Skip to content
Snippets Groups Projects
curve_utils.py 27 KiB
Newer Older
  • Learn to ignore specific revisions
  • # ##### BEGIN GPL LICENSE BLOCK #####
    #
    #  This program is free software; you can redistribute it and/or
    #  modify it under the terms of the GNU General Public License
    #  as published by the Free Software Foundation; either version 2
    #  of the License, or (at your option) any later version.
    #
    #  This program is distributed in the hope that it will be useful,
    #  but WITHOUT ANY WARRANTY; without even the implied warranty of
    #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    #  GNU General Public License for more details.
    #
    #  You should have received a copy of the GNU General Public License
    #  along with this program; if not, write to the Free Software Foundation,
    #  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    #
    # ##### END GPL LICENSE BLOCK #####
    
    # <pep8 compliant>
    
    20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
    
    import bpy
    
    def line_point_side_v2(l1, l2, pt):
        return (((l1[0] - pt[0]) * (l2[1] - pt[1])) -
                ((l2[0] - pt[0]) * (l1[1] - pt[1])))
    
    
    def shell_angle_to_dist(angle):
        from math import cos
        return 1.0 if (angle < 0.0001) else abs(1.0 / cos(angle))
    
    
    def vis_curve_object():
        scene = bpy.data.scenes[0] # weak!
        cu = bpy.data.curves.new(name="Line", type='CURVE')
        ob = bpy.data.objects.new(name="Test", object_data=cu)
        ob.layers = [True] * 20
        base = scene.objects.link(ob)
        return ob
    
    
    def vis_curve_spline(p1, h1, p2, h2):
        ob = vis_curve_object()
        spline = ob.data.splines.new(type='BEZIER')
        spline.bezier_points.add(1)
        spline.bezier_points[0].co = p1.to_3d()
        spline.bezier_points[1].co = p2.to_3d()
    
        spline.bezier_points[0].handle_right = h1.to_3d()
        spline.bezier_points[1].handle_left = h2.to_3d()
    
    
    def vis_circle_object(co, rad=1.0):
        import math
        scene = bpy.data.scenes[0] # weak!
        ob = bpy.data.objects.new(name="Circle", object_data=None)
        ob.rotation_euler.x = math.pi / 2
        ob.location = co.to_3d()
        ob.empty_draw_size = rad
        ob.layers = [True] * 20
        base = scene.objects.link(ob)
        return ob
    
    
    def visualize_line(p1, p2, p3=None, rad=None):
        pair = p1.to_3d(), p2.to_3d()
    
        ob = vis_curve_object()
        spline = ob.data.splines.new(type='POLY')
        spline.points.add(1)
        for co, v in zip((pair), spline.points):
            v.co.xyz = co
        
        if p3:
            spline = ob.data.splines.new(type='POLY')
            spline.points[0].co.xyz = p3.to_3d()
            print(rad)
            if rad is not None:
                vis_circle_object(p3, rad)
    
    
    def treat_points(points,
                     double_limit=0.0001,
                     ):
    
        # first remove doubles
        tot_len = 0.0
        if double_limit != 0.0:
            i = len(points) - 1
            while i > 0:
                length = (points[i] - points[i - 1]).length
                if length < double_limit:
                    del points[i]
                    if i >= len(points):
                        i -= 1
                else:
                    tot_len += length
                    i -= 1
        return tot_len
    
    
    def solve_curvature_2d(p1, p2, n1, n2, fac, fallback):
        """ Add a nice circular curvature on 
        """
        from mathutils import Vector
        from mathutils.geometry import (barycentric_transform,
                                        intersect_line_line,
                                        intersect_point_line,
                                        )
    
        p1_a = p1 + n1
        p2_a = p2 - n2
    
        isect = intersect_line_line(p1.to_3d(),
                                    p1_a.to_3d(),
                                    p2.to_3d(),
                                    p2_a.to_3d(),
                                    )
    
