Skip to content
Snippets Groups Projects
mesh_edgetools.py 69.5 KiB
Newer Older
# SPDX-License-Identifier: GPL-2.0-or-later
# Copyright 2012 Paul Marshall.
# The Blender Edgetools is to bring CAD tools to Blender.

bl_info = {
    "name": "EdgeTools",
    "author": "Paul Marshall",
    "version": (0, 9, 2),
    "blender": (2, 80, 0),
    "location": "View3D > Toolbar and View3D > Specials (W-key)",
    "warning": "",
    "description": "CAD style edge manipulation tools",
    "doc_url": "https://wiki.blender.org/index.php/Extensions:2.6/Py/"
               "Scripts/Modeling/EdgeTools",
    "category": "Mesh",
}


import bpy
import bmesh
from bpy.types import (
        Operator,
        Menu,
        )
from math import acos, pi, radians, sqrt
from mathutils import Matrix, Vector
from mathutils.geometry import (
        distance_point_to_plane,
        interpolate_bezier,
        intersect_point_line,
        intersect_line_line,
        intersect_line_plane,
        )
from bpy.props import (
        BoolProperty,
        IntProperty,
        FloatProperty,
        EnumProperty,
       )

"""
Blender EdgeTools
This is a toolkit for edge manipulation based on mesh manipulation
abilities of several CAD/CAE packages, notably CATIA's Geometric Workbench
from which most of these tools have a functional basis.

The GUI and Blender add-on structure shamelessly coded in imitation of the
LoopTools addon.

Examples:
- "Ortho" inspired from CATIA's line creation tool which creates a line of a
   user specified length at a user specified angle to a curve at a chosen
   point.  The user then selects the plane the line is to be created in.
- "Shaft" is inspired from CATIA's tool of the same name.  However, instead
   of a curve around an axis, this will instead shaft a line, a point, or
   a fixed radius about the selected axis.
- "Slice" is from CATIA's ability to split a curve on a plane.  When
   completed this be a Python equivalent with all the same basic
   functionality, though it will sadly be a little clumsier to use due
   to Blender's selection limitations.

Notes:
- Fillet operator and related functions removed as they didn't work
- Buggy parts have been hidden behind ENABLE_DEBUG global (set it to True)
   Example: Shaft with more than two edges selected

Paul "BrikBot" Marshall
Created: January 28, 2012
Last Modified: October 6, 2012

Coded in IDLE, tested in Blender 2.6.
Search for "@todo" to quickly find sections that need work

Note: lijenstina - modified this script in preparation for merging
fixed the needless jumping to object mode for bmesh creation
causing the crash with the Slice > Rip operator
Removed the test operator since version 0.9.2
added general error handling
"""

# Enable debug
# Set to True to have the debug prints available
ENABLE_DEBUG = False


# Quick an dirty method for getting the sign of a number:
def sign(number):
    return (number > 0) - (number < 0)


# is_parallel
# Checks to see if two lines are parallel

def is_parallel(v1, v2, v3, v4):
    result = intersect_line_line(v1, v2, v3, v4)
    return result is None


# Handle error notifications
def error_handlers(self, op_name, error, reports="ERROR", func=False):
    if self and reports:
        self.report({'WARNING'}, reports + " (See Console for more info)")

    is_func = "Function" if func else "Operator"
    print("\n[Mesh EdgeTools]\n{}: {}\nError: {}\n".format(is_func, op_name, error))


def flip_edit_mode():
    bpy.ops.object.editmode_toggle()
    bpy.ops.object.editmode_toggle()


# check the appropriate selection condition
# to prevent crashes with the index out of range errors
# pass the bEdges and bVerts based selection tables here
# types: Edge, Vertex, All
def is_selected_enough(self, bEdges, bVerts, edges_n=1, verts_n=0, types="Edge"):
    check = False
    try:
        if bEdges and types == "Edge":
            check = (len(bEdges) >= edges_n)
        elif bVerts and types == "Vertex":
            check = (len(bVerts) >= verts_n)
        elif bEdges and bVerts and types == "All":
            check = (len(bEdges) >= edges_n and len(bVerts) >= verts_n)

        if check is False:
            strings = "%s Vertices and / or " % verts_n if verts_n != 0 else ""
            self.report({'WARNING'},
                        "Needs at least " + strings + "%s Edge(s) selected. "
                        "Operation Cancelled" % edges_n)
            flip_edit_mode()

        return check

    except Exception as e:
        error_handlers(self, "is_selected_enough", e,
                      "No appropriate selection. Operation Cancelled", func=True)
        return False

    return False


# is_axial
# This is for the special case where the edge is parallel to an axis.
# The projection onto the XY plane will fail so it will have to be handled differently

def is_axial(v1, v2, error=0.000002):
    vector = v2 - v1
    # Don't need to store, but is easier to read:
    vec0 = vector[0] > -error and vector[0] < error
    vec1 = vector[1] > -error and vector[1] < error
    vec2 = vector[2] > -error and vector[2] < error
    if (vec0 or vec1) and vec2:
        return 'Z'
    elif vec0 and vec1:
        return 'Y'
    return None


# is_same_co
# For some reason "Vector = Vector" does not seem to look at the actual coordinates

def is_same_co(v1, v2):
    if len(v1) != len(v2):
        return False
    else:
        for co1, co2 in zip(v1, v2):
            if co1 != co2:
                return False
    return True


def is_face_planar(face, error=0.0005):
    for v in face.verts:
        d = distance_point_to_plane(v.co, face.verts[0].co, face.normal)
        if ENABLE_DEBUG:
            print("Distance: " + str(d))
        if d < -error or d > error:
            return False
    return True


# other_joined_edges
# Starts with an edge. Then scans for linked, selected edges and builds a
# list with them in "order", starting at one end and moving towards the other

def order_joined_edges(edge, edges=[], direction=1):
    if len(edges) == 0:
        edges.append(edge)
        edges[0] = edge

    if ENABLE_DEBUG:
        print(edge, end=", ")
        print(edges, end=", ")
        print(direction, end="; ")

    # Robustness check: direction cannot be zero
    if direction == 0:
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
        direction = 1

    newList = []
    for e in edge.verts[0].link_edges:
        if e.select and edges.count(e) == 0:
            if direction > 0:
                edges.insert(0, e)
                newList.extend(order_joined_edges(e, edges, direction + 1))
                newList.extend(edges)
            else:
                edges.append(e)
                newList.extend(edges)
                newList.extend(order_joined_edges(e, edges, direction - 1))

    # This will only matter at the first level:
    direction = direction * -1

    for e in edge.verts[1].link_edges:
        if e.select and edges.count(e) == 0:
            if direction > 0:
                edges.insert(0, e)
                newList.extend(order_joined_edges(e, edges, direction + 2))
                newList.extend(edges)
            else:
                edges.append(e)
                newList.extend(edges)
                newList.extend(order_joined_edges(e, edges, direction))

    if ENABLE_DEBUG:
        print(newList, end=", ")
        print(direction)

    return newList


# --------------- GEOMETRY CALCULATION METHODS --------------

# distance_point_line
# I don't know why the mathutils.geometry API does not already have this, but
# it is trivial to code using the structures already in place. Instead of
# returning a float, I also want to know the direction vector defining the
# distance. Distance can be found with "Vector.length"

def distance_point_line(pt, line_p1, line_p2):
    int_co = intersect_point_line(pt, line_p1, line_p2)
    distance_vector = int_co[0] - pt
    return distance_vector


# interpolate_line_line
# This is an experiment into a cubic Hermite spline (c-spline) for connecting
# two edges with edges that obey the general equation.
# This will return a set of point coordinates (Vectors)
#
# A good, easy to read background on the mathematics can be found at:
# http://cubic.org/docs/hermite.htm
#
# Right now this is . . . less than functional :P
# @todo
#   - C-Spline and Bezier curves do not end on p2_co as they are supposed to.
#   - B-Spline just fails.  Epically.
#   - Add more methods as I come across them.  Who said flexibility was bad?

