Skip to content
Snippets Groups Projects
import_img.py 25.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
    # ##### BEGIN GPL LICENSE BLOCK #####
    #
    #  This program is free software; you can redistribute it and/or
    #  modify it under the terms of the GNU General Public License
    #  as published by the Free Software Foundation; either version 2
    #  of the License, or (at your option) any later version.
    #
    #  This program is distributed in the hope that it will be useful,
    #  but WITHOUT ANY WARRANTY; without even the implied warranty of
    #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    #  GNU General Public License for more details.
    #
    #  You should have received a copy of the GNU General Public License
    #  along with this program; if not, write to the Free Software Foundation,
    #  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    #
    # ##### END GPL LICENSE BLOCK #####
    
    """
    This script can import a HiRISE DTM .IMG file.
    """
    
    import bpy
    from bpy.props import *
    
    from struct import pack, unpack, unpack_from
    import os
    import queue, threading
    
    class image_props:
        ''' keeps track of image attributes throughout the hirise_dtm_helper class '''
        def __init__(self, name, dimensions, pixel_scale):
          self.name( name )
          self.dims( dimensions )
          self.processed_dims( dimensions )
          self.pixel_scale( pixel_scale )
    
        def dims(self, dims=None):
          if dims is not None:
            self.__dims = dims
          return self.__dims
    
        def processed_dims(self, processed_dims=None):
          if processed_dims is not None:
            self.__processed_dims = processed_dims
          return self.__processed_dims
    
        def name(self, name=None):
          if name is not None:
            self.__name = name
          return self.__name
    
        def pixel_scale(self, pixel_scale=None):
          if pixel_scale is not None:
            self.__pixel_scale = pixel_scale
          return self.__pixel_scale
    
    class hirise_dtm_helper(object):
        ''' methods to understand/import a HiRISE DTM formatted as a PDS .IMG '''
    
        def __init__(self, context, filepath):
          self.__context = context
          self.__filepath = filepath
          self.__ignore_value = 0x00000000
          self.__bin_mode = 'BIN6'
          self.scale( 1.0 )
          self.__cropXY = False
          self.marsRed(False)
    
        def bin_mode(self, bin_mode=None):
          if bin_mode != None:
            self.__bin_mode = bin_mode
          return self.__bin_mode
    
        def scale(self, scale=None):
          if scale is not None:
            self.__scale = scale
          return self.__scale
    
        def crop(self, widthX, widthY, offX, offY):
          self.__cropXY = [ widthX, widthY, offX, offY ]
          return self.__cropXY
    
        def marsRed(self, marsRed=None):
          if marsRed is not None:
            self.__marsRed = marsRed
          return self.__marsRed
    
        def dbg(self, mesg):
          print(mesg)
    
        ############################################################################
        ## PDS Label Operations
        ############################################################################
    
        def parsePDSLabel(self, labelIter, currentObjectName=None, level = ""):
          # Let's parse this thing... semi-recursively
          ## I started writing this caring about everything in the PDS standard but ...
          ## it's a mess and I only need a few things -- thar be hacks below
          ## Mostly I just don't care about continued data from previous lines
          label_structure = []
    
          # When are we done with this level?
          endStr = "END"
          if not currentObjectName == None:
            endStr = "END_OBJECT = %s" % currentObjectName
          line = ""
    
          while not line.rstrip() == endStr:
            line = next(labelIter)
    
            # Get rid of comments
            comment = line.find("/*")
            if comment > -1:
              line = line[:comment]
    
            # Take notice of objects
            if line[:8] == "OBJECT =":
              objName = line[8:].rstrip()
              label_structure.append(
                (
                 objName.lstrip().rstrip(),
                 self.parsePDSLabel(labelIter, objName.lstrip().rstrip(), level + "  ")
                )
              )
            elif line.find("END_OBJECT =") > -1:
              pass
            elif len(line.rstrip().lstrip()) > 0:
              key_val = line.split(" = ", 2)
              if len(key_val) == 2:
                label_structure.append( (key_val[0].rstrip().lstrip(), key_val[1].rstrip().lstrip()) )
    
          return label_structure
    
        # There has got to be a better way in python?
        def iterArr(self, label):
          for line in label:
            yield line
    
