each spline.
            sketched_splines_parsed.append([])
            partial_spline_length = 0
            related_edge_U = 0
            edges_proportions_sum_U = 0
            edges_lengths_sum_U = 0
            for i in range(0, len(sketched_splines[sp_idx].bezier_points)):
                if i == 0:
                    prev_p = sketched_splines[sp_idx].bezier_points[i]
                    sketched_splines_parsed[sp_idx].append(prev_p.co)
                elif i != len(sketched_splines[sp_idx].bezier_points) - 1:
                    p = sketched_splines[sp_idx].bezier_points[i]
                    
                    p_difs = [prev_p.co[0] - p.co[0], prev_p.co[1] - p.co[1], prev_p.co[2] - p.co[2]]
                    edge_length = abs(sqrt(p_difs[0] * p_difs[0] + p_difs[1] * p_difs[1] + p_difs[2] * p_difs[2]))
                    
                    
                    if edges_proportions_sum_U + edges_proportions_U[related_edge_U] - ((edges_lengths_sum_U + partial_spline_length + edge_length) / sketched_splines_lengths[sp_idx]) > 0: # comparing proportions to see if the proportion in the selection is found in the spline.
                        partial_spline_length += edge_length
                    elif related_edge_U < len(edges_proportions_U) - 1:
                        sketched_splines_parsed[sp_idx].append(prev_p.co)
                        
                        edges_proportions_sum_U += edges_proportions_U[related_edge_U]
                        related_edge_U += 1
                        
                        edges_lengths_sum_U += partial_spline_length
                        partial_spline_length = edge_length
                    
                    prev_p = p
                else: # last point of the spline for the last edge
                    p = sketched_splines[sp_idx].bezier_points[len(sketched_splines[sp_idx].bezier_points) - 1]
                    sketched_splines_parsed[sp_idx].append(p.co)
        
        
        #### If the selection type is "TWO_NOT_CONNECTED" replace the last point of each spline with the points in the "target" selection.
        if selection_type == "TWO_NOT_CONNECTED":
            if selection_U2_exists:
                for i in range(0, len(sketched_splines_parsed[len(sketched_splines_parsed) - 1])):
                    sketched_splines_parsed[len(sketched_splines_parsed) - 1][i] = verts_ordered_U2[i].co
                
        
        #### Create temporary curves along the "control-points" found on the sketched curves and the mesh selection.
        mesh_ctrl_pts_name = "SURFSK_ctrl_pts"
        me = bpy.data.meshes.new(mesh_ctrl_pts_name)
        ob_ctrl_pts = bpy.data.objects.new(mesh_ctrl_pts_name, me)
        ob_ctrl_pts.data = me
        bpy.context.scene.objects.link(ob_ctrl_pts)
        
        
        for i in range(0, verts_count_U):
            vert_num_in_spline = 1
            
            if selection_U_exists:
                ob_ctrl_pts.data.add_geometry(1,0,0)
                last_v = ob_ctrl_pts.data.verts[len(ob_ctrl_pts.data.verts) - 1]
                last_v.co = verts_ordered_U[i].co
                
                vert_num_in_spline += 1
                
            for sp in sketched_splines_parsed:
                ob_ctrl_pts.data.add_geometry(1,0,0)
                v = ob_ctrl_pts.data.verts[len(ob_ctrl_pts.data.verts) - 1]
                v.co = sp[i]
                
                if vert_num_in_spline > 1:
                    ob_ctrl_pts.data.add_geometry(0,1,0)
                    ob_ctrl_pts.data.edges[len(ob_ctrl_pts.data.edges) - 1].verts[0] = len(ob_ctrl_pts.data.verts) - 2
                    ob_ctrl_pts.data.edges[len(ob_ctrl_pts.data.edges) - 1].verts[1] = len(ob_ctrl_pts.data.verts) - 1

                last_v = v
                
                vert_num_in_spline += 1

        bpy.ops.object.select_name(name = ob_ctrl_pts.name)
        bpy.context.scene.objects.active = bpy.data.objects[ob_ctrl_pts.name]
        
        
        # Create curves from control points.
        bpy.ops.object.convert(target='CURVE', keep_original=False)
        ob_curves_surf = bpy.context.scene.objects.active
        bpy.ops.object.editmode_toggle()
        bpy.ops.curve.spline_type_set(type='BEZIER')
        bpy.ops.curve.handle_type_set(type='AUTOMATIC')
        for i in range(0, int(bpy.context.scene.SURFSK_precision)):
          bpy.ops.curve.subdivide()
        bpy.ops.object.editmode_toggle()
        
