Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# Contributed to Germano Cavalcante (mano-wii), Florian Meyer (testscreenings),
# Brendon Murphy (meta-androcto),
# Maintainer: Vladimir Spivak (cwolf3d)
# Originally an addon by Bart Crouch
"author": "Bart Crouch, Vladimir Spivak (cwolf3d)",
Vladimir Spivak(cwolf3d)
committed
"version": (4, 7, 3),
"location": "View3D > Sidebar > Edit Tab / Edit Mode Context Menu",
"warning": "",
"description": "Mesh modelling toolkit. Several tools to aid modelling",
"doc_url": "{BLENDER_MANUAL_URL}/addons/mesh/looptools.html",
"category": "Mesh",
}
import bmesh
import bpy
import collections
import mathutils
import math
from bpy.types import (
Operator,
Menu,
Panel,
PropertyGroup,
AddonPreferences,
)
from bpy.props import (
BoolProperty,
EnumProperty,
FloatProperty,
IntProperty,
PointerProperty,
StringProperty,
)
# ########################################
# ##### General functions ################
# ########################################
# used by all tools to improve speed on reruns Unlink
looptools_cache = {}
def get_strokes(self, context):
looptools = context.window_manager.looptools
if looptools.gstretch_use_guide == "Annotation":
try:
strokes = bpy.data.grease_pencils[0].layers.active.active_frame.strokes
return True
except:
self.report({'WARNING'}, "active Annotation strokes not found")
return False
if looptools.gstretch_use_guide == "GPencil" and not looptools.gstretch_guide == None:
try:
strokes = looptools.gstretch_guide.data.layers.active.active_frame.strokes
return True
except:
self.report({'WARNING'}, "active GPencil strokes not found")
return False
else:
return False
beta-tester
committed
# force a full recalculation next time
def cache_delete(tool):
if tool in looptools_cache:
del looptools_cache[tool]
# check cache for stored information
def cache_read(tool, object, bm, input_method, boundaries):
# current tool not cached yet
if tool not in looptools_cache:
return(False, False, False, False, False)
# check if selected object didn't change
if object.name != looptools_cache[tool]["object"]:
return(False, False, False, False, False)
# check if input didn't change
if input_method != looptools_cache[tool]["input_method"]:
return(False, False, False, False, False)
if boundaries != looptools_cache[tool]["boundaries"]:
return(False, False, False, False, False)
modifiers = [mod.name for mod in object.modifiers if mod.show_viewport and
mod.type == 'MIRROR']
if modifiers != looptools_cache[tool]["modifiers"]:
return(False, False, False, False, False)
input = [v.index for v in bm.verts if v.select and not v.hide]
if input != looptools_cache[tool]["input"]:
return(False, False, False, False, False)
# reading values
single_loops = looptools_cache[tool]["single_loops"]
loops = looptools_cache[tool]["loops"]
derived = looptools_cache[tool]["derived"]
mapping = looptools_cache[tool]["mapping"]
CoDEmanX
committed
return(True, single_loops, loops, derived, mapping)
# store information in the cache
def cache_write(tool, object, bm, input_method, boundaries, single_loops,
loops, derived, mapping):
# clear cache of current tool
if tool in looptools_cache:
del looptools_cache[tool]
# prepare values to be saved to cache
input = [v.index for v in bm.verts if v.select and not v.hide]
modifiers = [mod.name for mod in object.modifiers if mod.show_viewport