        def getPDSLabel(self, img):
          # Just takes file and stores it into an array for later use
          label = []
          done = False;
          # Grab label into array of lines
          while not done:
            line = str(img.readline(), 'utf-8')
            if line.rstrip() == "END":
              done = True
            label.append(line)
          return (label, self.parsePDSLabel(self.iterArr(label)))
    
        def getLinesAndSamples(self, label):
          ''' uses the parsed PDS Label to get the LINES and LINE_SAMPLES parameters
              from the first object named "IMAGE" -- is hackish
          '''
          lines = None
          line_samples = None
          for obj in label:
            if obj[0] == "IMAGE":
              return self.getLinesAndSamples(obj[1])
            if obj[0] == "LINES":
              lines = int(obj[1])
            if obj[0] == "LINE_SAMPLES":
              line_samples = int(obj[1])
    
          return ( line_samples, lines )
    
        def getValidMinMax(self, label):
          ''' uses the parsed PDS Label to get the VALID_MINIMUM and VALID_MAXIMUM parameters
              from the first object named "IMAGE" -- is hackish
          '''
          lines = None
          line_samples = None
          for obj in label:
            if obj[0] == "IMAGE":
              return self.getValidMinMax(obj[1])
            if obj[0] == "VALID_MINIMUM":
              vmin = float(obj[1])
            if obj[0] == "VALID_MAXIMUM":
              vmax = float(obj[1])
    
          return ( vmin, vmax )
    
        def getMissingConstant(self, label):
          ''' uses the parsed PDS Label to get the MISSING_CONSTANT parameter
              from the first object named "IMAGE" -- is hackish
          '''
    
          lines = None
          line_samples = None
          for obj in label:
            if obj[0] == "IMAGE":
              return self.getMissingConstant(obj[1])
            if obj[0] == "MISSING_CONSTANT":
              bit_string_repr = obj[1]
    
          # This is always the same for a HiRISE image, so we are just checking it
          # to be a little less insane here. If someone wants to support another
          # constant then go for it. Just make sure this one continues to work too
          pieces = bit_string_repr.split("#")
          if pieces[0] == "16" and pieces[1] == "FF7FFFFB":
            ignore_value = unpack("f", pack("I", 0xFF7FFFFB))[0]
    
          return ( ignore_value )
    
        ############################################################################
        ## Image operations
        ############################################################################
    
        # decorator to run a generator in a thread
        def threaded_generator(func):
          def start(*args,**kwargs):
            # Setup a queue of returned items
            yield_q = queue.Queue()
            # Thread to run generator inside of
            def worker():
              for obj in func(*args,**kwargs): yield_q.put(obj)
              yield_q.put(StopIteration)
            t = threading.Thread(target=worker)
            t.start()
            # yield from the queue as fast as we can
            obj = yield_q.get()
            while obj is not StopIteration:
              yield obj
              obj = yield_q.get()
    
          # return the thread-wrapped generator
          return start
    
        @threaded_generator
        def bin2(self, image_iter, bin2_method_type="SLOW"):
          ''' this is an iterator that: Given an image iterator will yield binned lines '''
    
          img_props = next(image_iter)
          # dimensions shrink as we remove pixels
          processed_dims = img_props.processed_dims()
          processed_dims = ( processed_dims[0]//2, processed_dims[1]//2 )
          img_props.processed_dims( processed_dims )
          # each pixel is larger as binning gets larger
          pixel_scale = img_props.pixel_scale()
          pixel_scale = ( pixel_scale[0]*2, pixel_scale[1]*2 )
          img_props.pixel_scale( pixel_scale )
          yield img_props
    
          # Take two lists  [a1, a2, a3], [b1, b2, b3] and combine them into one
          # list of [a1 + b1, a2+b2,  ... ] as long as both values are not ignorable
          combine_fun = lambda a, b: a != self.__ignore_value and b != self.__ignore_value and a + b or self.__ignore_value
    
          line_count = 0
          ret_list = []
          for line in image_iter:
            if line_count == 1:
              line_count = 0
              tmp_list = list(map(combine_fun, line, last_line))
              while len(tmp_list) > 1:
                ret_list.append( combine_fun( tmp_list[0], tmp_list[1] ) )
                del tmp_list[0:2]
              yield ret_list
              ret_list = []
            last_line = line
            line_count += 1
    