def interpolate_line_line(p1_co, p1_dir, p2_co, p2_dir, segments, tension=1,
                          typ='BEZIER', include_ends=False):
    pieces = []
    fraction = 1 / segments

    # Form: p1, tangent 1, p2, tangent 2
    if typ == 'HERMITE':
        poly = [[2, -3, 0, 1], [1, -2, 1, 0],
                [-2, 3, 0, 0], [1, -1, 0, 0]]
    elif typ == 'BEZIER':
        poly = [[-1, 3, -3, 1], [3, -6, 3, 0],
                [1, 0, 0, 0], [-3, 3, 0, 0]]
        p1_dir = p1_dir + p1_co
        p2_dir = -p2_dir + p2_co
    elif typ == 'BSPLINE':
        # Supposed poly matrix for a cubic b-spline:
        # poly = [[-1, 3, -3, 1], [3, -6, 3, 0],
        #         [-3, 0, 3, 0], [1, 4, 1, 0]]
        # My own invention to try to get something that somewhat acts right
        # This is semi-quadratic rather than fully cubic:
        poly = [[0, -1, 0, 1], [1, -2, 1, 0],
                [0, -1, 2, 0], [1, -1, 0, 0]]

    if include_ends:
        pieces.append(p1_co)

    # Generate each point:
    for i in range(segments - 1):
        t = fraction * (i + 1)
        if ENABLE_DEBUG:
            print(t)
        s = [t ** 3, t ** 2, t, 1]
        h00 = (poly[0][0] * s[0]) + (poly[0][1] * s[1]) + (poly[0][2] * s[2]) + (poly[0][3] * s[3])
        h01 = (poly[1][0] * s[0]) + (poly[1][1] * s[1]) + (poly[1][2] * s[2]) + (poly[1][3] * s[3])
        h10 = (poly[2][0] * s[0]) + (poly[2][1] * s[1]) + (poly[2][2] * s[2]) + (poly[2][3] * s[3])
        h11 = (poly[3][0] * s[0]) + (poly[3][1] * s[1]) + (poly[3][2] * s[2]) + (poly[3][3] * s[3])
        pieces.append((h00 * p1_co) + (h01 * p1_dir) + (h10 * p2_co) + (h11 * p2_dir))
    if include_ends:
        pieces.append(p2_co)

    # Return:
    if len(pieces) == 0:
        return None
    else:
        if ENABLE_DEBUG:
            print(pieces)
        return pieces


# intersect_line_face

# Calculates the coordinate of intersection of a line with a face.  It returns
# the coordinate if one exists, otherwise None.  It can only deal with tris or
# quads for a face. A quad does NOT have to be planar
"""
Quad math and theory:
A quad may not be planar. Therefore the treated definition of the surface is
that the surface is composed of all lines bridging two other lines defined by
the given four points. The lines do not "cross"

The two lines in 3-space can defined as:
┌  ┐         ┌   ┐     ┌   ┐  ┌  ┐         ┌   ┐     ┌   ┐
│x1│         │a11│     │b11│  │x2│         │a21│     │b21│
│y1│ = (1-t1)│a12│ + t1│b12│, │y2│ = (1-t2)│a22│ + t2│b22│
│z1│         │a13│     │b13│  │z2│         │a23│     │b23│
└  ┘         └   ┘     └   ┘  └  ┘         └   ┘     └   ┘
Therefore, the surface is the lines defined by every point alone the two
lines with a same "t" value (t1 = t2). This is basically R = V1 + tQ, where
Q = V2 - V1 therefore R = V1 + t(V2 - V1) -> R = (1 - t)V1 + tV2:
┌   ┐            ┌                  ┐      ┌                  ┐
│x12│            │(1-t)a11 + t * b11│      │(1-t)a21 + t * b21│
│y12│ = (1 - t12)│(1-t)a12 + t * b12│ + t12│(1-t)a22 + t * b22│
│z12│            │(1-t)a13 + t * b13│      │(1-t)a23 + t * b23│
└   ┘            └                  ┘      └                  ┘
Now, the equation of our line can be likewise defined:
┌  ┐   ┌   ┐     ┌   ┐
│x3│   │a31│     │b31│
│y3│ = │a32│ + t3│b32│
│z3│   │a33│     │b33│
└  ┘   └   ┘     └   ┘
Now we just have to find a valid solution for the two equations.  This should
be our point of intersection. Therefore, x12 = x3 -> x, y12 = y3 -> y,
z12 = z3 -> z.  Thus, to find that point we set the equation defining the
surface as equal to the equation for the line:
        ┌                  ┐      ┌                  ┐   ┌   ┐     ┌   ┐
        │(1-t)a11 + t * b11│      │(1-t)a21 + t * b21│   │a31│     │b31│
(1 - t12)│(1-t)a12 + t * b12│ + t12│(1-t)a22 + t * b22│ = │a32│ + t3│b32│
        │(1-t)a13 + t * b13│      │(1-t)a23 + t * b23│   │a33│     │b33│
        └                  ┘      └                  ┘   └   ┘     └   ┘
This leaves us with three equations, three unknowns.  Solving the system by
hand is practically impossible, but using Mathematica we are given an insane
series of three equations (not reproduced here for the sake of space: see
http://www.mediafire.com/file/cc6m6ba3sz2b96m/intersect_line_surface.nb and
http://www.mediafire.com/file/0egbr5ahg14talm/intersect_line_surface2.nb for
Mathematica computation).

Additionally, the resulting series of equations may result in a div by zero
exception if the line in question if parallel to one of the axis or if the
quad is planar and parallel to either the XY, XZ, or YZ planes. However, the
system is still solvable but must be dealt with a little differently to avaid
these special cases. Because the resulting equations are a little different,
we have to code them differently. 00Hence the special cases.

Tri math and theory:
A triangle must be planar (three points define a plane). So we just
have to make sure that the line intersects inside the triangle.

If the point is within the triangle, then the angle between the lines that
connect the point to the each individual point of the triangle will be
equal to 2 * PI. Otherwise, if the point is outside the triangle, then the
sum of the angles will be less.
"""
# @todo
# - Figure out how to deal with n-gons
# How the heck is a face with 8 verts defined mathematically?
# How do I then find the intersection point of a line with said vert?
# How do I know if that point is "inside" all the verts?
# I have no clue, and haven't been able to find anything on it so far
# Maybe if someone (actually reads this and) who knows could note?


def intersect_line_face(edge, face, is_infinite=False, error=0.000002):
    int_co = None

    # If we are dealing with a non-planar quad:
    if len(face.verts) == 4 and not is_face_planar(face):
        edgeA = face.edges[0]
        edgeB = None
        flipB = False

        for i in range(len(face.edges)):
            if face.edges[i].verts[0] not in edgeA.verts and \
               face.edges[i].verts[1] not in edgeA.verts:

                edgeB = face.edges[i]
                break

        # I haven't figured out a way to mix this in with the above. Doing so might remove a
        # few extra instructions from having to be executed saving a few clock cycles:
        for i in range(len(face.edges)):
            if face.edges[i] == edgeA or face.edges[i] == edgeB:
                continue
            if ((edgeA.verts[0] in face.edges[i].verts and
               edgeB.verts[1] in face.edges[i].verts) or
               (edgeA.verts[1] in face.edges[i].verts and edgeB.verts[0] in face.edges[i].verts)):

                flipB = True
                break

        # Define calculation coefficient constants:
        # "xx1" is the x coordinate, "xx2" is the y coordinate, and "xx3" is the z coordinate
        a11, a12, a13 = edgeA.verts[0].co[0], edgeA.verts[0].co[1], edgeA.verts[0].co[2]
        b11, b12, b13 = edgeA.verts[1].co[0], edgeA.verts[1].co[1], edgeA.verts[1].co[2]

        if flipB:
            a21, a22, a23 = edgeB.verts[1].co[0], edgeB.verts[1].co[1], edgeB.verts[1].co[2]
            b21, b22, b23 = edgeB.verts[0].co[0], edgeB.verts[0].co[1], edgeB.verts[0].co[2]
        else:
            a21, a22, a23 = edgeB.verts[0].co[0], edgeB.verts[0].co[1], edgeB.verts[0].co[2]
            b21, b22, b23 = edgeB.verts[1].co[0], edgeB.verts[1].co[1], edgeB.verts[1].co[2]
        a31, a32, a33 = edge.verts[0].co[0], edge.verts[0].co[1], edge.verts[0].co[2]
        b31, b32, b33 = edge.verts[1].co[0], edge.verts[1].co[1], edge.verts[1].co[2]

