Skip to content
Snippets Groups Projects
object_grease_scatter.py 13.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    # ##### BEGIN GPL LICENSE BLOCK #####
    #
    #  This program is free software; you can redistribute it and/or
    #  modify it under the terms of the GNU General Public License
    #  as published by the Free Software Foundation; either version 2
    #  of the License, or (at your option) any later version.
    #
    #  This program is distributed in the hope that it will be useful,
    #  but WITHOUT ANY WARRANTY; without even the implied warranty of
    #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    #  GNU General Public License for more details.
    #
    #  You should have received a copy of the GNU General Public License
    #  along with this program; if not, write to the Free Software Foundation,
    #  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    #
    # ##### END GPL LICENSE BLOCK #####
    
    # <pep8 compliant>
    
    # Script copyright (C) Campbell Barton
    
    bl_info = {
        "name": "Export Camera Animation",
        "author": "Campbell Barton",
        "version": (0, 1),
        "blender": (2, 5, 8),
        "api": 36079,
        "location": "File > Export > Cameras & Markers (.py)",
        "description": "Export Cameras & Markers (.py)",
        "warning": "",
        "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.5/Py/"\
            "Scripts/Object/Grease_Scatter",
        "tracker_url": "https://projects.blender.org/tracker/index.php?"\
            "func=detail&aid=TODO",
        "support": 'OFFICIAL',
        "category": "Object"}
    
    from mathutils import Vector, RotationMatrix, Quaternion
    from math import radians
    from random import uniform, shuffle
    import bpy
    
    def _main(self, DENSITY=1.0, SCALE=0.6, RAND_LOC=0.8, RAND_ALIGN=0.75):
        from math import radians
        
        C = bpy.context
        o = C.object
        # print(o.ray_cast(Vector(), Vector(0,0,0.2)))
        
        OFS = 0.2
        SEEK = 2.0 # distance for ray to seek
        BAD_NORMAL = Vector((0,0,-1))
        WALL_LIMIT = radians(45.0)
    
        mats = [
        RotationMatrix(radians(-45), 3, 'X'),
        RotationMatrix(radians( 45), 3, 'X'),
        RotationMatrix(radians(-45), 3, 'Y'),
        RotationMatrix(radians( 45), 3, 'Y'),
        RotationMatrix(radians(-45), 3, 'Z'),
        RotationMatrix(radians( 45), 3, 'Z')]
    
    
        Z_UP = Vector((0,0,1.0))
        dirs = [
        Vector((0,0,OFS)),
        Vector((0,0,-OFS))]
        '''
        Vector(0,OFS,0),
        Vector(0,-OFS,0),
        Vector(OFS,0,0),
        Vector(-OFS,0,0)
        '''
        
        group = bpy.data.groups.get(o.name)
        
        if not group:
            self.report({'WARNING'}, "Group '%s' not found, must match object name" % o.name)
            return
    
        def faces_from_hits(hit_list):
            def from_pydata(self, verts, edges, faces):
                """
                Make a mesh from a list of verts/edges/faces
                Until we have a nicer way to make geometry, use this.
                """
                self.add_geometry(len(verts), len(edges), len(faces))
    
                verts_flat = [f for v in verts for f in v]
                self.verts.foreach_set("co", verts_flat)
                del verts_flat
    
                edges_flat = [i for e in edges for i in e]
                self.edges.foreach_set("verts", edges_flat)
                del edges_flat
    
                def treat_face(f):
                    if len(f) == 3:
                        return f[0], f[1], f[2], 0
                    elif f[3] == 0:
                        return f[3], f[0], f[1], f[2]
                    return f
    
                faces_flat = [v for f in faces for v in treat_face(f)]
                self.faces.foreach_set("verts_raw", faces_flat)
                del faces_flat
            
            
    
    
        def debug_edge(v1,v2):
            mesh = bpy.data.meshes.new("Retopo")
            mesh.from_pydata([v1,v2], [(0,1)], [])
            
            scene = bpy.context.scene
            mesh.update()
            obj_new = bpy.data.objects.new("Torus", mesh)
            scene.objects.link(obj_new)
    
        ray = o.ray_cast
        #ray = C.scene.ray_cast
    
        DEBUG = False
        def fix_point(p):
            for d in dirs:
                # print(p)
                hit, no, ind = ray(p, p + d)
                if ind != -1:
                    if DEBUG:
                        return [p, no, None] 
                    else:
                        # print("good", hit, no)
                        return [hit, no, None] 
    