        if isect:
            corner = isect[0]
        else:
            corner = None
    
        if corner:
            corner = corner.xy
            p1_first_order = p1.lerp(corner, fac)
            p2_first_order = corner.lerp(p2, fac)
            co = p1_first_order.lerp(p2_first_order, fac)
            
            return co.xy
        else:
            # cant interpolate. just return interpolated value
            return fallback.copy() # p1.lerp(p2, fac)
    
    
    def points_to_bezier(points_orig,
                         double_limit=0.0001,
                         kink_tolerance=0.25,
                         bezier_tolerance=0.1,  # error distance, scale dependant
                         subdiv=8,
                         angle_span=0.95,  # 1.0 tries to evaluate splines of 180d
                         ):
    
        import math
        from mathutils import Vector
    
        class Point(object):
            __slots__ = ("co",
                         "angle",
                         "no",
                         "is_joint",
                         "next",
                         "prev",
                         )
    
            def __init__(self, co):
                self.co = co
                self.is_joint = False
    
            def calc_angle(self):
                if self.prev is None or self.next is None:
                    self.angle = 0.0
                else:
                    va = self.co - self.prev.co
                    vb = self.next.co - self.co
                    self.angle = va.angle(vb, 0.0)
                    
                    # XXX 2D
                    if line_point_side_v2(self.prev.co,
                                          self.co,
                                          self.next.co,
                                          ) < 0.0:
    
                        self.angle = -self.angle
    
            def angle_diff(self):
                """ use for detecting joints, detect difference in angle from
                    surrounding points.
                """
                if self.prev is None or self.next is None:
                    return 0.0
                else:
                    if (self.angle > self.prev.angle and
                                self.angle > self.next.angle):
                        return abs(self.angle - self.prev.angle) / math.pi
                    else:
                        return 0.0
            
            def angle_filter(self):
                tot = 1
                a = self.angle
                if self.prev:
                    tot += 1
                    a += self.prev.angle
    
                if self.next:
                    tot += 1
                    a += self.next.angle
                
                a = a / tot
                return 0.0 if abs(a) < 0.01 else a
            
            def calc_normal(self):
                v1 = v2 = None
                if self.prev and not self.prev.is_joint:
                    v1 = (self.co - self.prev.co).normalized()
                if self.next and not self.next.is_joint:
                    v2 = (self.next.co - self.co).normalized()
                
                if v1 and v2:
                    self.no = (v1 + v2).normalized()
                elif v1:
                    self.no = v1
                elif v2:
                    self.no = v2
                else:
                    print("Warning, assigning dummy normal")
                    self.no = Vector(0, 1)
    
    
        class Spline(object):
            __slots__ = ("points",
                         "handle_left",
                         "handle_right",
                         "next",
                         "prev",
                         )
    
            def __init__(self, points):
                self.points = points
    
            def link_points(self):
    
                if hasattr(self.points[0], "prev"):
                    raise Exception("already linked")
    
                p_prev = None
                for p in self.points:
                    p.prev = p_prev
                    p_prev = p
    
                p_prev = None
                for p in reversed(self.points):
                    p.next = p_prev
                    p_prev = p
    
            def split(self, i, is_joint=False):
                prev = self.prev
                next = self.next
    
                if is_joint:
                    self.points[i].is_joint = True
    
                # share a point
                spline_a = Spline(self.points[:i + 1])
                spline_b = Spline(self.points[i:])
    
                # invalidate self, dont reuse!
                self.points = None
                
                spline_a.next = spline_b
                spline_b.prev = spline_a
        
                spline_a.prev = prev
                spline_b.next = next
                if prev:
                    prev.next = spline_a
                if next:
                    next.prev = spline_b
    
                return spline_a, spline_b
    
            def calc_angle(self):
                for p in self.points:
                    p.calc_angle()
    
            def calc_normal(self):
                for p in self.points:
                    p.calc_normal()
    
            def calc_all(self):
                self.link_points()
                self.calc_angle()
                self.calc_normal()
    
            def total_angle(self):
                return abs(sum((p.angle for p in self.points)))
    
            def redistribute(self, segment_length, smooth=False):
                if len(self.points) == 1:
                    return
    