        # There are a bunch of duplicate "sub-calculations" inside the resulting
        # equations for t, t12, and t3.  Calculate them once and store them to
        # reduce computational time:
        m01 = a13 * a22 * a31
        m02 = a12 * a23 * a31
        m03 = a13 * a21 * a32
        m04 = a11 * a23 * a32
        m05 = a12 * a21 * a33
        m06 = a11 * a22 * a33
        m07 = a23 * a32 * b11
        m08 = a22 * a33 * b11
        m09 = a23 * a31 * b12
        m10 = a21 * a33 * b12
        m11 = a22 * a31 * b13
        m12 = a21 * a32 * b13
        m13 = a13 * a32 * b21
        m14 = a12 * a33 * b21
        m15 = a13 * a31 * b22
        m16 = a11 * a33 * b22
        m17 = a12 * a31 * b23
        m18 = a11 * a32 * b23
        m19 = a13 * a22 * b31
        m20 = a12 * a23 * b31
        m21 = a13 * a32 * b31
        m22 = a23 * a32 * b31
        m23 = a12 * a33 * b31
        m24 = a22 * a33 * b31
        m25 = a23 * b12 * b31
        m26 = a33 * b12 * b31
        m27 = a22 * b13 * b31
        m28 = a32 * b13 * b31
        m29 = a13 * b22 * b31
        m30 = a33 * b22 * b31
        m31 = a12 * b23 * b31
        m32 = a32 * b23 * b31
        m33 = a13 * a21 * b32
        m34 = a11 * a23 * b32
        m35 = a13 * a31 * b32
        m36 = a23 * a31 * b32
        m37 = a11 * a33 * b32
        m38 = a21 * a33 * b32
        m39 = a23 * b11 * b32
        m40 = a33 * b11 * b32
        m41 = a21 * b13 * b32
        m42 = a31 * b13 * b32
        m43 = a13 * b21 * b32
        m44 = a33 * b21 * b32
        m45 = a11 * b23 * b32
        m46 = a31 * b23 * b32
        m47 = a12 * a21 * b33
        m48 = a11 * a22 * b33
        m49 = a12 * a31 * b33
        m50 = a22 * a31 * b33
        m51 = a11 * a32 * b33
        m52 = a21 * a32 * b33
        m53 = a22 * b11 * b33
        m54 = a32 * b11 * b33
        m55 = a21 * b12 * b33
        m56 = a31 * b12 * b33
        m57 = a12 * b21 * b33
        m58 = a32 * b21 * b33
        m59 = a11 * b22 * b33
        m60 = a31 * b22 * b33
        m61 = a33 * b12 * b21
        m62 = a32 * b13 * b21
        m63 = a33 * b11 * b22
        m64 = a31 * b13 * b22
        m65 = a32 * b11 * b23
        m66 = a31 * b12 * b23
        m67 = b13 * b22 * b31
        m68 = b12 * b23 * b31
        m69 = b13 * b21 * b32
        m70 = b11 * b23 * b32
        m71 = b12 * b21 * b33
        m72 = b11 * b22 * b33
        n01 = m01 - m02 - m03 + m04 + m05 - m06
        n02 = -m07 + m08 + m09 - m10 - m11 + m12 + m13 - m14 - m15 + m16 + m17 - m18 - \
              m25 + m27 + m29 - m31 + m39 - m41 - m43 + m45 - m53 + m55 + m57 - m59
        n03 = -m19 + m20 + m33 - m34 - m47 + m48
        n04 = m21 - m22 - m23 + m24 - m35 + m36 + m37 - m38 + m49 - m50 - m51 + m52
        n05 = m26 - m28 - m30 + m32 - m40 + m42 + m44 - m46 + m54 - m56 - m58 + m60
        n06 = m61 - m62 - m63 + m64 + m65 - m66 - m67 + m68 + m69 - m70 - m71 + m72
        n07 = 2 * n01 + n02 + 2 * n03 + n04 + n05
        n08 = n01 + n02 + n03 + n06

        # Calculate t, t12, and t3:
        t = (n07 - sqrt(pow(-n07, 2) - 4 * (n01 + n03 + n04) * n08)) / (2 * n08)

        # t12 can be greatly simplified by defining it with t in it:
        # If block used to help prevent any div by zero error.
        t12 = 0

        if a31 == b31:
            # The line is parallel to the z-axis:
            if a32 == b32:
                t12 = ((a11 - a31) + (b11 - a11) * t) / ((a21 - a11) + (a11 - a21 - b11 + b21) * t)
            # The line is parallel to the y-axis:
            elif a33 == b33:
                t12 = ((a11 - a31) + (b11 - a11) * t) / ((a21 - a11) + (a11 - a21 - b11 + b21) * t)
            # The line is along the y/z-axis but is not parallel to either:
            else:
                t12 = -(-(a33 - b33) * (-a32 + a12 * (1 - t) + b12 * t) + (a32 - b32) *
                        (-a33 + a13 * (1 - t) + b13 * t)) / (-(a33 - b33) *
                        ((a22 - a12) * (1 - t) + (b22 - b12) * t) + (a32 - b32) *
                        ((a23 - a13) * (1 - t) + (b23 - b13) * t))
        elif a32 == b32:
            # The line is parallel to the x-axis:
            if a33 == b33:
                t12 = ((a12 - a32) + (b12 - a12) * t) / ((a22 - a12) + (a12 - a22 - b12 + b22) * t)
            # The line is along the x/z-axis but is not parallel to either:
            else:
                t12 = -(-(a33 - b33) * (-a31 + a11 * (1 - t) + b11 * t) + (a31 - b31) * (-a33 + a13 *
                      (1 - t) + b13 * t)) / (-(a33 - b33) * ((a21 - a11) * (1 - t) + (b21 - b11) * t) +
                      (a31 - b31) * ((a23 - a13) * (1 - t) + (b23 - b13) * t))
        # The line is along the x/y-axis but is not parallel to either:
        else:
            t12 = -(-(a32 - b32) * (-a31 + a11 * (1 - t) + b11 * t) + (a31 - b31) * (-a32 + a12 *
                  (1 - t) + b12 * t)) / (-(a32 - b32) * ((a21 - a11) * (1 - t) + (b21 - b11) * t) +
                  (a31 - b31) * ((a22 - a21) * (1 - t) + (b22 - b12) * t))

        # Likewise, t3 is greatly simplified by defining it in terms of t and t12:
        # If block used to prevent a div by zero error.
        t3 = 0
        if a31 != b31:
            t3 = (-a11 + a31 + (a11 - b11) * t + (a11 - a21) *
                t12 + (a21 - a11 + b11 - b21) * t * t12) / (a31 - b31)
        elif a32 != b32:
            t3 = (-a12 + a32 + (a12 - b12) * t + (a12 - a22) *
                t12 + (a22 - a12 + b12 - b22) * t * t12) / (a32 - b32)
        elif a33 != b33:
            t3 = (-a13 + a33 + (a13 - b13) * t + (a13 - a23) *
                t12 + (a23 - a13 + b13 - b23) * t * t12) / (a33 - b33)
        else:
            if ENABLE_DEBUG:
                print("The second edge is a zero-length edge")
            return None

        # Calculate the point of intersection:
        x = (1 - t3) * a31 + t3 * b31
        y = (1 - t3) * a32 + t3 * b32
        z = (1 - t3) * a33 + t3 * b33
        int_co = Vector((x, y, z))

        if ENABLE_DEBUG:
            print(int_co)