and mod.type == 'MIRROR']
looptools_cache[tool] = {
"input": input, "object": object.name,
"input_method": input_method, "boundaries": boundaries,
"single_loops": single_loops, "loops": loops,
"derived": derived, "mapping": mapping, "modifiers": modifiers}
# calculates natural cubic splines through all given knots
def calculate_cubic_splines(bm_mod, tknots, knots):
# hack for circular loops
if knots[0] == knots[-1] and len(knots) > 1:
circular = True
k_new1 = []
for k in range(-1, -5, -1):
if k - 1 < -len(knots):
k += len(knots)
k_new2 = []
for k in range(4):
if k + 1 > len(knots) - 1:
k -= len(knots)
for k in k_new1:
knots.insert(0, k)
for k in k_new2:
knots.append(k)
t_new1 = []
total1 = 0
for t in range(-1, -5, -1):
if t - 1 < -len(tknots):
t += len(tknots)
total1 += tknots[t] - tknots[t - 1]
t_new1.append(tknots[0] - total1)
t_new2 = []
total2 = 0
for t in range(4):
if t + 1 > len(tknots) - 1:
t -= len(tknots)
total2 += tknots[t + 1] - tknots[t]
t_new2.append(tknots[-1] + total2)
for t in t_new1:
tknots.insert(0, t)
for t in t_new2:
tknots.append(t)
else:
circular = False
# end of hack
CoDEmanX
committed
n = len(knots)
if n < 2:
return False
x = tknots[:]
locs = [bm_mod.verts[k].co[:] for k in knots]
result = []
for j in range(3):
a = []
for i in locs:
a.append(i[j])
h = []
for i in range(n - 1):
if x[i + 1] - x[i] == 0:
h.append(1e-8)
else:
for i in range(1, n - 1):
q.append(3 / h[i] * (a[i + 1] - a[i]) - 3 / h[i - 1] * (a[i] - a[i - 1]))
l = [1.0]
u = [0.0]
z = [0.0]
for i in range(1, n - 1):
l.append(2 * (x[i + 1] - x[i - 1]) - h[i - 1] * u[i - 1])
if l[i] == 0:
l[i] = 1e-8
u.append(h[i] / l[i])
z.append((q[i] - h[i - 1] * z[i - 1]) / l[i])
l.append(1.0)
z.append(0.0)
c = [False for i in range(n)]
d = [False for i in range(n - 1)]
c[n - 1] = 0.0
for i in range(n - 2, -1, -1):
c[i] = z[i] - u[i] * c[i + 1]
b[i] = (a[i + 1] - a[i]) / h[i] - h[i] * (c[i + 1] + 2 * c[i]) / 3
d[i] = (c[i + 1] - c[i]) / (3 * h[i])
for i in range(n - 1):
result.append([a[i], b[i], c[i], d[i], x[i]])
splines = []
for i in range(len(knots) - 1):
splines.append([result[i], result[i + n - 1], result[i + (n - 1) * 2]])
if circular: # cleaning up after hack
knots = knots[4:-4]
tknots = tknots[4:-4]
CoDEmanX
committed
return(splines)
# calculates linear splines through all given knots
def calculate_linear_splines(bm_mod, tknots, knots):
splines = []
a = bm_mod.verts[knots[i]].co
b = bm_mod.verts[knots[i + 1]].co
d = b - a
u = tknots[i + 1] - t
splines.append([a, d, t, u]) # [locStart, locDif, tStart, tDif]
CoDEmanX
committed
return(splines)
# calculate a best-fit plane to the given vertices
def calculate_plane(bm_mod, loop, method="best_fit", object=False):
# getting the vertex locations
locs = [bm_mod.verts[v].co.copy() for v in loop[0]]
CoDEmanX
committed
# calculating the center of masss
com = mathutils.Vector()
for loc in locs:
com += loc
com /= len(locs)
x, y, z = com
CoDEmanX
committed
if method == 'best_fit':
# creating the covariance matrix
mat = mathutils.Matrix(((0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
))
for loc in locs:
mat[0][0] += (loc[0] - x) ** 2
mat[1][0] += (loc[0] - x) * (loc[1] - y)
mat[2][0] += (loc[0] - x) * (loc[2] - z)
mat[0][1] += (loc[1] - y) * (loc[0] - x)
mat[1][1] += (loc[1] - y) ** 2
mat[2][1] += (loc[1] - y) * (loc[2] - z)