        
        # Calculate the length of each final surface spline.
        surface_splines = ob_curves_surf.data.splines
        surface_splines_lengths = []
        surface_splines_parsed = []
        for sp_idx in range(0, len(surface_splines)):
            # Calculate spline length
            surface_splines_lengths.append(0)
            for i in range(0, len(surface_splines[sp_idx].bezier_points)):
                if i == 0:
                    prev_p = surface_splines[sp_idx].bezier_points[i]
                else:
                    p = surface_splines[sp_idx].bezier_points[i]
                    
                    edge_length = self.pts_distance(prev_p.co, p.co)
                    
                    surface_splines_lengths[sp_idx] += edge_length
                    
                    prev_p = p
        
        bpy.ops.object.editmode_toggle()
        for i in range(0, int(bpy.context.scene.SURFSK_precision)):
          bpy.ops.curve.subdivide()
        bpy.ops.object.editmode_toggle()

        for sp_idx in range(0, len(surface_splines)):
            # Calculate vertex positions with apropriate edge proportions, and ordered, for each spline.
            surface_splines_parsed.append([])
            partial_spline_length = 0
            related_edge_V = 0
            edges_proportions_sum_V = 0
            edges_lengths_sum_V = 0
            for i in range(0, len(surface_splines[sp_idx].bezier_points)):
                if i == 0:
                    prev_p = surface_splines[sp_idx].bezier_points[i]
                    surface_splines_parsed[sp_idx].append(prev_p.co)
                elif i != len(surface_splines[sp_idx].bezier_points) - 1:
                    p = surface_splines[sp_idx].bezier_points[i]
                    
                    edge_length = self.pts_distance(prev_p.co, p.co)
                    
                    if edges_proportions_sum_V + edges_proportions_V[related_edge_V] - ((edges_lengths_sum_V + partial_spline_length + edge_length) / surface_splines_lengths[sp_idx]) > 0: # comparing proportions to see if the proportion in the selection is found in the spline.
                        partial_spline_length += edge_length
                    elif related_edge_V < len(edges_proportions_V) - 1:
                        surface_splines_parsed[sp_idx].append(prev_p.co)
                        
                        edges_proportions_sum_V += edges_proportions_V[related_edge_V]
                        related_edge_V += 1
                        
                        edges_lengths_sum_V += partial_spline_length
                        partial_spline_length = edge_length
                    
                    prev_p = p
                else: # last point of the spline for the last edge
                    p = surface_splines[sp_idx].bezier_points[len(surface_splines[sp_idx].bezier_points) - 1]
                    surface_splines_parsed[sp_idx].append(p.co)
        
        # Set the first and last verts of each spline to the locations of the respective verts in the selections.
        if selection_V_exists:
            for i in range(0, len(surface_splines_parsed[0])):
                surface_splines_parsed[len(surface_splines_parsed) - 1][i] = verts_ordered_V[i].co
        
        if selection_type == "TWO_NOT_CONNECTED":
            if selection_V2_exists:
                for i in range(0, len(surface_splines_parsed[0])):
                    surface_splines_parsed[0][i] = verts_ordered_V2[i].co
        
        
        #### Delete object with control points and object from grease pencil convertion.
        bpy.ops.object.select_name(name = ob_ctrl_pts.name)
        bpy.context.scene.objects.active = bpy.data.objects[ob_ctrl_pts.name]
        bpy.ops.object.delete()
        
        bpy.ops.object.select_name(name = ob_gp_strokes.name)
        bpy.context.scene.objects.active = bpy.data.objects[ob_gp_strokes.name]
        bpy.ops.object.delete()
            
        
        
        #### Generate surface.
        
        # Get all verts coords.
        all_surface_verts_co = []
        for i in range(0, len(surface_splines_parsed)):
            # Get coords of all verts and make a list with them
            for pt_co in surface_splines_parsed[i]:
                all_surface_verts_co.append(pt_co)
        
        
        # Define verts for each face.
        all_surface_faces = []
        for i in range(0, len(all_surface_verts_co) - len(surface_splines_parsed[0])):
            if ((i + 1) / len(surface_splines_parsed[0]) != int((i + 1) / len(surface_splines_parsed[0]))):
                all_surface_faces.append([i+1, i , i + len(surface_splines_parsed[0]), i + len(surface_splines_parsed[0]) + 1])
        