        # If the line does not intersect the quad, we return "None":
        if (t < -1 or t > 1 or t12 < -1 or t12 > 1) and not is_infinite:
            int_co = None

    elif len(face.verts) == 3:
        p1, p2, p3 = face.verts[0].co, face.verts[1].co, face.verts[2].co
        int_co = intersect_line_plane(edge.verts[0].co, edge.verts[1].co, p1, face.normal)

        # Only check if the triangle is not being treated as an infinite plane:
        # Math based from http://paulbourke.net/geometry/linefacet/
        if int_co is not None and not is_infinite:
            pA = p1 - int_co
            pB = p2 - int_co
            pC = p3 - int_co
            # These must be unit vectors, else we risk a domain error:
            pA.length = 1
            pB.length = 1
            pC.length = 1
            aAB = acos(pA.dot(pB))
            aBC = acos(pB.dot(pC))
            aCA = acos(pC.dot(pA))
            sumA = aAB + aBC + aCA

            # If the point is outside the triangle:
            if (sumA > (pi + error) and sumA < (pi - error)):
                int_co = None

    # This is the default case where we either have a planar quad or an n-gon
    else:
        int_co = intersect_line_plane(edge.verts[0].co, edge.verts[1].co,
                                      face.verts[0].co, face.normal)
    return int_co


# project_point_plane
# Projects a point onto a plane. Returns a tuple of the projection vector
# and the projected coordinate

def project_point_plane(pt, plane_co, plane_no):
    if ENABLE_DEBUG:
        print("project_point_plane was called")
    proj_co = intersect_line_plane(pt, pt + plane_no, plane_co, plane_no)
    proj_ve = proj_co - pt
    if ENABLE_DEBUG:
        print("project_point_plane: proj_co is {}\nproj_ve is {}".format(proj_co, proj_ve))
    return (proj_ve, proj_co)


# ------------ CHAMPHER HELPER METHODS -------------

def is_planar_edge(edge, error=0.000002):
    angle = edge.calc_face_angle()
    return ((angle < error and angle > -error) or
            (angle < (180 + error) and angle > (180 - error)))


# ------------- EDGE TOOL METHODS -------------------

# Extends an "edge" in two directions:
#   - Requires two vertices to be selected. They do not have to form an edge
#   - Extends "length" in both directions

class Extend(Operator):
    bl_idname = "mesh.edgetools_extend"
    bl_label = "Extend"
    bl_description = "Extend the selected edges of vertex pairs"
    bl_options = {'REGISTER', 'UNDO'}

    di1: BoolProperty(
            name="Forwards",
            description="Extend the edge forwards",
            default=True
            )
    di2: BoolProperty(
            name="Backwards",
            description="Extend the edge backwards",
            default=False
            )
    length: FloatProperty(
            name="Length",
            description="Length to extend the edge",
            min=0.0, max=1024.0,
            default=1.0
            )

    def draw(self, context):
        layout = self.layout

        row = layout.row(align=True)
        row.prop(self, "di1", toggle=True)
        row.prop(self, "di2", toggle=True)

        layout.prop(self, "length")

    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')

    def invoke(self, context, event):
        return self.execute(context)

    def execute(self, context):
        try:
            me = context.object.data
            bm = bmesh.from_edit_mesh(me)
            bm.normal_update()

            bEdges = bm.edges
            bVerts = bm.verts

            edges = [e for e in bEdges if e.select]
            verts = [v for v in bVerts if v.select]

            if not is_selected_enough(self, edges, 0, edges_n=1, verts_n=0, types="Edge"):
                return {'CANCELLED'}

            if len(edges) > 0:
                for e in edges:
                    vector = e.verts[0].co - e.verts[1].co
                    vector.length = self.length

                    if self.di1:
                        v = bVerts.new()
                        if (vector[0] + vector[1] + vector[2]) < 0:
                            v.co = e.verts[1].co - vector
                            newE = bEdges.new((e.verts[1], v))
                            bEdges.ensure_lookup_table()
                        else:
                            v.co = e.verts[0].co + vector
                            newE = bEdges.new((e.verts[0], v))
                            bEdges.ensure_lookup_table()
                    if self.di2:
                        v = bVerts.new()
                        if (vector[0] + vector[1] + vector[2]) < 0:
                            v.co = e.verts[0].co + vector
                            newE = bEdges.new((e.verts[0], v))
                            bEdges.ensure_lookup_table()
                        else:
                            v.co = e.verts[1].co - vector
                            newE = bEdges.new((e.verts[1], v))
                            bEdges.ensure_lookup_table()
            else:
                vector = verts[0].co - verts[1].co
                vector.length = self.length

                if self.di1:
                    v = bVerts.new()
                    if (vector[0] + vector[1] + vector[2]) < 0:
                        v.co = verts[1].co - vector
                        e = bEdges.new((verts[1], v))
                        bEdges.ensure_lookup_table()
                    else:
                        v.co = verts[0].co + vector
                        e = bEdges.new((verts[0], v))
                        bEdges.ensure_lookup_table()
                if self.di2:
                    v = bVerts.new()
                    if (vector[0] + vector[1] + vector[2]) < 0:
                        v.co = verts[0].co + vector
                        e = bEdges.new((verts[0], v))
                        bEdges.ensure_lookup_table()
                    else:
                        v.co = verts[1].co - vector
                        e = bEdges.new((verts[1], v))
                        bEdges.ensure_lookup_table()

            bmesh.update_edit_mesh(me)

        except Exception as e:
            error_handlers(self, "mesh.edgetools_extend", e,
                           reports="Extend Operator failed", func=False)
            return {'CANCELLED'}

        return {'FINISHED'}


# Creates a series of edges between two edges using spline interpolation.
# This basically just exposes existing functionality in addition to some
# other common methods: Hermite (c-spline), Bezier, and b-spline. These
# alternates I coded myself after some extensive research into spline theory
#
# @todo Figure out what's wrong with the Blender bezier interpolation

class Spline(Operator):
    bl_idname = "mesh.edgetools_spline"
    bl_label = "Spline"
    bl_description = "Create a spline interplopation between two edges"
    bl_options = {'REGISTER', 'UNDO'}

    alg: EnumProperty(
            name="Spline Algorithm",
            items=[('Blender', "Blender", "Interpolation provided through mathutils.geometry"),
                    ('Hermite', "C-Spline", "C-spline interpolation"),
                    ('Bezier', "Bezier", "Bezier interpolation"),
                    ('B-Spline', "B-Spline", "B-Spline interpolation")],
            default='Bezier'
            )
    segments: IntProperty(
            name="Segments",
            description="Number of segments to use in the interpolation",
            min=2, max=4096,
            soft_max=1024,
            default=32
            )
    flip1: BoolProperty(
            name="Flip Edge",
            description="Flip the direction of the spline on Edge 1",
            default=False
            )
    flip2: BoolProperty(
            name="Flip Edge",
            description="Flip the direction of the spline on Edge 2",
            default=False
            )
    ten1: FloatProperty(
            name="Tension",
            description="Tension on Edge 1",
            min=-4096.0, max=4096.0,
            soft_min=-8.0, soft_max=8.0,
            default=1.0
            )
    ten2: FloatProperty(
            name="Tension",
            description="Tension on Edge 2",
            min=-4096.0, max=4096.0,
            soft_min=-8.0, soft_max=8.0,
            default=1.0
            )

    def draw(self, context):
        layout = self.layout

        layout.prop(self, "alg")
        layout.prop(self, "segments")

        layout.label(text="Edge 1:")
        split = layout.split(factor=0.8, align=True)
        split.prop(self, "ten1")
        split.prop(self, "flip1", text="Flip1", toggle=True)

        layout.label(text="Edge 2:")
        split = layout.split(factor=0.8, align=True)
        split.prop(self, "ten2")
        split.prop(self, "flip2", text="Flip2", toggle=True)