mat[0][2] += (loc[2] - z) * (loc[0] - x)
mat[1][2] += (loc[2] - z) * (loc[1] - y)
mat[2][2] += (loc[2] - z) ** 2
CoDEmanX
committed
# calculating the normal to the plane
normal = False
try:
ax = 2
if math.fabs(sum(mat[0])) < math.fabs(sum(mat[1])):
if math.fabs(sum(mat[0])) < math.fabs(sum(mat[2])):
ax = 0
elif math.fabs(sum(mat[1])) < math.fabs(sum(mat[2])):
ax = 1
if ax == 0:
normal = mathutils.Vector((1.0, 0.0, 0.0))
normal = mathutils.Vector((0.0, 1.0, 0.0))
normal = mathutils.Vector((0.0, 0.0, 1.0))
if not normal:
# warning! this is different from .normalize()
itermax = 500
vec2 = mathutils.Vector((1.0, 1.0, 1.0))
for i in range(itermax):
Germano Cavalcante
committed
# Calculate length with double precision to avoid problems with `inf`
vec2_length = math.sqrt(vec2[0] ** 2 + vec2[1] ** 2 + vec2[2] ** 2)
if vec2_length != 0:
vec2 /= vec2_length
if vec2 == vec:
break
if vec2.length == 0:
vec2 = mathutils.Vector((1.0, 1.0, 1.0))
normal = vec2
CoDEmanX
committed
elif method == 'normal':
# averaging the vertex normals
v_normals = [bm_mod.verts[v].normal for v in loop[0]]
normal = mathutils.Vector()
for v_normal in v_normals:
normal += v_normal
normal /= len(v_normals)
normal.normalize()
CoDEmanX
committed
elif method == 'view':
# calculate view normal
rotation = bpy.context.space_data.region_3d.view_matrix.to_3x3().\
inverted()
normal = rotation @ mathutils.Vector((0.0, 0.0, 1.0))
normal = object.matrix_world.inverted().to_euler().to_matrix() @ \
CoDEmanX
committed
return(com, normal)
# calculate splines based on given interpolation method (controller function)
def calculate_splines(interpolation, bm_mod, tknots, knots):
if interpolation == 'cubic':
splines = calculate_cubic_splines(bm_mod, tknots, knots[:])
splines = calculate_linear_splines(bm_mod, tknots, knots[:])
CoDEmanX
committed
return(splines)
# check loops and only return valid ones
def check_loops(loops, mapping, bm_mod):
valid_loops = []
for loop, circular in loops:
# loop needs to have at least 3 vertices
if len(loop) < 3:
continue
# loop needs at least 1 vertex in the original, non-mirrored mesh
if mapping:
all_virtual = True
for vert in loop:
if mapping[vert] > -1:
all_virtual = False
break
if all_virtual:
continue
# vertices can not all be at the same location
stacked = True
for i in range(len(loop) - 1):
if (bm_mod.verts[loop[i]].co - bm_mod.verts[loop[i + 1]].co).length > 1e-6:
stacked = False
break
if stacked:
CoDEmanX
committed
continue
# passed all tests, loop is valid
valid_loops.append([loop, circular])
CoDEmanX
committed
return(valid_loops)
# input: bmesh, output: dict with the edge-key as key and face-index as value
def dict_edge_faces(bm):
edge_faces = dict([[edgekey(edge), []] for edge in bm.edges if not edge.hide])
for face in bm.faces:
if face.hide:
continue
for key in face_edgekeys(face):
edge_faces[key].append(face.index)
CoDEmanX
committed
return(edge_faces)
# input: bmesh (edge-faces optional), output: dict with face-face connections
def dict_face_faces(bm, edge_faces=False):
if not edge_faces:
edge_faces = dict_edge_faces(bm)
CoDEmanX
committed
connected_faces = dict([[face.index, []] for face in bm.faces if not face.hide])
for face in bm.faces:
if face.hide:
continue
for edge_key in face_edgekeys(face):
for connected_face in edge_faces[edge_key]:
if connected_face == face.index:
continue
connected_faces[face.index].append(connected_face)
CoDEmanX
committed
return(connected_faces)
# input: bmesh, output: dict with the vert index as key and edge-keys as value
def dict_vert_edges(bm):
vert_edges = dict([[v.index, []] for v in bm.verts if not v.hide])
for edge in bm.edges:
if edge.hide:
continue
ek = edgekey(edge)
for vert in ek:
vert_edges[vert].append(ek)
CoDEmanX
committed
return(vert_edges)
# input: bmesh, output: dict with the vert index as key and face index as value
def dict_vert_faces(bm):
vert_faces = dict([[v.index, []] for v in bm.verts if not v.hide])
for face in bm.faces:
if not face.hide:
for vert in face.verts:
vert_faces[vert.index].append(face.index)
CoDEmanX
committed
return(vert_faces)
# input: list of edge-keys, output: dictionary with vertex-vertex connections
def dict_vert_verts(edge_keys):
# create connection data
vert_verts = {}
for ek in edge_keys:
for i in range(2):
if ek[i] in vert_verts:
vert_verts[ek[i]].append(ek[1 - i])
CoDEmanX
committed
return(vert_verts)
# return the edgekey ([v1.index, v2.index]) of a bmesh edge
def edgekey(edge):
Bart Crouch
committed
return(tuple(sorted([edge.verts[0].index, edge.verts[1].index])))
# returns the edgekeys of a bmesh face
def face_edgekeys(face):
return([tuple(sorted([edge.verts[0].index, edge.verts[1].index])) for edge in face.edges])
# calculate input loops
Vladimir Spivak(cwolf3d)
committed
def get_connected_input(object, bm, not_use_mirror, input):
# get mesh with modifiers applied
Vladimir Spivak(cwolf3d)
committed
derived, bm_mod = get_derived_bmesh(object, bm, not_use_mirror)
CoDEmanX
committed
# calculate selected loops
edge_keys = [edgekey(edge) for edge in bm_mod.edges if edge.select and not edge.hide]
loops = get_connected_selections(edge_keys)
CoDEmanX
committed
# if only selected loops are needed, we're done
if input == 'selected':
return(derived, bm_mod, loops)
CoDEmanX
committed
# elif input == 'all':
loops = get_parallel_loops(bm_mod, loops)
CoDEmanX
committed
return(derived, bm_mod, loops)
# sorts all edge-keys into a list of loops
def get_connected_selections(edge_keys):
# create connection data
vert_verts = dict_vert_verts(edge_keys)
CoDEmanX
committed
# find loops consisting of connected selected edges
loops = []
while len(vert_verts) > 0:
loop = [iter(vert_verts.keys()).__next__()]
growing = True
flipped = False
CoDEmanX
committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# extend loop
while growing:
# no more connection data for current vertex
if loop[-1] not in vert_verts:
if not flipped:
loop.reverse()
flipped = True
else:
growing = False
else:
extended = False
for i, next_vert in enumerate(vert_verts[loop[-1]]):
if next_vert not in loop:
vert_verts[loop[-1]].pop(i)
if len(vert_verts[loop[-1]]) == 0:
del vert_verts[loop[-1]]
# remove connection both ways
if next_vert in vert_verts:
if len(vert_verts[next_vert]) == 1:
del vert_verts[next_vert]
else:
vert_verts[next_vert].remove(loop[-1])
loop.append(next_vert)
extended = True
break
if not extended:
# found one end of the loop, continue with next
if not flipped:
loop.reverse()
flipped = True
# found both ends of the loop, stop growing
else:
growing = False
CoDEmanX
committed
# check if loop is circular
if loop[0] in vert_verts:
if loop[-1] in vert_verts[loop[0]]:
# is circular
if len(vert_verts[loop[0]]) == 1:
del vert_verts[loop[0]]
else:
vert_verts[loop[0]].remove(loop[-1])
if len(vert_verts[loop[-1]]) == 1:
del vert_verts[loop[-1]]
else:
vert_verts[loop[-1]].remove(loop[0])
loop = [loop, True]
else:
# not circular
loop = [loop, False]
else:
# not circular
loop = [loop, False]
CoDEmanX
committed
loops.append(loop)
CoDEmanX
committed
return(loops)
# get the derived mesh data, if there is a mirror modifier
Vladimir Spivak(cwolf3d)
committed
def get_derived_bmesh(object, bm, not_use_mirror):
# check for mirror modifiers
if 'MIRROR' in [mod.type for mod in object.modifiers if mod.show_viewport]:
derived = True
# disable other modifiers
show_viewport = [mod.name for mod in object.modifiers if mod.show_viewport]
merge = []
for mod in object.modifiers:
if mod.type != 'MIRROR':
mod.show_viewport = False
#leave the merge points untouched
if mod.type == 'MIRROR':
merge.append(mod.use_mirror_merge)
Vladimir Spivak(cwolf3d)
committed
if not_use_mirror:
mod.use_mirror_merge = False
# get derived mesh
bm_mod = bmesh.new()
depsgraph = bpy.context.evaluated_depsgraph_get()
object_eval = object.evaluated_get(depsgraph)
mesh_mod = object_eval.to_mesh()
bm_mod.from_mesh(mesh_mod)
# re-enable other modifiers
for mod_name in show_viewport:
object.modifiers[mod_name].show_viewport = True
merge.reverse()
for mod in object.modifiers:
mod.use_mirror_merge = merge.pop()
# no mirror modifiers, so no derived mesh necessary
else:
derived = False
bm_mod = bm
CoDEmanX
committed
bm_mod.verts.ensure_lookup_table()
bm_mod.edges.ensure_lookup_table()
bm_mod.faces.ensure_lookup_table()
beta-tester
committed
return(derived, bm_mod)
# return a mapping of derived indices to indices
def get_mapping(derived, bm, bm_mod, single_vertices, full_search, loops):
if not derived:
return(False)
CoDEmanX
committed
if full_search:
verts = [v for v in bm.verts if not v.hide]
else:
verts = [v for v in bm.verts if v.select and not v.hide]
CoDEmanX
committed
# non-selected vertices around single vertices also need to be mapped
if single_vertices:
mapping = dict([[vert, -1] for vert in single_vertices])
verts_mod = [bm_mod.verts[vert] for vert in single_vertices]
for v in verts:
for v_mod in verts_mod:
if (v.co - v_mod.co).length < 1e-6:
mapping[v_mod.index] = v.index
break
real_singles = [v_real for v_real in mapping.values() if v_real > -1]
CoDEmanX
committed
verts_indices = [vert.index for vert in verts]
for face in [face for face in bm.faces if not face.select and not face.hide]:
for vert in face.verts:
if vert.index in real_singles:
for v in face.verts:
if v not in verts:
verts.append(v)
break
CoDEmanX
committed
# create mapping of derived indices to indices
mapping = dict([[vert, -1] for loop in loops for vert in loop[0]])
if single_vertices:
for single in single_vertices:
mapping[single] = -1
verts_mod = [bm_mod.verts[i] for i in mapping.keys()]
for v in verts:
for v_mod in verts_mod:
if (v.co - v_mod.co).length < 1e-6:
mapping[v_mod.index] = v.index
verts_mod.remove(v_mod)
break
CoDEmanX
committed
return(mapping)
# calculate the determinant of a matrix
def matrix_determinant(m):
determinant = m[0][0] * m[1][1] * m[2][2] + m[0][1] * m[1][2] * m[2][0] \
+ m[0][2] * m[1][0] * m[2][1] - m[0][2] * m[1][1] * m[2][0] \
- m[0][1] * m[1][0] * m[2][2] - m[0][0] * m[1][2] * m[2][1]