        
        # Build the mesh.
        surf_me_name = "SURFSK_surface"
        me_surf = bpy.data.meshes.new(surf_me_name)
        
        me_surf.from_pydata(all_surface_verts_co, [], all_surface_faces)
        
        me_surf.update()
        
        ob_surface = bpy.data.objects.new(surf_me_name, me_surf)
        bpy.context.scene.objects.link(ob_surface)
        
        
        #### Join the new mesh to the main object.
        ob_surface.selected = True
        self.main_object.selected = True
        bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]
        bpy.ops.object.join()
        bpy.ops.object.editmode_toggle()
        bpy.ops.mesh.select_all(action='SELECT')
        bpy.ops.mesh.remove_doubles(limit=0.0001)
        bpy.ops.mesh.normals_make_consistent(inside=False)
        bpy.ops.mesh.select_all(action='DESELECT')
        
        #### Delete grease pencil strokes
        bpy.ops.gpencil.active_frame_delete()
        
        
    def invoke (self, context, event):
        bpy.ops.object.editmode_toggle()
        bpy.ops.object.editmode_toggle()
        self.main_object = bpy.context.scene.objects.active
        
        self.execute(context)
        
        return {"FINISHED"}




class GPENCIL_OT_SURFSK_strokes_to_curves(bpy.types.Operator):
    bl_idname = "GPENCIL_OT_SURFSK_strokes_to_curves"
    bl_label = "Convert grease pencil strokes into curves and enter edit mode"
    bl_description = "Convert grease pencil strokes into curves and enter edit mode"
    
    
    def execute(self, context):
        #### Convert grease pencil strokes to curve.
        bpy.ops.gpencil.convert(type='CURVE')
        ob_gp_strokes = bpy.context.object
        ob_gp_strokes.name = "SURFSK_strokes"
        
        #### Delete grease pencil strokes.
        bpy.ops.object.select_name(name = self.main_object.name)
        bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]
        bpy.ops.gpencil.active_frame_delete()
        
        
        bpy.ops.object.select_name(name = ob_gp_strokes.name)
        bpy.context.scene.objects.active = bpy.data.objects[ob_gp_strokes.name]
        
        
        bpy.ops.object.editmode_toggle()
        bpy.ops.object.editmode_toggle()
        bpy.ops.curve.smooth()
        bpy.ops.curve.smooth()
        bpy.ops.curve.smooth()
        bpy.ops.curve.smooth()
        bpy.ops.curve.smooth()
        bpy.ops.curve.smooth()
        bpy.ops.curve.smooth()
        bpy.ops.curve.smooth()
        bpy.ops.curve.smooth()
        bpy.ops.curve.smooth()
        bpy.ops.curve.smooth()
        bpy.ops.curve.smooth()
        
        curve_crv = ob_gp_strokes.data
        bpy.ops.curve.spline_type_set(type="BEZIER")
        bpy.ops.curve.handle_type_set(type="AUTOMATIC")
        bpy.data.curves[curve_crv.name].draw_handles = False
        bpy.data.curves[curve_crv.name].draw_normals = False
       
       
    def invoke (self, context, event):
        self.main_object = bpy.context.object
        
        
        self.execute(context)
        
        return {"FINISHED"}





def register(): 
    bpy.types.register(GPENCIL_OT_SURFSK_add_surface) 
    bpy.types.register(GPENCIL_OT_SURFSK_strokes_to_curves) 
    bpy.types.register(VIEW3D_PT_tools_SURF_SKETCH)
    
    keymap_item_add_surf = bpy.data.window_managers[0].active_keyconfig.keymaps["3D View"].items.add("GPENCIL_OT_SURFSK_add_surface","E","PRESS", key_modifier="D")
    keymap_item_stroke_to_curve = bpy.data.window_managers[0].active_keyconfig.keymaps["3D View"].items.add("GPENCIL_OT_SURFSK_strokes_to_curves","C","PRESS", key_modifier="D")

def unregister(): 
    bpy.types.unregister(GPENCIL_OT_SURFSK_add_surface) 
    bpy.types.unregister(GPENCIL_OT_SURFSK_strokes_to_curves) 
    bpy.types.unregister(VIEW3D_PT_tools_SURF_SKETCH)
    for kmi in km.items:
        if kmi.idname == 'wm.call_menu':
            if kmi.properties.name == "GPENCIL_OT_SURFSK_add_surface":
                km.remove_item(kmi)
            elif kmi.properties.name == "GPENCIL_OT_SURFSK_strokes_to_curves":
                km.remove_item(kmi)   
            else:
                continue


if __name__ == "__main__":
    register()