                from mathutils.geometry import intersect_line_sphere_2d
    
                p_line = p = self.points[0]
                points = [(p.co.copy(), p.co.copy())]
                p = p.next
    
                def point_add(co, p=None):
                    co = co.copy()
                    co_smooth = co.copy()
    
                    if smooth:
                        if p is None:
                            pass # works ok but no smoothing
                        elif (p.prev.no - p.no).length < 0.001:
                            pass # normals are too similar, paralelle
                        elif (p.angle > 0.0) != (p.prev.angle > 0.0):
                            pass
                        else:
                            # visualize_line(p.co, p.co + p.no)
                            
                            # this assumes co is on the line
                            fac = ((p.prev.co - co).length /
                                   (p.prev.co - p.co).length)
    
                            assert(fac >= 0.0 and fac <= 1.0)
    
                            co_smooth = solve_curvature_2d(p.prev.co,
                                                           p.co,
                                                           p.prev.no,
                                                           p.no,
                                                           fac,
                                                           co,
                                                           )
    
                    points.append((co, co_smooth))
    
                def point_step(p):
                    if p.is_joint or p.next is None:
                        point_add(p.co)
                        return None
                    else:
                        return p.next
    
                print("START")
                while p:
                    # we want the first pont past the segment size
                    
                    #if p.is_joint:
                    #    vis_circle_object(p.co)
    
                    length = (points[-1][0] - p.co).length
                    
                    if abs(length - segment_length) < 0.00001:
                        # close enough to be considered on the circle bounds
                        point_add(p.co)
                        p_line = p
                        p = point_step(p)
                    elif length < segment_length:
                        p = point_step(p)
                    else:
                        # the point is further then the segment width
                        p_start = points[-1][0] if p.prev is p_line else p.prev.co
                        
                        if (p_start - points[-1][0]).length > segment_length:
                            raise Exception("eek2")
                        if (p.co - points[-1][0]).length < segment_length:
                            raise Exception("eek3")
    
                        # print(p_start, p.co, points[-1][0], segment_length)
                        i1, i2 = intersect_line_sphere_2d(p_start,
                                                          p.co,
                                                          points[-1][0],
                                                          segment_length,
                                                          )
                        # print()
                        # print(i1, i2)
                        # assert(i1 is not None)
                        if i1 is not None:
                            point_add(i1, p)
                            p_line = p.prev
                        elif i2:
                            raise Exception("err")
                        
                        
                        elif i1 is None and i2 is None:
                            visualize_line(p_start,
                                           p.co,
                                           points[-1][0],
                                           segment_length,
                                           )
    
                            # XXX FIXME
                            # raise Exception("BAD!s")
                            point_add(p.co)
                            p_line = p
                            p = point_step(p)
                    
                joint = self.points[0].is_joint, self.points[-1].is_joint
    
                self.points = [Point(p[1]) for p in points]
    
                self.points[0].is_joint, self.points[-1].is_joint = joint
                
                self.calc_all()
                # raise Exception("END")
    
            def bezier_solve(self):
                """ Calculate bezier handles,
                    assume the splines have been broken up.
    
                    
                """
    
                from mathutils.geometry import (intersect_point_line,
                                                intersect_line_line,
                                                )
    
                # get a line
                p1 = self.points[0]
                p2 = self.points[-1]
    
                # since we have even spacing we can just pick the middle point
                # p_mid = self.points[len(self.points) // 2]
    
                # vec, fac = mathutils.geometry.intersect_point_line(m_mid, p1, p2)
                
    
                # TODO, ensure < 180d curves
                
                p1_a, p1_b = p1.co, p1.co + p1.no
                p2_a, p2_b = p2.co, p2.co - p2.no
    
                isect = intersect_line_line(p1_a.to_3d(),
                                            p1_b.to_3d(),
                                            p2_a.to_3d(),
                                            p2_b.to_3d(),
                                            )
    
    
                if isect is None:
                    # if isect is None, the line is paralelle
                    # just add simple handles
                    self.bezier_h1 = p1.co.lerp(p2.co, 1.0 / 3.0)
                    self.bezier_h2 = p2.co.lerp(p1.co, 1.0 / 3.0)
                    return
    
                corner = isect[0].xy
    
                p_mid = p1.co.lerp(p2.co, 0.5)
                dist_best = 10000000.0
                p_best = None
                side = (line_point_side_v2(p_mid, corner, p1.co) < 0.0)
                ok = False
                for p_apex in self.points:
                    if (line_point_side_v2(p_mid,
                                           corner,
                                           p_apex.co,
                                           ) < 0.0) != side:
    
                        # find the exact point on the line between the apex and
                        # the middle
                        p_test_1 = intersect_point_line(p_apex.co,
                                                        p_mid,
                                                        corner)[0].xy
                        p_test_2 = intersect_point_line(p_apex.prev.co,
                                                        p_mid,
                                                        corner)[0].xy
                        
                        w1 = (p_test_1 - p_apex.co).length
                        w2 = (p_test_2 - p_apex.prev.co).length
                        fac = w1 / (w1 + w2)
                        
                        p_apex_co = p_apex.co.lerp(p_apex.prev.co, fac)
                        p_apex_no = p_apex.no.lerp(p_apex.prev.no, fac)
                        p_apex_no.normalize()
                        
                        # visualize_line(p_mid.to_3d(), corner.to_3d())
                        # visualize_line(p_apex.co.to_3d(), p_apex_co.to_3d())
    
                        ok = True
                        break
    
                del p_apex, w1, w2, fac, p_test_1, p_test_2
    
                assert(ok == True)
    
                v1 = (p2.co - p1.co).normalized()
                v2 = p_apex_no.copy()
                
                # find the point on the line which aligns with the apex point.
                # first place handles, must be distance to apex * 1.333...
                if 1:
                    p_mid_apex_align = intersect_point_line(p_apex_co,
                                                            p1.co,
                                                            p2.co)[0]
                else:
                    p_mid_apex_align = p_mid
    
                # visualize_line(p_mid_apex_align.to_3d(), p_apex_co.to_3d())
    
                # The point is always 75% of the handle distance
                # here we extend the distance from the line to the curve apex
                # by 33.33..% to compensate for this.
                h_sca = 1 # (p_apex_co - p_mid_apex_align.xy).length / 0.75
    
    
                from math import pi
    
                # -1.0 - 1.0
                bias = v1.angle(v2) / (pi / 2)
                print(bias)
                if abs(bias) < 0.001:
                    h_sca_1 = h_sca
                    h_sca_2 = h_sca
                elif line_point_side_v2(Vector((0.0, 0.0)), v2, v1) < 0:
                    h_sca_1 = h_sca / (1.0 + bias)
                    h_sca_2 = h_sca * (1.0 + bias)
                else:
                    h_sca_1 = h_sca * (1.0 + bias)
                    h_sca_2 = h_sca / (1.0 + bias)
    
    
                # find the factor 
                fac = intersect_point_line(p_apex_co, p_mid, corner)[1]
                # assert(fac >= 0.0)
    
                h_sca_1 = 1
                h_sca_2 = 1
    
                h1 = p1.co.lerp(corner, (fac / 0.75) * h_sca_1)
                h2 = p2.co.lerp(corner, (fac / 0.75) * h_sca_2)
    
    
                # rare cases this can mess up, because of almost straight lines
        
    
                # good for debugging single splines
                # vis_curve_spline(p1.co, h1, p2.co, h2)
                
                
                self.handle_left = h1
                self.handle_right = h2
    
            def bezier_error(self):
                from mathutils.geometry import interpolate_bezier
    
                test_points = interpolate_bezier(self.points[0].co.to_3d(),
                                                 self.handle_left,
                                                 self.handle_right,
                                                 self.points[-1].co.to_3d(),
                                                 8,
                                                 )
    
                from mathutils.geometry import intersect_point_line
    
                error = 0.0
    
                # this is a rough method measuring the error but should be good enough
                # TODO. dont test against every single point.
                for co in test_points:
                    co = co.xy
                    # initial values
                    co_best = self.points[0].co
    
                    length_best = (co - co_best).length
                    for p in self.points[1:]:
                        # dist to point
                        length = (co - p.co).length
                        if length < length_best:
                            length_best = length
                            co_best = p.co
                        
                        p_ix, fac = intersect_point_line(co, p.co, p.prev.co)
                        p_ix = p_ix.xy
                        if fac >= 0.0 and fac <= 1.0:
                            length = (co - p_ix).length
                            if length < length_best:
                                length_best = length
                                co_best = p_ix
                    
                    error += length_best
    
                return error
    
        class Curve(object):
            __slots__ = ("splines",
                         )
    
            def __init__(self, splines):
                self.splines = splines
    
            def link_splines(self):
                s_prev = None
                for s in self.splines:
                    s.prev = s_prev
                    s_perv = s
    
                s_prev = None
                for s in reversed(self.splines):
                    s.next = s_prev
                    s_perv = s
    
            def calc_data(self):
                for s in self.splines:
                    s.calc_all()
    
                self.link_splines()
    
            def split_func_map_point(self, func, is_joint=False):
                """ func takes a point and returns true on split
    
                    return True if any splits are made.
                """
                s_index = 0
                s = self.splines[s_index]
                while s:
                    assert(self.splines[s_index] == s)
                    
                    for i, p in enumerate(s.points):
    
                        if i == 0 or i >= len(s.points) - 1:
                            continue
    
                        if func(p):
                            split_pair = s.split(i, is_joint=is_joint)
                            # keep list in sync
                            self.splines[s_index:s_index + 1] = split_pair
                            
                            # advance on main while loop
                            s = split_pair[0]
                            assert(self.splines[s_index] == s)
                            break
    
                    s = s.next
                    s_index += 1
    
    
            def split_func_spline(self, func, is_joint=False, recursive=False):
                """ func takes a spline and returns the point index on split or -1
    
                    return True if any splits are made.
                """
                s_index = 0
                s = self.splines[s_index]
                while s:
                    assert(self.splines[s_index] == s)
                    
                    i = func(s)
    
                    if i != -1:
                        split_pair = s.split(i, is_joint=is_joint)
                        # keep list in sync
                        self.splines[s_index:s_index + 1] = split_pair
    
                        # advance on main while loop
                        s = split_pair[0]
                        assert(self.splines[s_index] == s)
                        
                        if recursive:
                            continue
    
                    s = s.next
                    s_index += 1
    
            def validate(self):
                s_prev = None
                iii = 0
                for s in self.splines:
                    print(iii)
                    assert(s.prev == s_prev)
                    if s_prev:
                        print()
                        assert(s_prev.next == s)
                    s_prev = s
                    iii += 1
    
            def redistribute(self, segment_length, smooth=False):
                for s in self.splines:
                    s.redistribute(segment_length, smooth)
    
            def to_blend_data(self):
                """ Points to blender data, debugging only
                """
                scene = bpy.data.scenes[0] # weak!
                for base in scene.object_bases:
                    base.select = False
                cu = bpy.data.curves.new(name="Test", type='CURVE')
                for s in self.splines:
                    spline = cu.splines.new(type='POLY')
                    spline.points.add(len(s.points) - 1)
                    for p, v in zip(s.points, spline.points):
                        v.co.xy = p.co
                        
                
                
                ob = bpy.data.objects.new(name="Test", object_data=cu)
                ob.layers = [True] * 20
                base = scene.objects.link(ob)
                scene.objects.active = ob
                base.select = True
                # base.layers = [True] * 20
                print(ob, "Done")
            
            def to_blend_curve(self, cu=None, cu_matrix=None):
                """ return new bezier spline datablock or add to an existing
                """
                if not cu:
                    cu = bpy.data.curves.new(name="Curve", type='CURVE')
    
                spline = cu.splines.new(type='BEZIER')
                spline.bezier_points.add(len(self.splines))
    
                s_prev = None
                for i, bp in enumerate(spline.bezier_points):
                    if i < len(self.splines):
                        s = self.splines[i]
                    else:
                        s = None
    
                    if s_prev and s:
                        pt = s.points[0]
                        hl = s_prev.handle_right
                        hr = s.handle_left
                    elif s:
                        pt = s.points[0]
                        hr = s.handle_left
                        hl = (pt.co.xy + (pt.co.xy - hr.xy))
                    elif s_prev:
                        pt = s_prev.points[-1]
                        hl = s_prev.handle_right
                        hr = (pt.co.xy + (pt.co.xy - hl.xy))
                    else:
                        assert(0)
    
                    bp.co.xy = pt.co
                    bp.handle_left.xy = hl
                    bp.handle_right.xy = hr
    
                    handle_type = 'FREE'
    
                    if pt.is_joint == False or (s_prev and s) == False:
                        
                        # XXX, this should not happen, but since it can 
                        # at least dont allow allignment to break the curve output
                        if (pt.co - hl).angle(hr - pt.co, 0.0) < 0.1:
    
                            handle_type = 'ALIGNED'
    
                    bp.handle_left_type = bp.handle_right_type = handle_type
                    s_prev = s
    
                scene = bpy.data.scenes[0] # weak!
                ob = bpy.data.objects.new(name="Test", object_data=cu)
                ob.layers = [True] * 20
                base = scene.objects.link(ob)
                scene.objects.active = ob
                base.select = True
    
                return cu
                
                
    
    
    
        points = list(points_orig)
        
        # remove doubles
        tot_length = treat_points(points)
    
        # calculate segment spacing
        segment_length = (tot_length / len(points)) / subdiv 
    
    
        curve = Curve([Spline([Point(p) for p in points])])
    
        curve.calc_data()
    
        if kink_tolerance != 0.0:
            pass
    
        curve.split_func_map_point(lambda p: p.angle_diff() > kink_tolerance,
                                   is_joint=True,
                                   )
    
        # return
        # curve.validate()
    
        curve.redistribute(segment_length / 4.0, smooth=True)
        curve.redistribute(segment_length, smooth=False)
    
        def swap_side(p):
            angle = p.angle_filter()
            if p.prev.prev is None:
                swap_side.last = angle
            else:
                if (swap_side.last > 0.0) != (angle > 0.0):
                    if abs(p.angle) > 0.025:
                        swap_side.last = p.angle
                        return True
    
            return False
    
    
        #curve.split_func_map_point(lambda p: (p.angle_filter() >= 0) != \
        #                              (p.prev.angle_filter() >= 0))
        curve.split_func_map_point(swap_side)
    
    
        # now split based on total spline angle.
        import math
        angle_span_rad = angle_span * math.pi
        curve.split_func_spline(lambda s:
                                    len(s.points) // 2
                                    if (s.total_angle() > angle_span_rad and
                                        len(s.points) > 2)
                                    else -1,
                                recursive=True,
                                )
    
    
        curve.split_func_spline(lambda s:
                                    len(s.points) // 2
                                    if ((s.bezier_solve(), s.bezier_error())[1] >
                                         bezier_tolerance) and (len(s.points) > 2)
                                    else -1,
                                recursive=True,
                                )
        
        '''
        for s in curve.splines:
            s.bezier_solve()
            print(s.bezier_error())
        '''
        # VISUALIZE
        # curve.to_blend_data()
        curve.to_blend_curve()
    
    
    if __name__ == "__main__":
        print("A")
        bpy.ops.wm.open_mainfile(filepath="/root/curve_test.blend")
        
        ob = bpy.data.objects["Curve"]
        points = [p.co.xy for s in ob.data.splines for p in s.points]
    
        print("points_to_bezier 1")
        points_to_bezier(points)
        print("points_to_bezier 2")
    
        bpy.ops.wm.save_as_mainfile(filepath="/root/curve_test_edit.blend",
                                    copy=True)
        print("done!")