return(determinant)
# custom matrix inversion, to provide higher precision than the built-in one
def matrix_invert(m):
r = mathutils.Matrix((
(m[1][1] * m[2][2] - m[1][2] * m[2][1], m[0][2] * m[2][1] - m[0][1] * m[2][2],
m[0][1] * m[1][2] - m[0][2] * m[1][1]),
(m[1][2] * m[2][0] - m[1][0] * m[2][2], m[0][0] * m[2][2] - m[0][2] * m[2][0],
m[0][2] * m[1][0] - m[0][0] * m[1][2]),
(m[1][0] * m[2][1] - m[1][1] * m[2][0], m[0][1] * m[2][0] - m[0][0] * m[2][1],
m[0][0] * m[1][1] - m[0][1] * m[1][0])))
CoDEmanX
committed
return (r * (1 / matrix_determinant(m)))
# returns a list of all loops parallel to the input, input included
def get_parallel_loops(bm_mod, loops):
# get required dictionaries
edge_faces = dict_edge_faces(bm_mod)
connected_faces = dict_face_faces(bm_mod, edge_faces)
# turn vertex loops into edge loops
edgeloops = []
for loop in loops:
edgeloop = [[sorted([loop[0][i], loop[0][i + 1]]) for i in
range(len(loop[0]) - 1)], loop[1]]
if loop[1]: # circular
edgeloop[0].append(sorted([loop[0][-1], loop[0][0]]))
edgeloops.append(edgeloop[:])
# variables to keep track while iterating
all_edgeloops = []
has_branches = False
CoDEmanX
committed
for loop in edgeloops:
# initialise with original loop
all_edgeloops.append(loop[0])
newloops = [loop[0]]
verts_used = []
for edge in loop[0]:
if edge[0] not in verts_used:
verts_used.append(edge[0])
if edge[1] not in verts_used:
verts_used.append(edge[1])
CoDEmanX
committed
# find parallel loops
while len(newloops) > 0:
side_a = []
side_b = []
for i in newloops[-1]:
i = tuple(i)
forbidden_side = False
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
# weird input with branches
has_branches = True
break
for face in edge_faces[i]:
if len(side_a) == 0 and forbidden_side != "a":
side_a.append(face)
if forbidden_side:
break
forbidden_side = "a"
continue
elif side_a[-1] in connected_faces[face] and \
forbidden_side != "a":
side_a.append(face)
if forbidden_side:
break
forbidden_side = "a"
continue
if len(side_b) == 0 and forbidden_side != "b":
side_b.append(face)
if forbidden_side:
break
forbidden_side = "b"
continue
elif side_b[-1] in connected_faces[face] and \
forbidden_side != "b":
side_b.append(face)
if forbidden_side:
break
forbidden_side = "b"
continue
CoDEmanX
committed
if has_branches:
# weird input with branches
break
CoDEmanX
committed
newloops.pop(-1)
sides = []
if side_a:
sides.append(side_a)
if side_b:
sides.append(side_b)
beta-tester
committed
for side in sides:
extraloop = []
for fi in side:
for key in face_edgekeys(bm_mod.faces[fi]):
if key[0] not in verts_used and key[1] not in \
verts_used:
extraloop.append(key)
break
if extraloop:
for key in extraloop:
for new_vert in key:
if new_vert not in verts_used:
verts_used.append(new_vert)
newloops.append(extraloop)
all_edgeloops.append(extraloop)
CoDEmanX
committed
# input contains branches, only return selected loop
if has_branches:
return(loops)
CoDEmanX
committed
# change edgeloops into normal loops
loops = []
for edgeloop in all_edgeloops:
loop = []
# grow loop by comparing vertices between consecutive edge-keys
for vert in range(2):
if edgeloop[i][vert] in edgeloop[i + 1]:
loop.append(edgeloop[i][vert])
break
if loop:
# add starting vertex
for vert in range(2):
if edgeloop[0][vert] != loop[0]:
loop = [edgeloop[0][vert]] + loop
break
# add ending vertex
for vert in range(2):