            # worry!
            print("bad!", p, BAD_NORMAL)
            
            return [p, BAD_NORMAL, None]
    
        def get_points(stroke):
            return [fix_point(point.co) for point in stroke.points]
    
        def get_splines(gp):
            l = None
            for l in gp.layers:
                if l.active: # XXX - should be layers.active
                    break
            if l:
                frame = l.active_frame
                return [get_points(stroke) for stroke in frame.strokes]
            else:
                return []
    
        def main():
            scene = bpy.context.scene
            obj = bpy.context.object
    
            gp = None
    
            if obj:
                gp = obj.grease_pencil
    
            if not gp:
                gp = scene.grease_pencil
                
            if not gp:
                self.report({'WARNING'}, "No grease pencil layer found")
                return
    
            splines = get_splines(gp)
    
            for s in splines:
                for pt in s:
                    p = pt[0]
                    n = pt[1]
                    # print(p, n)
                    if n is BAD_NORMAL:
                        continue
                    
                    # # dont self intersect
                    best_nor = None
                    best_hit = None
                    best_dist = 10000000.0
                    pofs = p + n * 0.01
                    
                    n_seek = n * SEEK
                    m_alt_1 = RotationMatrix(radians(22.5), 3, n)
                    m_alt_2 = RotationMatrix(radians(-22.5), 3, n)
                    for _m in mats:
                        for m in (_m, m_alt_1 * _m, m_alt_2 * _m):
                            hit, nor, ind = ray(pofs, pofs + (m * n_seek))
                            if ind != -1:
                                dist = (pofs - hit).length
                                if dist < best_dist:
                                    best_dist = dist
                                    best_nor = nor
                                    #best_hit = hit
                    
                    if best_nor:
                        pt[1].length = best_dist
                        best_nor.negate()
                        pt[2] = best_nor
    
    
                        #scene.cursor_location[:] = best_hitnyway
                        # bpy.ops.wm.redraw_timer(type='DRAW_WIN_SWAP', iterations=1)
                        # debug_edge(p, best_hit)
                        # p[:] = best_hit
            
            # Now we need to do scattering.
            # first corners
            hits = []
            nors = []
            oris = []
            for s in splines:
                for p,n,n_other in s: # point, normal, n_other the closest hit normal
                    if n is BAD_NORMAL:
                        continue
                    if n_other:
                        # cast vectors twice as long as the distance needed just incase.
                        n_down = (n * -SEEK)
                        l = n_down.length
                        n_other.length = l
                        
                        vantage = p + n
                        if DEBUG:
                            p[:] = vantage
                        
                        # We should cast rays between n_down and n_other
                        #for f in (0.0, 0.2, 0.4, 0.6, 0.8, 1.0):
                        TOT = int(10 * DENSITY)
                        #for i in list(range(TOT)):
                        for i in list(range(TOT))[int(TOT/1.5):]: # second half
                            f = i/(TOT-1)
                            
                            # focus on the center
                            '''
                            f -= 0.5
                            f = f*f
                            f += 0.5
                            '''
                            
                            ntmp = f * n_down + (1.0 - f)*n_other
                            # randomize 
                            ntmp.x += uniform(-l, l) * RAND_LOC
                            ntmp.y += uniform(-l, l) * RAND_LOC
                            ntmp.z += uniform(-l, l) * RAND_LOC
                            
                            hit, hit_no, ind = ray(vantage, vantage + ntmp)
                            # print(hit, hit_no)
                            if ind != -1:
                                if hit_no.angle(Z_UP) < WALL_LIMIT:
                                    hits.append(hit)
                                    nors.append(hit_no)
                                    oris.append(n_other.cross(hit_no))
                                    #oris.append(n_other)
            
            
            
            if 0:
                mesh = bpy.data.meshes.new("Retopo")
                mesh.from_pydata(hits, [], [])
                
                scene = bpy.context.scene
                mesh.update()
                obj_new = bpy.data.objects.new("Torus", mesh)
                scene.objects.link(obj_new)
                obj_new.layers[:] = o.layers
                
                # Now setup dupli-faces
                obj_new.dupli_type = 'VERTS'
                ob_child = bpy.data.objects["trash"]
                ob_child.location = obj_new.location
                ob_child.parent = obj_new
            else:
                
                def apply_faces(triples):
                    # first randomize the faces
                    shuffle(triples)
                    
                    obs = group.objects[:]
                    tot = len(obs)
                    tot_div = int(len(triples) / tot)
    
                    for inst_ob in obs:
                        triple_subset = triples[0:tot_div]
                        triples[0:tot_div] = []
                        
                        vv = [tuple(v) for f in triple_subset for v in f]
    