    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')

    def invoke(self, context, event):
        return self.execute(context)

    def execute(self, context):
        try:
            me = context.object.data
            bm = bmesh.from_edit_mesh(me)
            bm.normal_update()

            bEdges = bm.edges
            bVerts = bm.verts

            seg = self.segments
            edges = [e for e in bEdges if e.select]

            if not is_selected_enough(self, edges, 0, edges_n=2, verts_n=0, types="Edge"):
                return {'CANCELLED'}

            verts = [edges[v // 2].verts[v % 2] for v in range(4)]

            if self.flip1:
                v1 = verts[1]
                p1_co = verts[1].co
                p1_dir = verts[1].co - verts[0].co
            else:
                v1 = verts[0]
                p1_co = verts[0].co
                p1_dir = verts[0].co - verts[1].co
            if self.ten1 < 0:
                p1_dir = -1 * p1_dir
                p1_dir.length = -self.ten1
            else:
                p1_dir.length = self.ten1

            if self.flip2:
                v2 = verts[3]
                p2_co = verts[3].co
                p2_dir = verts[2].co - verts[3].co
            else:
                v2 = verts[2]
                p2_co = verts[2].co
                p2_dir = verts[3].co - verts[2].co
            if self.ten2 < 0:
                p2_dir = -1 * p2_dir
                p2_dir.length = -self.ten2
            else:
                p2_dir.length = self.ten2

            # Get the interploted coordinates:
            if self.alg == 'Blender':
                pieces = interpolate_bezier(
                                p1_co, p1_dir, p2_dir, p2_co, self.segments
                                )
            elif self.alg == 'Hermite':
                pieces = interpolate_line_line(
                                p1_co, p1_dir, p2_co, p2_dir, self.segments, 1, 'HERMITE'
                                )
            elif self.alg == 'Bezier':
                pieces = interpolate_line_line(
                                p1_co, p1_dir, p2_co, p2_dir, self.segments, 1, 'BEZIER'
                                )
            elif self.alg == 'B-Spline':
                pieces = interpolate_line_line(
                                p1_co, p1_dir, p2_co, p2_dir, self.segments, 1, 'BSPLINE'
                                )

            verts = []
            verts.append(v1)
            # Add vertices and set the points:
            for i in range(seg - 1):
                v = bVerts.new()
                v.co = pieces[i]
                bVerts.ensure_lookup_table()
                verts.append(v)
            verts.append(v2)
            # Connect vertices:
            for i in range(seg):
                e = bEdges.new((verts[i], verts[i + 1]))
                bEdges.ensure_lookup_table()

            bmesh.update_edit_mesh(me)

        except Exception as e:
            error_handlers(self, "mesh.edgetools_spline", e,
                           reports="Spline Operator failed", func=False)
            return {'CANCELLED'}

        return {'FINISHED'}


# Creates edges normal to planes defined between each of two edges and the
# normal or the plane defined by those two edges.
#   - Select two edges.  The must form a plane.
#   - On running the script, eight edges will be created.  Delete the
#     extras that you don't need.
#   - The length of those edges is defined by the variable "length"
#
# @todo Change method from a cross product to a rotation matrix to make the
#   angle part work.
#   --- todo completed 2/4/2012, but still needs work ---
# @todo Figure out a way to make +/- predictable
#   - Maybe use angle between edges and vector direction definition?
#   --- TODO COMPLETED ON 2/9/2012 ---

class Ortho(Operator):
    bl_idname = "mesh.edgetools_ortho"
    bl_label = "Angle Off Edge"
    bl_description = "Creates new edges within an angle from vertices of selected edges"
    bl_options = {'REGISTER', 'UNDO'}

    vert1: BoolProperty(
            name="Vertice 1",
            description="Enable edge creation for Vertice 1",
            default=True
            )
    vert2: BoolProperty(
            name="Vertice 2",
            description="Enable edge creation for Vertice 2",
            default=True
            )
    vert3: BoolProperty(
            name="Vertice 3",
            description="Enable edge creation for Vertice 3",
            default=True
            )
    vert4: BoolProperty(
            name="Vertice 4",
            description="Enable edge creation for Vertice 4",
            default=True
            )
    pos: BoolProperty(
            name="Positive",
            description="Enable creation of positive direction edges",
            default=True
            )
    neg: BoolProperty(
            name="Negative",
            description="Enable creation of negative direction edges",
            default=True
            )
    angle: FloatProperty(
            name="Angle",
            description="Define the angle off of the originating edge",
            min=0.0, max=180.0,
            default=90.0
            )
    length: FloatProperty(
            name="Length",
            description="Length of created edges",
            min=0.0, max=1024.0,
            default=1.0
            )
    # For when only one edge is selected (Possible feature to be testd):
    plane: EnumProperty(
            name="Plane",
            items=[("XY", "X-Y Plane", "Use the X-Y plane as the plane of creation"),
                   ("XZ", "X-Z Plane", "Use the X-Z plane as the plane of creation"),
                   ("YZ", "Y-Z Plane", "Use the Y-Z plane as the plane of creation")],
            default="XY"
            )

    def draw(self, context):
        layout = self.layout

        layout.label(text="Creation:")
        split = layout.split()
        col = split.column()

        col.prop(self, "vert1", toggle=True)
        col.prop(self, "vert2", toggle=True)

        col = split.column()
        col.prop(self, "vert3", toggle=True)
        col.prop(self, "vert4", toggle=True)

        layout.label(text="Direction:")
        row = layout.row(align=False)
        row.alignment = 'EXPAND'
        row.prop(self, "pos")
        row.prop(self, "neg")

        layout.separator()

        col = layout.column(align=True)
        col.prop(self, "angle")
        col.prop(self, "length")

    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')

    def invoke(self, context, event):
        return self.execute(context)

    def execute(self, context):
        try:
            me = context.object.data
            bm = bmesh.from_edit_mesh(me)
            bm.normal_update()

            bVerts = bm.verts
            bEdges = bm.edges
            edges = [e for e in bEdges if e.select]
            vectors = []

            if not is_selected_enough(self, edges, 0, edges_n=2, verts_n=0, types="Edge"):
                return {'CANCELLED'}

            verts = [edges[0].verts[0],
                     edges[0].verts[1],
                     edges[1].verts[0],
                     edges[1].verts[1]]

            cos = intersect_line_line(verts[0].co, verts[1].co, verts[2].co, verts[3].co)

            # If the two edges are parallel:
            if cos is None:
                self.report({'WARNING'},
                            "Selected lines are parallel: results may be unpredictable")
                vectors.append(verts[0].co - verts[1].co)
                vectors.append(verts[0].co - verts[2].co)
                vectors.append(vectors[0].cross(vectors[1]))
                vectors.append(vectors[2].cross(vectors[0]))
                vectors.append(-vectors[3])
            else:
                # Warn the user if they have not chosen two planar edges:
                if not is_same_co(cos[0], cos[1]):
                    self.report({'WARNING'},
                                "Selected lines are not planar: results may be unpredictable")

                # This makes the +/- behavior predictable:
                if (verts[0].co - cos[0]).length < (verts[1].co - cos[0]).length:
                    verts[0], verts[1] = verts[1], verts[0]
                if (verts[2].co - cos[0]).length < (verts[3].co - cos[0]).length:
                    verts[2], verts[3] = verts[3], verts[2]

                vectors.append(verts[0].co - verts[1].co)
                vectors.append(verts[2].co - verts[3].co)

                # Normal of the plane formed by vector1 and vector2:
                vectors.append(vectors[0].cross(vectors[1]))

                # Possible directions:
                vectors.append(vectors[2].cross(vectors[0]))
                vectors.append(vectors[1].cross(vectors[2]))

            # Set the length:
            vectors[3].length = self.length
            vectors[4].length = self.length

            # Perform any additional rotations:
            matrix = Matrix.Rotation(radians(90 + self.angle), 3, vectors[2])
            vectors.append(matrix @ -vectors[3])    # vectors[5]
            matrix = Matrix.Rotation(radians(90 - self.angle), 3, vectors[2])
            vectors.append(matrix @ vectors[4])     # vectors[6]
            vectors.append(matrix @ vectors[3])     # vectors[7]
            matrix = Matrix.Rotation(radians(90 + self.angle), 3, vectors[2])
            vectors.append(matrix @ -vectors[4])    # vectors[8]

            # Perform extrusions and displacements:
            # There will be a total of 8 extrusions.  One for each vert of each edge.
            # It looks like an extrusion will add the new vert to the end of the verts
            # list and leave the rest in the same location.
            # -- EDIT --
            # It looks like I might be able to do this within "bpy.data" with the ".add" function

            for v in range(len(verts)):
                vert = verts[v]
                if ((v == 0 and self.vert1) or (v == 1 and self.vert2) or
                   (v == 2 and self.vert3) or (v == 3 and self.vert4)):

                    if self.pos:
                        new = bVerts.new()
                        new.co = vert.co - vectors[5 + (v // 2) + ((v % 2) * 2)]
                        bVerts.ensure_lookup_table()
                        bEdges.new((vert, new))
                        bEdges.ensure_lookup_table()
                    if self.neg:
                        new = bVerts.new()
                        new.co = vert.co + vectors[5 + (v // 2) + ((v % 2) * 2)]
                        bVerts.ensure_lookup_table()
                        bEdges.new((vert, new))
                        bEdges.ensure_lookup_table()

            bmesh.update_edit_mesh(me)
        except Exception as e:
            error_handlers(self, "mesh.edgetools_ortho", e,
                           reports="Angle Off Edge Operator failed", func=False)
            return {'CANCELLED'}

        return {'FINISHED'}


# Usage:
# Select an edge and a point or an edge and specify the radius (default is 1 BU)
# You can select two edges but it might be unpredictable which edge it revolves
# around so you might have to play with the switch

class Shaft(Operator):
    bl_idname = "mesh.edgetools_shaft"
    bl_label = "Shaft"
    bl_description = "Create a shaft mesh around an axis"
    bl_options = {'REGISTER', 'UNDO'}

    # Selection defaults:
    shaftType = 0

    # For tracking if the user has changed selection:
    last_edge: IntProperty(
            name="Last Edge",
            description="Tracks if user has changed selected edges",
            min=0, max=1,
            default=0
            )
    last_flip = False

    edge: IntProperty(
            name="Edge",
            description="Edge to shaft around",
            min=0, max=1,
            default=0
            )
    flip: BoolProperty(
            name="Flip Second Edge",
            description="Flip the perceived direction of the second edge",
            default=False
            )
    radius: FloatProperty(
            name="Radius",
            description="Shaft Radius",
            min=0.0, max=1024.0,
            default=1.0
            )
    start: FloatProperty(
            name="Starting Angle",
            description="Angle to start the shaft at",
            min=-360.0, max=360.0,
            default=0.0
            )
    finish: FloatProperty(
            name="Ending Angle",
            description="Angle to end the shaft at",
            min=-360.0, max=360.0,
            default=360.0
            )
    segments: IntProperty(
            name="Shaft Segments",
            description="Number of segments to use in the shaft",
            min=1, max=4096,
            soft_max=512,
            default=32
            )

    def draw(self, context):
        layout = self.layout

        if self.shaftType == 0:
            layout.prop(self, "edge")
            layout.prop(self, "flip")
        elif self.shaftType == 3:
            layout.prop(self, "radius")

        layout.prop(self, "segments")
        layout.prop(self, "start")
        layout.prop(self, "finish")

    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')

    def invoke(self, context, event):
        # Make sure these get reset each time we run:
        self.last_edge = 0
        self.edge = 0

        return self.execute(context)

    def execute(self, context):
        try:
            me = context.object.data
            bm = bmesh.from_edit_mesh(me)
            bm.normal_update()

            bFaces = bm.faces
            bEdges = bm.edges
            bVerts = bm.verts

            active = None
            edges, verts = [], []

            # Pre-caclulated values:
            rotRange = [radians(self.start), radians(self.finish)]
            rads = radians((self.finish - self.start) / self.segments)

            numV = self.segments + 1
            numE = self.segments

            edges = [e for e in bEdges if e.select]

            # Robustness check: there should at least be one edge selected
            if not is_selected_enough(self, edges, 0, edges_n=1, verts_n=0, types="Edge"):
                return {'CANCELLED'}

            # If two edges are selected:
            if len(edges) == 2:
                # default:
                edge = [0, 1]
                vert = [0, 1]

                # By default, we want to shaft around the last selected edge (it
                # will be the active edge). We know we are using the default if
                # the user has not changed which edge is being shafted around (as
                # is tracked by self.last_edge). When they are not the same, then
                # the user has changed selection.
                # We then need to make sure that the active object really is an edge
                # (robustness check)
                # Finally, if the active edge is not the initial one, we flip them
                # and have the GUI reflect that
                if self.last_edge == self.edge:
                    if isinstance(bm.select_history.active, bmesh.types.BMEdge):
                        if bm.select_history.active != edges[edge[0]]:
                            self.last_edge, self.edge = edge[1], edge[1]
                            edge = [edge[1], edge[0]]
                    else:
                        flip_edit_mode()
                        self.report({'WARNING'},
                                    "Active geometry is not an edge. Operation Cancelled")
                        return {'CANCELLED'}
                elif self.edge == 1:
                    edge = [1, 0]

                verts.append(edges[edge[0]].verts[0])
                verts.append(edges[edge[0]].verts[1])

                if self.flip:
                    verts = [1, 0]

                verts.append(edges[edge[1]].verts[vert[0]])
                verts.append(edges[edge[1]].verts[vert[1]])

                self.shaftType = 0
            # If there is more than one edge selected:
            # There are some issues with it ATM, so don't expose is it to normal users
            # @todo Fix edge connection ordering issue
            elif ENABLE_DEBUG and len(edges) > 2:
                if isinstance(bm.select_history.active, bmesh.types.BMEdge):
                    active = bm.select_history.active
                    edges.remove(active)
                    # Get all the verts:
                    # edges = order_joined_edges(edges[0])
                    verts = []
                    for e in edges:
                        if verts.count(e.verts[0]) == 0:
                            verts.append(e.verts[0])
                        if verts.count(e.verts[1]) == 0:
                            verts.append(e.verts[1])
                else:
                    flip_edit_mode()
                    self.report({'WARNING'},
                                "Active geometry is not an edge. Operation Cancelled")
                    return {'CANCELLED'}
                self.shaftType = 1
            else:
                verts.append(edges[0].verts[0])
                verts.append(edges[0].verts[1])

                for v in bVerts:
                    if v.select and verts.count(v) == 0:
                        verts.append(v)
                    v.select = False
                if len(verts) == 2:
                    self.shaftType = 3
                else:
                    self.shaftType = 2

            # The vector denoting the axis of rotation:
            if self.shaftType == 1:
                axis = active.verts[1].co - active.verts[0].co
            else:
                axis = verts[1].co - verts[0].co

            # We will need a series of rotation matrices. We could use one which
            # would be faster but also might cause propagation of error
            # matrices = []
            # for i in range(numV):
            #    matrices.append(Matrix.Rotation((rads * i) + rotRange[0], 3, axis))
            matrices = [Matrix.Rotation((rads * i) + rotRange[0], 3, axis) for i in range(numV)]