if edgeloop[-1][vert] != loop[-1]:
loop.append(edgeloop[-1][vert])
break
# check if loop is circular
if loop[0] == loop[-1]:
circular = True
loop = loop[:-1]
else:
circular = False
loops.append([loop, circular])
CoDEmanX
committed
return(loops)
# gather initial data
def initialise():
object = bpy.context.active_object
if 'MIRROR' in [mod.type for mod in object.modifiers if mod.show_viewport]:
# ensure that selection is synced for the derived mesh
bpy.ops.object.mode_set(mode='OBJECT')
bpy.ops.object.mode_set(mode='EDIT')
bm = bmesh.from_edit_mesh(object.data)
CoDEmanX
committed
bm.verts.ensure_lookup_table()
bm.edges.ensure_lookup_table()
bm.faces.ensure_lookup_table()
beta-tester
committed
return(object, bm)
# move the vertices to their new locations
def move_verts(object, bm, mapping, move, lock, influence):
if lock:
lock_x, lock_y, lock_z = lock
orient_slot = bpy.context.scene.transform_orientation_slots[0]
custom = orient_slot.custom_orientation
mat = custom.matrix.to_4x4().inverted() @ object.matrix_world.copy()
elif orient_slot.type == 'LOCAL':
elif orient_slot.type == 'VIEW':
mat = bpy.context.region_data.view_matrix.copy() @ \
mat = object.matrix_world.copy()
mat_inv = mat.inverted()
for loop in move:
for index, loc in loop:
if mapping:
if mapping[index] == -1:
continue
else:
index = mapping[index]
delta = (loc - bm.verts[index].co) @ mat_inv
if lock_x:
delta[0] = 0
if lock_y:
delta[1] = 0
if lock_z:
delta[2] = 0
delta = delta @ mat
loc = bm.verts[index].co + delta
if influence < 0:
new_loc = loc
new_loc = loc * (influence / 100) + \
bm.verts[index].co * ((100 - influence) / 100)
bm.normal_update()
object.data.update()
bm.verts.ensure_lookup_table()
bm.edges.ensure_lookup_table()
bm.faces.ensure_lookup_table()
beta-tester
committed
CoDEmanX
committed
# load custom tool settings
def settings_load(self):
lt = bpy.context.window_manager.looptools
tool = self.name.split()[0].lower()
keys = self.as_keywords().keys()
for key in keys:
setattr(self, key, getattr(lt, tool + "_" + key))
# store custom tool settings
def settings_write(self):
lt = bpy.context.window_manager.looptools
tool = self.name.split()[0].lower()
keys = self.as_keywords().keys()
for key in keys:
setattr(lt, tool + "_" + key, getattr(self, key))
# clean up and set settings back to original state
def terminate():
# update editmesh cached data
obj = bpy.context.active_object
if obj.mode == 'EDIT':
bmesh.update_edit_mesh(obj.data, loop_triangles=True, destructive=True)
# ########################################
# ##### Bridge functions #################
# ########################################
# calculate a cubic spline through the middle section of 4 given coordinates
def bridge_calculate_cubic_spline(bm, coordinates):
result = []
x = [0, 1, 2, 3]
CoDEmanX
committed
for j in range(3):
a = []
for i in coordinates:
a.append(float(i[j]))
h = []
for i in range(3):
for i in range(1, 3):
q.append(3.0 / h[i] * (a[i + 1] - a[i]) - 3.0 / h[i - 1] * (a[i] - a[i - 1]))
l = [1.0]
u = [0.0]
z = [0.0]
for i in range(1, 3):
l.append(2.0 * (x[i + 1] - x[i - 1]) - h[i - 1] * u[i - 1])
u.append(h[i] / l[i])
z.append((q[i] - h[i - 1] * z[i - 1]) / l[i])
l.append(1.0)
z.append(0.0)
b = [False for i in range(3)]
c = [False for i in range(4)]
d = [False for i in range(3)]
c[3] = 0.0