        @threaded_generator
        def bin6(self, image_iter, bin6_method_type="SLOW"):
          ''' this is an iterator that: Given an image iterator will yield binned lines '''
    
          img_props = next(image_iter)
          # dimensions shrink as we remove pixels
          processed_dims = img_props.processed_dims()
          processed_dims = ( processed_dims[0]//6, processed_dims[1]//6 )
          img_props.processed_dims( processed_dims )
          # each pixel is larger as binning gets larger
          pixel_scale = img_props.pixel_scale()
          pixel_scale = ( pixel_scale[0]*6, pixel_scale[1]*6 )
          img_props.pixel_scale( pixel_scale )
          yield img_props
    
          if bin6_method_type == "FAST":
            bin6_method = self.bin6_real_fast
          else:
            bin6_method = self.bin6_real
    
          raw_data = []
          line_count = 0
          for line in image_iter:
            raw_data.append( line )
            line_count += 1
            if line_count == 6:
              yield bin6_method( raw_data )
              line_count = 0
              raw_data = []
    
        def bin6_real(self, raw_data):
          ''' does a 6x6 sample of raw_data and returns a single line of data '''
          # TODO: make this more efficient
    
          binned_data = []
    
          # Filter out those unwanted hugely negative values...
          filter_fun = lambda a: self.__ignore_value.__ne__(a)
    
          base = 0
          for i in range(0, len(raw_data[0])//6):
    
            ints = list(filter( filter_fun, raw_data[0][base:base+6] +
              raw_data[1][base:base+6] +
              raw_data[2][base:base+6] +
              raw_data[3][base:base+6] +
              raw_data[4][base:base+6] +
              raw_data[5][base:base+6] ))
            len_ints = len( ints )
    
            # If we have all pesky values, return a pesky value
            if len_ints == 0:
              binned_data.append( self.__ignore_value )
            else:
              binned_data.append( sum(ints) / len(ints) )
    
            base += 6
          return binned_data
    
        def bin6_real_fast(self, raw_data):
          ''' takes a single value from each 6x6 sample of raw_data and returns a single line of data '''
          # TODO: make this more efficient
    
          binned_data = []
    
          base = 0
          for i in range(0, len(raw_data[0])//6):
            binned_data.append( raw_data[0][base] )
            base += 6
    
          return binned_data
    
        @threaded_generator
        def bin12(self, image_iter, bin12_method_type="SLOW"):
          ''' this is an iterator that: Given an image iterator will yield binned lines '''
    
          img_props = next(image_iter)
          # dimensions shrink as we remove pixels
          processed_dims = img_props.processed_dims()
          processed_dims = ( processed_dims[0]//12, processed_dims[1]//12 )
          img_props.processed_dims( processed_dims )
          # each pixel is larger as binning gets larger
          pixel_scale = img_props.pixel_scale()
          pixel_scale = ( pixel_scale[0]*12, pixel_scale[1]*12 )
          img_props.pixel_scale( pixel_scale )
          yield img_props
    
          if bin12_method_type == "FAST":
            bin12_method = self.bin12_real_fast
          else:
            bin12_method = self.bin12_real
    
          raw_data = []
          line_count = 0
          for line in image_iter:
            raw_data.append( line )
            line_count += 1
            if line_count == 12:
              yield bin12_method( raw_data )
              line_count = 0
              raw_data = []
    
        def bin12_real(self, raw_data):
          ''' does a 12x12 sample of raw_data and returns a single line of data '''
    
          binned_data = []
    
          # Filter out those unwanted hugely negative values...
          filter_fun = lambda a: self.__ignore_value.__ne__(a)
    
          base = 0
          for i in range(0, len(raw_data[0])//12):
    
            ints = list(filter( filter_fun, raw_data[0][base:base+12] +
              raw_data[1][base:base+12] +
              raw_data[2][base:base+12] +
              raw_data[3][base:base+12] +
              raw_data[4][base:base+12] +
              raw_data[5][base:base+12] +
              raw_data[6][base:base+12] +
              raw_data[7][base:base+12] +
              raw_data[8][base:base+12] +
              raw_data[9][base:base+12] +
              raw_data[10][base:base+12] +
              raw_data[11][base:base+12] ))
            len_ints = len( ints )
    
            # If we have all pesky values, return a pesky value
            if len_ints == 0:
              binned_data.append( self.__ignore_value )
            else:
              binned_data.append( sum(ints) / len(ints) )
    
            base += 12
          return binned_data
    
        def bin12_real_fast(self, raw_data):
          ''' takes a single value from each 12x12 sample of raw_data and returns a single line of data '''
          return raw_data[0][11::12]
    
        @threaded_generator
        def cropXY(self, image_iter, XSize=None, YSize=None, XOffset=0, YOffset=0):
          ''' return a cropped portion of the image '''
    
          img_props = next(image_iter)
          # dimensions shrink as we remove pixels
          processed_dims = img_props.processed_dims()
    
          if XSize == None:
            XSize = processed_dims[0]
          if YSize == None:
            YSize = processed_dims[1]
    
          if XSize + XOffset > processed_dims[0]:
            self.dbg("WARNING: Upstream dims are larger than cropped XSize dim")
            XSize = processed_dims[0]
            XOffset = 0
          if YSize + YOffset > processed_dims[1]:
            self.dbg("WARNING: Upstream dims are larger than cropped YSize dim")
            YSize = processed_dims[1]
            YOffset = 0
    
          img_props.processed_dims( (XSize, YSize) )
          yield img_props
    
          currentY = 0
          for line in image_iter:
            if currentY >= YOffset and currentY <= YOffset + YSize:
              yield line[XOffset:XOffset+XSize]
            # Not much point in reading the rest of the data...
            if currentY == YOffset + YSize:
              return
            currentY += 1
    
        @threaded_generator
        def getImage(self, img, img_props):
          ''' Assumes 32-bit pixels -- bins image '''
          dims = img_props.dims()
          self.dbg("getting image (x,y): %d,%d" % ( dims[0], dims[1] ))
    
          # setup to unpack more efficiently.
          x_len = dims[0]
          # little endian (PC_REAL)
          unpack_str = "<"
          # unpack_str = ">"
          unpack_bytes_str = "<"
          pack_bytes_str = "="
          # 32 bits/sample * samples/line = y_bytes (per line)
          x_bytes = 4*x_len
          for x in range(0, x_len):
            # 32-bit float is "d"
            unpack_str += "f"
            unpack_bytes_str += "I"
            pack_bytes_str += "I"
    
          # Each iterator yields this first ... it is for reference of the next iterator:
          yield img_props
    
          for y in range(0, dims[1]):
            # pixels is a byte array
            pixels = b''
            while len(pixels) < x_bytes:
              new_pixels = img.read( x_bytes - len(pixels) )
              pixels += new_pixels
              if len(new_pixels) == 0:
                x_bytes = -1
                pixels = []
                self.dbg("Uh oh: unexpected EOF!")
            if len(pixels) == x_bytes:
              if 0 == 1:
                repacked_pixels = b''
                for integer in unpack(unpack_bytes_str, pixels):
                  repacked_pixels += pack("=I", integer)
                yield unpack( unpack_str, repacked_pixels )
              else:
                yield unpack( unpack_str, pixels )
    
        @threaded_generator
        def shiftToOrigin(self, image_iter, image_min_max):
          ''' takes a generator and shifts the points by the valid minimum
              also removes points with value self.__ignore_value and replaces them with None
          '''
    
          # use the passed in values ...
          valid_min = image_min_max[0]
    
          # pass on dimensions/pixel_scale since we don't modify them here
          yield next(image_iter)
    
          self.dbg("shiftToOrigin filter enabled...");
    
          # closures rock!
          def normalize_fun(point):
            if point == self.__ignore_value:
              return None
            return point - valid_min
    
          for line in image_iter:
            yield list(map(normalize_fun, line))
          self.dbg("shifted all points")
    
        @threaded_generator
        def scaleZ(self, image_iter, scale_factor):
          ''' scales the mesh values by a factor '''
          # pass on dimensions since we don't modify them here
          yield next(image_iter)
    
          scale_factor = self.scale()
    
          def scale_fun(point):
            try:
              return point * scale_factor
            except:
              return None
    
          for line in image_iter:
            yield list(map(scale_fun, line))
    
        def genMesh(self, image_iter):
          '''Returns a mesh object from an image iterator this has the
             value-added feature that a value of "None" is ignored
          '''
    
          # Get the output image size given the above transforms
          img_props = next(image_iter)
    
          # Let's interpolate the binned DTM with blender -- yay meshes!
          coords = []
          faces  = []
          face_count = 0
          coord = -1
          max_x = img_props.processed_dims()[0]
          max_y = img_props.processed_dims()[1]
    
          scale_x = self.scale() * img_props.pixel_scale()[0]
          scale_y = self.scale() * img_props.pixel_scale()[1]
    
          line_count = 0
          current_line = []
          # seed the last line (or previous line) with a line
          last_line = next(image_iter)
          point_offset = 0
          previous_point_offset = 0
    
          # Let's add any initial points that are appropriate
          x = 0
          point_offset += len( last_line ) - last_line.count(None)
          for z in last_line:
            if z != None:
              coords.extend([x*scale_x, 0.0, z])
              coord += 1
            x += 1
    
          # We want to ignore points with a value of "None" but we also need to create vertices
          # with an index that we can re-create on the next line. The solution is to remember
          # two offsets: the point offset and the previous point offset.
          #   these offsets represent the point index that blender gets -- not the number of
          #   points we have read from the image
    
          # if "x" represents points that are "None" valued then conceptually this is how we
          # think of point indices:
          #
          # previous line: offset0   x   x  +1  +2  +3
          # current line:  offset1   x  +1  +2  +3   x
    
          # once we can map points we can worry about making triangular or square faces to fill
          # the space between vertices so that blender is more efficient at managing the final
          # structure.
    
          self.dbg('generate mesh coords/faces from processed image data...')
    
          # read each new line and generate coordinates+faces
          for dtm_line in image_iter:
    
            # Keep track of where we are in the image
            line_count += 1
            y_val = line_count*-scale_y
            if line_count % 31 == 0:
              self.dbg("reading image... %d of %d" % ( line_count, max_y ))
    
            # Just add all points blindly
            # TODO: turn this into a map
            x = 0
            for z in dtm_line:
              if z != None:
                coords.extend( [x*scale_x, y_val, z] )
                coord += 1
              x += 1
    
            # Calculate faces
            for x in range(0, max_x - 1):
              vals = [
                last_line[ x + 1 ],
                last_line[ x ],
                dtm_line[  x ],
                dtm_line[  x + 1 ],
                ]
    
              # Two or more values of "None" means we can ignore this block
              none_val = vals.count(None)
    
              # Common case: we can create a square face
              if none_val == 0:
                faces.extend( [
                  previous_point_offset,
                  previous_point_offset+1,
                  point_offset+1,
                  point_offset,
                  ] )
                face_count += 1
              elif none_val == 1:
                # special case: we can implement a triangular face
                ## NB: blender 2.5 makes a triangular face when the last coord is 0
                # TODO: implement a triangular face
                pass
    
              if vals[1] != None:
                previous_point_offset += 1
              if vals[2] != None:
                point_offset += 1
    
            # Squeeze the last point offset increment out of the previous line
            if last_line[-1] != None:
              previous_point_offset += 1
    
            # Squeeze the last point out of the current line
            if dtm_line[-1] != None:
              point_offset += 1
    
            # remember what we just saw (and forget anything before that)
            last_line = dtm_line
    
          self.dbg('generate mesh from coords/faces...')
          me = bpy.data.meshes.new(img_props.name()) # create a new mesh
    
          self.dbg('coord: %d' % coord)
          self.dbg('len(coords): %d' % len(coords))
          self.dbg('len(faces): %d' % len(faces))
    
          self.dbg('setting coords...')
          me.vertices.add(len(coords)/3)
          me.vertices.foreach_set("co", coords)
    
          self.dbg('setting faces...')
          me.faces.add(len(faces)/4)
          me.faces.foreach_set("vertices_raw", faces)
    
          self.dbg('running update...')
    
    
          bin_desc = self.bin_mode()
          if bin_desc == 'NONE':
            bin_desc = 'No Bin'
    
          ob=bpy.data.objects.new("DTM - %s" % bin_desc, me)
    
          return ob
    
        def marsRedMaterial(self):
          ''' produce some approximation of a mars surface '''
          mat = None
          for material in bpy.data.materials:
            if material.getName() == "redMars":
              mat = material
          if mat is None:
            mat = bpy.data.materials.new("redMars")
            mat.diffuse_shader = 'MINNAERT'
            mat.setRGBCol(  (0.426, 0.213, 0.136) )
            mat.setDiffuseDarkness(0.8)
            mat.specular_shader = 'WARDISO'
            mat.setSpecCol( (1.000, 0.242, 0.010) )
            mat.setSpec( 0.010 )
            mat.setRms( 0.100 )
          return mat
    
        ################################################################################
        #  Yay, done with helper functions ... let's see the abstraction in action!    #
        ################################################################################
        def execute(self):
    
          self.dbg('opening/importing file: %s' % self.__filepath)
          img = open(self.__filepath, 'rb')
    
          self.dbg('read PDS Label...')
          (label, parsedLabel) = self.getPDSLabel(img)
    
          self.dbg('parse PDS Label...')
          image_dims = self.getLinesAndSamples(parsedLabel)
          img_min_max_vals = self.getValidMinMax(parsedLabel)
          self.__ignore_value = self.getMissingConstant(parsedLabel)
    
          self.dbg('import/bin image data...')
    
          # MAGIC VALUE? -- need to formalize this to rid ourselves of bad points
          img.seek(28)
          # Crop off 4 lines
          img.seek(4*image_dims[0])
    
          # HiRISE images (and most others?) have 1m x 1m pixels
          pixel_scale=(1, 1)
    
          # The image we are importing
          image_name = os.path.basename( self.__filepath )
    
          # Set the properties of the image in a manageable object
          img_props = image_props( image_name, image_dims, pixel_scale )
    
          # Get an iterator to iterate over lines
          image_iter = self.getImage(img, img_props)
    
          ## Wrap the image_iter generator with other generators to modify the dtm on a
          ## line-by-line basis. This creates a stream of modifications instead of reading
          ## all of the data at once, processing all of the data (potentially several times)
          ## and then handing it off to blender
          ## TODO: find a way to alter projection based on transformations below
    
          if self.__cropXY:
            image_iter = self.cropXY(image_iter,
                                     XSize=self.__cropXY[0], 
                                     YSize=self.__cropXY[1],
                                     XOffset=self.__cropXY[2],
                                     YOffset=self.__cropXY[3]
            			 )
    
          # Select an appropriate binning mode
          ## TODO: generalize the binning fn's
          bin_mode = self.bin_mode()
          bin_mode_funcs = {
            'BIN2': self.bin2(image_iter),
            'BIN6': self.bin6(image_iter),
            'BIN6-FAST': self.bin6(image_iter, 'FAST'),
            'BIN12': self.bin12(image_iter),
            'BIN12-FAST': self.bin12(image_iter, 'FAST')
            }
          if bin_mode in bin_mode_funcs.keys():
            image_iter = bin_mode_funcs[ bin_mode ]
    
          image_iter = self.shiftToOrigin(image_iter, img_min_max_vals)
    
          if self.scale != 1.0:
            image_iter = self.scaleZ(image_iter, img_min_max_vals)
    
          # Create a new mesh object and set data from the image iterator
          self.dbg('generating mesh object...')
          ob_new = self.genMesh(image_iter)
    
          if self.marsRed():
            mars_red = self.marsRedMaterial()
            ob_new.materials += [mars_red]
    
          if img:
            img.close()
    
          # Add mesh object to the current scene
          scene = self.__context.scene
          self.dbg('linking object to scene...')
          scene.objects.link(ob_new)
          scene.update()
    
          # deselect other objects
          bpy.ops.object.select_all(action='DESELECT')
    
          # scene.objects.active = ob_new
          # Select the new mesh
          ob_new.select = True
    
          self.dbg('done with ops ... now wait for blender ...')
    
          return ('FINISHED',)
    
    def load(operator, context, filepath, scale, bin_mode, cropVars, marsRed):
        print("Bin Mode: %s" % bin_mode)
        print("Scale: %f" % scale)
        helper = hirise_dtm_helper(context,filepath)
        helper.bin_mode( bin_mode )
        helper.scale( scale )
        if cropVars:
            helper.crop( cropVars[0], cropVars[1], cropVars[2], cropVars[3] )
        helper.execute()
        if marsRed:
            helper.marsRed(marsRed)
    
        print("Loading %s" % filepath)
        return {'FINISHED'}