                        mesh = bpy.data.meshes.new("Retopo")
                        mesh.from_pydata(vv, [], [(i*3, i*3+1, i*3+2) for i in range(len(triple_subset))])
    
                        scene = bpy.context.scene
                        mesh.update()
                        obj_new = bpy.data.objects.new("Torus", mesh)
                        scene.objects.link(obj_new)
                        obj_new.layers[:] = o.layers
                        
                        # Now setup dupli-faces
                        obj_new.dupli_type = 'FACES'
                        obj_new.use_dupli_faces_scale = True
                        obj_new.dupli_faces_scale = 100.0
                        
                        inst_ob.location = obj_new.location
                        inst_ob.parent = obj_new
                        
                        # BGE settings for testiing
                        '''
                        inst_ob.game.physics_type = 'RIGID_BODY'
                        inst_ob.game.use_collision_bounds = True
                        inst_ob.game.collision_bounds = 'TRIANGLE_MESH'
                        inst_ob.game.collision_margin = 0.1
                        obj_new.select = True
                        '''
                
                
                # build faces from vert/normals
                tri = Vector((0, 0 ,0.01)), Vector((0, 0, 0)), Vector((0.0, 0.01, 0.01))
                
                coords = []
                face_ind = []
                for i in range(len(hits)):
                    co = hits[i]
                    no = nors[i]
                    ori = oris[i]
                    quat = no.to_track_quat('X', 'Z')
                    
                    # make 2 angles and blend
                    angle = radians(uniform(-180, 180.0)) 
                    angle_aligned = -(ori.angle(quat * Vector((0,1,0)), radians(180.0)))
                    
                    quat = Quaternion(no, (angle * (1.0-RAND_ALIGN)) + (angle_aligned * RAND_ALIGN)).cross(quat)
    
                    f = uniform(0.1, 1.2) * SCALE
                    
                    coords.append([co + ((tri[0] * f) * quat), co + ((tri[1] * f) * quat), co + ((tri[2] * f) * quat)])
                    # face_ind.append([i*3, i*3+1, i*3+2])
                
                
                apply_faces(coords)
            
    
        main()
    
    
    from bpy.props import *
    class Scatter(bpy.types.Operator):
        ''''''
        bl_idname = "object.scatter"
        bl_label = "Scatter"
        bl_options = {'REGISTER'}
    
        density = FloatProperty(name="Density",
                description="Multiplier for the density of items",
                default=1.0, min=0.01, max=10.0)
    
        scale = FloatProperty(name="Scale",
                description="Size multiplier for duplifaces",
                default=1.0, min=0.01, max=10.0)
        
        rand_align = FloatProperty(name="Random Align",
                description="Randomize alignmet with the walls",
                default=0.75, min=0.0, max=1.0)
    
        rand_loc = FloatProperty(name="Random Loc",
                description="Randomize Placement",
                default=0.75, min=0.0, max=1.0)
    
        _parent = None
    
        def execute(self, context):
            #self.properties.density = self.__class__._parent.properties.density # XXX bad way to copy args.
            #self.properties.scale = self.__class__._parent.properties.scale # XXX bad way to copy args.
    
            for attr in self.__class__.__dict__["order"]:
                if not attr.startswith("_"):
                    try:
                        setattr(self.properties, attr, getattr(self.__class__._parent.properties, attr))   
                    except:
                        pass
    
            _main(self,
                DENSITY=self.properties.density,
                SCALE=self.properties.scale,
                RAND_LOC=self.properties.rand_loc,
                RAND_ALIGN=self.properties.rand_align
            )
            return {'FINISHED'}
    
        def invoke(self, context, event):
            wm = context.manager
            wm.invoke_popup(self, width=180)
            return {'RUNNING_MODAL'}
    
        def draw(self, context):
            self.__class__._parent = self
            layout = self.layout
            
            for attr in self.__class__.__dict__["order"]:
                if not attr.startswith("_"):
                    try:
                        layout.prop(self.properties, attr)
                    except:
                        pass
    
            layout.operator_context = 'EXEC_DEFAULT'
            props = layout.operator(self.bl_idname)
            return {'RUNNING_MODAL'}
    
    
    # Add to the menu
    menu_func = (lambda self, context: self.layout.operator(Scatter.bl_idname,
                                            text="Scatter", icon='AUTO'))
    
    def register():
        bpy.types.register(Scatter)
        bpy.types.VIEW3D_PT_tools_objectmode.append(menu_func)
    
    def unregister():
        bpy.types.unregister(Scatter)
        bpy.types.VIEW3D_PT_tools_objectmode.remove(menu_func)
    
    #if __name__ == "__main__":
    #    _main()