            # New vertice coordinates:
            verts_out = []

            # If two edges were selected:
            #  - If the lines are not parallel, then it will create a cone-like shaft
            if self.shaftType == 0:
                for i in range(len(verts) - 2):
                    init_vec = distance_point_line(verts[i + 2].co, verts[0].co, verts[1].co)
                    co = init_vec + verts[i + 2].co
                    # These will be rotated about the origin so will need to be shifted:
                    for j in range(numV):
                        verts_out.append(co - (matrices[j] @ init_vec))
            elif self.shaftType == 1:
                for i in verts:
                    init_vec = distance_point_line(i.co, active.verts[0].co, active.verts[1].co)
                    co = init_vec + i.co
                    # These will be rotated about the origin so will need to be shifted:
                    for j in range(numV):
                        verts_out.append(co - (matrices[j] @ init_vec))
            # Else if a line and a point was selected:
            elif self.shaftType == 2:
                init_vec = distance_point_line(verts[2].co, verts[0].co, verts[1].co)
                # These will be rotated about the origin so will need to be shifted:
                verts_out = [
                    (verts[i].co - (matrices[j] @ init_vec)) for i in range(2) for j in range(numV)
                    ]
            else:
                # Else the above are not possible, so we will just use the edge:
                #  - The vector defined by the edge is the normal of the plane for the shaft
                #  - The shaft will have radius "radius"
                if is_axial(verts[0].co, verts[1].co) is None:
                    proj = (verts[1].co - verts[0].co)
                    proj[2] = 0
                    norm = proj.cross(verts[1].co - verts[0].co)
                    vec = norm.cross(verts[1].co - verts[0].co)
                    vec.length = self.radius
                elif is_axial(verts[0].co, verts[1].co) == 'Z':
                    vec = verts[0].co + Vector((0, 0, self.radius))
                else:
                    vec = verts[0].co + Vector((0, self.radius, 0))
                init_vec = distance_point_line(vec, verts[0].co, verts[1].co)
                # These will be rotated about the origin so will need to be shifted:
                verts_out = [
                    (verts[i].co - (matrices[j] @ init_vec)) for i in range(2) for j in range(numV)
                    ]

            # We should have the coordinates for a bunch of new verts
            # Now add the verts and build the edges and then the faces

            newVerts = []

            if self.shaftType == 1:
                # Vertices:
                for i in range(numV * len(verts)):
                    new = bVerts.new()
                    new.co = verts_out[i]
                    bVerts.ensure_lookup_table()
                    new.select = True
                    newVerts.append(new)
                # Edges:
                for i in range(numE):
                    for j in range(len(verts)):
                        e = bEdges.new((newVerts[i + (numV * j)], newVerts[i + (numV * j) + 1]))
                        bEdges.ensure_lookup_table()
                        e.select = True
                for i in range(numV):
                    for j in range(len(verts) - 1):
                        e = bEdges.new((newVerts[i + (numV * j)], newVerts[i + (numV * (j + 1))]))
                        bEdges.ensure_lookup_table()
                        e.select = True

                # Faces: There is a problem with this right now
                """
                for i in range(len(edges)):
                    for j in range(numE):
                        f = bFaces.new((newVerts[i], newVerts[i + 1],
                                       newVerts[i + (numV * j) + 1], newVerts[i + (numV * j)]))
                        f.normal_update()
                """
            else:
                # Vertices:
                for i in range(numV * 2):
                    new = bVerts.new()
                    new.co = verts_out[i]
                    new.select = True
                    bVerts.ensure_lookup_table()
                    newVerts.append(new)
                # Edges:
                for i in range(numE):
                    e = bEdges.new((newVerts[i], newVerts[i + 1]))
                    e.select = True
                    bEdges.ensure_lookup_table()
                    e = bEdges.new((newVerts[i + numV], newVerts[i + numV + 1]))
                    e.select = True
                    bEdges.ensure_lookup_table()
                for i in range(numV):
                    e = bEdges.new((newVerts[i], newVerts[i + numV]))
                    e.select = True
                    bEdges.ensure_lookup_table()
                # Faces:
                for i in range(numE):
                    f = bFaces.new((newVerts[i], newVerts[i + 1],
                                    newVerts[i + numV + 1], newVerts[i + numV]))
                    bFaces.ensure_lookup_table()
                    f.normal_update()

            bmesh.update_edit_mesh(me)

        except Exception as e:
            error_handlers(self, "mesh.edgetools_shaft", e,
                           reports="Shaft Operator failed", func=False)
            return {'CANCELLED'}

        return {'FINISHED'}


# "Slices" edges crossing a plane defined by a face

class Slice(Operator):
    bl_idname = "mesh.edgetools_slice"
    bl_label = "Slice"
    bl_description = "Cut edges at the plane defined by a selected face"
    bl_options = {'REGISTER', 'UNDO'}

    make_copy: BoolProperty(
            name="Make Copy",
            description="Make new vertices at intersection points instead of splitting the edge",
            default=False
            )
    rip: BoolProperty(
            name="Rip",
            description="Split into two edges that DO NOT share an intersection vertex",
            default=True
            )
    pos: BoolProperty(
            name="Positive",
            description="Remove the portion on the side of the face normal",
            default=False
            )
    neg: BoolProperty(
            name="Negative",
            description="Remove the portion on the side opposite of the face normal",
            default=False
            )

    def draw(self, context):
        layout = self.layout

        layout.prop(self, "make_copy")
        if not self.make_copy:
            layout.prop(self, "rip")
            layout.label(text="Remove Side:")
            layout.prop(self, "pos")
            layout.prop(self, "neg")

    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')

    def invoke(self, context, event):
        return self.execute(context)

    def execute(self, context):
        try:
            me = context.object.data
            bm = bmesh.from_edit_mesh(me)
            bm.normal_update()

            bVerts = bm.verts
            bEdges = bm.edges
            bFaces = bm.faces

            face, normal = None, None

            # Find the selected face. This will provide the plane to project onto:
            #  - First check to use the active face. Allows users to just
            #    select a bunch of faces with the last being the cutting plane
            #  - If that fails, then use the first found selected face in the BMesh face list
            if isinstance(bm.select_history.active, bmesh.types.BMFace):
                face = bm.select_history.active
                normal = bm.select_history.active.normal
                bm.select_history.active.select = False
            else:
                for f in bFaces:
                    if f.select:
                        face = f
                        normal = f.normal
                        f.select = False
                        break

            # If we don't find a selected face exit:
            if face is None:
                flip_edit_mode()
                self.report({'WARNING'},
                            "Please select a face as the cutting plane. Operation Cancelled")
                return {'CANCELLED'}

            # Warn the user if they are using an n-gon might lead to some odd results
            elif len(face.verts) > 4 and not is_face_planar(face):
                self.report({'WARNING'},
                            "Selected face is an N-gon.  Results may be unpredictable")

            if ENABLE_DEBUG:
                dbg = 0
                print("Number of Edges: ", len(bEdges))

            for e in bEdges:
                if ENABLE_DEBUG:
                    print("Looping through Edges - ", dbg)
                    dbg = dbg + 1

                # Get the end verts on the edge:
                v1 = e.verts[0]
                v2 = e.verts[1]

                # Make sure that verts are not a part of the cutting plane:
                if e.select and (v1 not in face.verts and v2 not in face.verts):
                    if len(face.verts) < 5:  # Not an n-gon
                        intersection = intersect_line_face(e, face, True)
                    else:
                        intersection = intersect_line_plane(v1.co, v2.co, face.verts[0].co, normal)

                    if ENABLE_DEBUG:
                        print("Intersection: ", intersection)

                    # If an intersection exists find the distance of each of the end
                    # points from the plane, with "positive" being in the direction
                    # of the cutting plane's normal. If the points are on opposite
                    # side of the plane, then it intersects and we need to cut it
                    if intersection is not None:
                        bVerts.ensure_lookup_table()
                        bEdges.ensure_lookup_table()
                        bFaces.ensure_lookup_table()

                        d1 = distance_point_to_plane(v1.co, face.verts[0].co, normal)
                        d2 = distance_point_to_plane(v2.co, face.verts[0].co, normal)
                        # If they have different signs, then the edge crosses the cutting plane:
                        if abs(d1 + d2) < abs(d1 - d2):
                            # Make the first vertex the positive one:
                            if d1 < d2:
                                v2, v1 = v1, v2

                            if self.make_copy:
                                new = bVerts.new()
                                new.co = intersection
                                new.select = True
                                bVerts.ensure_lookup_table()
                            elif self.rip:
                                if ENABLE_DEBUG:
                                    print("Branch rip engaged")
                                newV1 = bVerts.new()
                                newV1.co = intersection
                                bVerts.ensure_lookup_table()
                                if ENABLE_DEBUG:
                                    print("newV1 created", end='; ')

                                newV2 = bVerts.new()
                                newV2.co = intersection
                                bVerts.ensure_lookup_table()

                                if ENABLE_DEBUG:
                                    print("newV2 created", end='; ')

                                newE1 = bEdges.new((v1, newV1))
                                newE2 = bEdges.new((v2, newV2))
                                bEdges.ensure_lookup_table()

                                if ENABLE_DEBUG:
                                    print("new edges created", end='; ')

                                if e.is_valid:
                                    bEdges.remove(e)

                                bEdges.ensure_lookup_table()

                                if ENABLE_DEBUG:
                                    print("Old edge removed.\nWe're done with this edge")
                            else:
                                new = list(bmesh.utils.edge_split(e, v1, 0.5))
                                bEdges.ensure_lookup_table()
                                new[1].co = intersection
                                e.select = False
                                new[0].select = False
                                if self.pos:
                                    bEdges.remove(new[0])
                                if self.neg:
                                    bEdges.remove(e)
                                bEdges.ensure_lookup_table()

            if ENABLE_DEBUG:
                print("The Edge Loop has exited. Now to update the bmesh")
                dbg = 0

            bmesh.update_edit_mesh(me)

        except Exception as e:
            error_handlers(self, "mesh.edgetools_slice", e,
                           reports="Slice Operator failed", func=False)
            return {'CANCELLED'}

        return {'FINISHED'}


# This projects the selected edges onto the selected plane
# and/or both points on the selected edge

class Project(Operator):
    bl_idname = "mesh.edgetools_project"
    bl_label = "Project"
    bl_description = ("Projects the selected Vertices/Edges onto a selected plane\n"
                      "(Active is projected onto the rest)")
    bl_options = {'REGISTER', 'UNDO'}

    make_copy: BoolProperty(
            name="Make Copy",
            description="Make duplicates of the vertices instead of altering them",
            default=False
            )

    def draw(self, context):
        layout = self.layout
        layout.prop(self, "make_copy")

    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return (ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')

    def invoke(self, context, event):
        return self.execute(context)

    def execute(self, context):
        try:
            me = context.object.data
            bm = bmesh.from_edit_mesh(me)
            bm.normal_update()

            bFaces = bm.faces
            bVerts = bm.verts

            fVerts = []

            # Find the selected face.  This will provide the plane to project onto:
            # @todo Check first for an active face
            for f in bFaces:
                if f.select:
                    for v in f.verts:
                        fVerts.append(v)
                    normal = f.normal
                    f.select = False
                    break

            for v in bVerts:
                if v.select:
                    if v in fVerts:
                        v.select = False
                        continue
                    d = distance_point_to_plane(v.co, fVerts[0].co, normal)
                    if self.make_copy:
                        temp = v
                        v = bVerts.new()
                        v.co = temp.co
                        bVerts.ensure_lookup_table()
                    vector = normal
                    vector.length = abs(d)
                    v.co = v.co - (vector * sign(d))
                    v.select = False

            bmesh.update_edit_mesh(me)

        except Exception as e:
            error_handlers(self, "mesh.edgetools_project", e,
                           reports="Project Operator failed", func=False)

            return {'CANCELLED'}

        return {'FINISHED'}


# Project_End is for projecting/extending an edge to meet a plane
# This is used be selecting a face to define the plane then all the edges
# Then move the vertices in the edge that is closest to the
# plane to the coordinates of the intersection of the edge and the plane

class Project_End(Operator):
    bl_idname = "mesh.edgetools_project_end"
    bl_label = "Project (End Point)"
    bl_description = ("Projects the vertices of the selected\n"
                      "edges closest to a plane onto that plane")
    bl_options = {'REGISTER', 'UNDO'}

    make_copy: BoolProperty(
            name="Make Copy",
            description="Make a duplicate of the vertice instead of moving it",
            default=False
            )
    keep_length: BoolProperty(
            name="Keep Edge Length",
            description="Maintain edge lengths",
            default=False
            )
    use_force: BoolProperty(
            name="Use opposite vertices",
            description="Force the usage of the vertices at the other end of the edge",
            default=False
            )
    use_normal: BoolProperty(
            name="Project along normal",
            description="Use the plane's normal as the projection direction",
            default=False
            )

    def draw(self, context):
        layout = self.layout

        if not self.keep_length:
            layout.prop(self, "use_normal")
        layout.prop(self, "make_copy")
        layout.prop(self, "use_force")

    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')

    def invoke(self, context, event):
        return self.execute(context)

    def execute(self, context):
        try:
            me = context.object.data
            bm = bmesh.from_edit_mesh(me)
            bm.normal_update()

            bFaces = bm.faces
            bEdges = bm.edges
            bVerts = bm.verts

            fVerts = []

            # Find the selected face. This will provide the plane to project onto:
            for f in bFaces:
                if f.select:
                    for v in f.verts:
                        fVerts.append(v)
                    normal = f.normal
                    f.select = False
                    break

            for e in bEdges:
                if e.select:
                    v1 = e.verts[0]
                    v2 = e.verts[1]
                    if v1 in fVerts or v2 in fVerts:
                        e.select = False
                        continue
                    intersection = intersect_line_plane(v1.co, v2.co, fVerts[0].co, normal)
                    if intersection is not None:
                        # Use abs because we don't care what side of plane we're on:
                        d1 = distance_point_to_plane(v1.co, fVerts[0].co, normal)
                        d2 = distance_point_to_plane(v2.co, fVerts[0].co, normal)
                        # If d1 is closer than we use v1 as our vertice:
                        # "xor" with 'use_force':
                        if (abs(d1) < abs(d2)) is not self.use_force:
                            if self.make_copy:
                                v1 = bVerts.new()
                                v1.co = e.verts[0].co
                                bVerts.ensure_lookup_table()
                                bEdges.ensure_lookup_table()
                            if self.keep_length:
                                v1.co = intersection
                            elif self.use_normal:
                                vector = normal
                                vector.length = abs(d1)
                                v1.co = v1.co - (vector * sign(d1))
                            else:
                                v1.co = intersection
                        else:
                            if self.make_copy:
                                v2 = bVerts.new()
                                v2.co = e.verts[1].co
                                bVerts.ensure_lookup_table()
                                bEdges.ensure_lookup_table()
                            if self.keep_length:
                                v2.co = intersection
                            elif self.use_normal:
                                vector = normal
                                vector.length = abs(d2)
                                v2.co = v2.co - (vector * sign(d2))
                            else:
                                v2.co = intersection
                    e.select = False

            bmesh.update_edit_mesh(me)

        except Exception as e:
            error_handlers(self, "mesh.edgetools_project_end", e,
                           reports="Project (End Point) Operator failed", func=False)
            return {'CANCELLED'}

        return {'FINISHED'}


class VIEW3D_MT_edit_mesh_edgetools(Menu):
    bl_label = "Edge Tools"
    bl_description = "Various tools for manipulating edges"

    def draw(self, context):
        layout = self.layout

        layout.operator("mesh.edgetools_extend")
        layout.operator("mesh.edgetools_spline")
        layout.operator("mesh.edgetools_ortho")
        layout.operator("mesh.edgetools_shaft")
        layout.operator("mesh.edgetools_slice")
        layout.separator()

        layout.operator("mesh.edgetools_project")
        layout.operator("mesh.edgetools_project_end")

def menu_func(self, context):
    self.layout.menu("VIEW3D_MT_edit_mesh_edgetools")

# define classes for registration
classes = (
    VIEW3D_MT_edit_mesh_edgetools,
    Extend,
    Spline,
    Ortho,
    Shaft,
    Slice,
    Project,
    Project_End,
    )


# registering and menu integration
def register():
    for cls in classes:
        bpy.utils.register_class(cls)
    bpy.types.VIEW3D_MT_edit_mesh_context_menu.prepend(menu_func)

# unregistering and removing menus
def unregister():
    for cls in classes:
        bpy.utils.unregister_class(cls)
    bpy.types.VIEW3D_MT_edit_mesh_context_menu.remove(menu_func)

if __name__ == "__main__":
    register()