for i in range(2, -1, -1):
c[i] = z[i] - u[i] * c[i + 1]
b[i] = (a[i + 1] - a[i]) / h[i] - h[i] * (c[i + 1] + 2.0 * c[i]) / 3.0
d[i] = (c[i + 1] - c[i]) / (3.0 * h[i])
for i in range(3):
result.append([a[i], b[i], c[i], d[i], x[i]])
spline = [result[1], result[4], result[7]]
return(spline)
CoDEmanX
committed
# return a list with new vertex location vectors, a list with face vertex
# integers, and the highest vertex integer in the virtual mesh
def bridge_calculate_geometry(bm, lines, vertex_normals, segments,
interpolation, cubic_strength, min_width, max_vert_index):
new_verts = []
faces = []
CoDEmanX
committed
# calculate location based on interpolation method
def get_location(line, segment, splines):
v1 = bm.verts[lines[line][0]].co
v2 = bm.verts[lines[line][1]].co
if interpolation == 'linear':
return v1 + (segment / segments) * (v2 - v1)
else: # interpolation == 'cubic'
m = (segment / segments)
ax, bx, cx, dx, tx = splines[line][0]
x = ax + bx * m + cx * m ** 2 + dx * m ** 3
ay, by, cy, dy, ty = splines[line][1]
y = ay + by * m + cy * m ** 2 + dy * m ** 3
az, bz, cz, dz, tz = splines[line][2]
z = az + bz * m + cz * m ** 2 + dz * m ** 3
return mathutils.Vector((x, y, z))
CoDEmanX
committed
# no interpolation needed
if segments == 1:
for i, line in enumerate(lines):
if i < len(lines) - 1:
faces.append([line[0], lines[i + 1][0], lines[i + 1][1], line[1]])
# more than 1 segment, interpolate
else:
# calculate splines (if necessary) once, so no recalculations needed
if interpolation == 'cubic':
splines = []
for line in lines:
v1 = bm.verts[line[0]].co
v2 = bm.verts[line[1]].co
size = (v2 - v1).length * cubic_strength
splines.append(bridge_calculate_cubic_spline(bm,
[v1 + size * vertex_normals[line[0]], v1, v2,
v2 + size * vertex_normals[line[1]]]))
else:
splines = False
CoDEmanX
committed
# create starting situation
virtual_width = [(bm.verts[lines[i][0]].co -
bm.verts[lines[i + 1][0]].co).length for i
in range(len(lines) - 1)]
new_verts = [get_location(0, seg, splines) for seg in range(1,
segments)]
first_line_indices = [i for i in range(max_vert_index + 1,
max_vert_index + segments)]
CoDEmanX
committed
prev_verts = new_verts[:] # vertex locations of verts on previous line
prev_vert_indices = first_line_indices[:]
max_vert_index += segments - 1 # highest vertex index in virtual mesh
next_verts = [] # vertex locations of verts on current line
next_vert_indices = []
CoDEmanX
committed
for i, line in enumerate(lines):
end_face = True
for seg in range(1, segments):
loc1 = prev_verts[seg - 1]
loc2 = get_location(i + 1, seg, splines)
if (loc1 - loc2).length < (min_width / 100) * virtual_width[i] \
and line[1] == lines[i + 1][1]:
# triangle, no new vertex
faces.append([v1, v2, prev_vert_indices[seg - 1],
prev_vert_indices[seg - 1]])
next_verts += prev_verts[seg - 1:]
next_vert_indices += prev_vert_indices[seg - 1:]
end_face = False
break
else:
if i == len(lines) - 2 and lines[0] == lines[-1]:
# quad with first line, no new vertex
faces.append([v1, v2, first_line_indices[seg - 1],
prev_vert_indices[seg - 1]])
v2 = first_line_indices[seg - 1]
v1 = prev_vert_indices[seg - 1]
else:
# quad, add new vertex
max_vert_index += 1
faces.append([v1, v2, max_vert_index,
v2 = max_vert_index
new_verts.append(loc2)
next_verts.append(loc2)
next_vert_indices.append(max_vert_index)
if end_face: