Skip to content
Snippets Groups Projects
add_curve_ivygen.py 25.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • Andrew Hale's avatar
    Andrew Hale committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
    # ##### BEGIN GPL LICENSE BLOCK #####
    #
    #  This program is free software; you can redistribute it and/or
    #  modify it under the terms of the GNU General Public License
    #  as published by the Free Software Foundation; either version 2
    #  of the License, or (at your option) any later version.
    #
    #  This program is distributed in the hope that it will be useful,
    #  but WITHOUT ANY WARRANTY; without even the implied warranty of
    #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    #  GNU General Public License for more details.
    #
    #  You should have received a copy of the GNU General Public License
    #  along with this program; if not, write to the Free Software Foundation,
    #  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    #
    # ##### END GPL LICENSE BLOCK #####
    
    # <pep8-80 compliant>
    
    bl_info = {
        "name": "IvyGen",
        "author": "testscreenings, PKHG, TrumanBlending",
        "version": (0, 1, 0),
        "blender": (2, 5, 8),
        "api": 38479,
        "location": "View3D > Add > Curve",
        "description": "Adds generated ivy to a mesh object starting at the 3D"\
                       " cursor.",
        "warning": "",
        "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.5/Py/"\
                    "Scripts/Curve/Ivy_Gen",
        "tracker_url": "http://projects.blender.org/tracker/index.php?"\
                       "func=detail&aid=27234",
        "category": "Add Curve"}
    
    
    import bpy
    from bpy.props import FloatProperty, IntProperty, BoolProperty
    from mathutils import Vector, Matrix
    from collections import deque
    from math import pow, cos, pi, atan2
    from random import random as rand_val, seed as rand_seed
    import time
    
    
    def createIvyGeometry(IVY, growLeaves):
        '''Create the curve geometry for IVY'''
        # Compute the local size and the gauss weight filter
        #local_ivyBranchSize = IVY.ivyBranchSize  # * radius * IVY.ivySize
        gaussWeight = [1.0, 2.0, 4.0, 7.0, 9.0, 10.0, 9.0, 7.0, 4.0, 2.0, 1.0]
    
        # Create a new curve and intialise it
        curve = bpy.data.curves.new("IVY", type='CURVE')
        curve.dimensions = '3D'
        curve.bevel_depth = 1
        curve.use_fill_front = curve.use_fill_back = False
    
        if growLeaves:
            # Create the ivy leaves
            # Order location of the vertices
            signList = [(-1, 1), (1, 1), (1, -1), (-1, -1)]
    
            # Get the local size
            #local_ivyLeafSize = IVY.ivyLeafSize  # * radius * IVY.ivySize
    
            # Initialise the vertex and face lists
            vertList = deque()
    
            # Store the methods for faster calling
            addV = vertList.extend
            rotMat = Matrix.Rotation
    
        # Loop over all roots to generate its nodes
        for root in IVY.ivyRoots:
            # Only grow if more than one node
            numNodes = len(root.ivyNodes)
            if numNodes > 1:
                # Calculate the local radius
                local_ivyBranchRadius = 1 / (root.parents + 1) + 1
                prevIvyLength = 1 / root.ivyNodes[-1].length
                splineVerts = [ax for n in root.ivyNodes for ax in n.pos.to_4d()]
    
                radiusConstant = local_ivyBranchRadius * IVY.ivyBranchSize
                splineRadii = [radiusConstant * (1.3 - n.length * prevIvyLength)
                                                            for n in root.ivyNodes]
    
                # Add the poly curve and set coords and radii
                newSpline = curve.splines.new(type='POLY')
                newSpline.points.add(len(splineVerts) // 4 - 1)
                newSpline.points.foreach_set('co', splineVerts)
                newSpline.points.foreach_set('radius', splineRadii)
    
                # Loop over all nodes in the root
                for i, n in enumerate(root.ivyNodes):
                    for k in range(len(gaussWeight)):
                        idx = max(0, min(i + k - 5, numNodes - 1))
                        n.smoothAdhesionVector += (gaussWeight[k] *
                                                 root.ivyNodes[idx].adhesionVector)
                    n.smoothAdhesionVector /= 56.0
                    n.adhesionLength = n.smoothAdhesionVector.length
                    n.smoothAdhesionVector.normalize()
    
                    if growLeaves and (i < numNodes - 1):
                        node = root.ivyNodes[i]
                        nodeNext = root.ivyNodes[i + 1]
    
                        # Find the weight and normalise the smooth adhesion vector
                        weight = pow(node.length * prevIvyLength, 0.7)
    
                        # Calculate the ground ivy and the new weight
                        groundIvy = max(0.0, -node.smoothAdhesionVector.z)
                        weight += groundIvy * pow(1 - node.length *
                                                                  prevIvyLength, 2)
    
                        # Find the alignment weight
                        alignmentWeight = node.adhesionLength
    
                        # Calculate the needed angles
                        phi = atan2(node.smoothAdhesionVector.y,
                                              node.smoothAdhesionVector.x) - pi / 2
    
                        theta = (0.5 *
                            node.smoothAdhesionVector.angle(Vector((0, 0, -1)), 0))
    
                        # Find the size weight
                        sizeWeight = 1.5 - (cos(2 * pi * weight) * 0.5 + 0.5)
    
                        # Randomise the angles
                        phi += (rand_val() - 0.5) * (1.3 - alignmentWeight)
                        theta += (rand_val() - 0.5) * (1.1 - alignmentWeight)
    
                        # Calculate the leaf size an append the face to the list
                        leafSize = IVY.ivyLeafSize * sizeWeight
    
                        for j in range(10):
                            # Generate the probability
                            probability = rand_val()
    
                            # If we need to grow a leaf, do so
                            if (probability * weight) > IVY.leafProbability:
    
                                # Generate the random vector
                                randomVector = Vector((rand_val() - 0.5,
                                               rand_val() - 0.5, rand_val() - 0.5))
    
                                # Find the leaf center
                                center = node.pos.lerp(nodeNext.pos, j / 10) +\
                                                   IVY.ivyLeafSize * randomVector
    
                                # For each of the verts, rotate/scale and append
                                basisVecX = Vector((1, 0, 0))
                                basisVecY = Vector((0, 1, 0))
    
                                horiRot = rotMat(theta, 3, 'X')
                                vertRot = rotMat(phi, 3, 'Z')
    
                                basisVecX.rotate(horiRot)
                                basisVecY.rotate(horiRot)
    
                                basisVecX.rotate(vertRot)
                                basisVecY.rotate(vertRot)
    
                                basisVecX *= leafSize
                                basisVecY *= leafSize
    
                                addV([k1 * basisVecX + k2 * basisVecY + center for
                                                               k1, k2 in signList])
    
        # Add the object and link to scene
        newCurve = bpy.data.objects.new("IVY_Curve", curve)
        bpy.context.scene.objects.link(newCurve)
    
        if growLeaves:
            faceList = [[4 * i + l for l in range(4)] for i in
                                                         range(len(vertList) // 4)]
    
            # Generate the new leaf mesh and link
            me = bpy.data.meshes.new('IvyLeaf')
            me.from_pydata(vertList, [], faceList)
            me.update(calc_edges=True)
            ob = bpy.data.objects.new('IvyLeaf', me)
            bpy.context.scene.objects.link(ob)
    
            tex = me.uv_textures.new("Leaves")
    
            # Set the uv texture coords
            for d in tex.data:
                uv1, uv2, uv3, uv4 = signList
    
            ob.parent = newCurve
    
    
    def computeBoundingSphere(ob):
        # Get the mesh data
        me = ob.data
        # Intialise the center
        center = Vector((0, 0, 0))
        # Add all vertex coords
        for v in me.vertices:
            center += v.co
        # Average over all verts
        center /= len(me.vertices)
        # Create the iterator and find its max
        length_iter = ((center - v.co).length for v in me.vertices)
        radius = max(length_iter)
        return radius
    
    
    class IvyNode:
        """ The basic class used for each point on the ivy which is grown."""
        __slots__ = ('pos', 'primaryDir', 'adhesionVector', 'adhesionLength',
                     'smoothAdhesionVector', 'length', 'floatingLength', 'climb')
    
        def __init__(self):
            self.pos = Vector((0, 0, 0))
            self.primaryDir = Vector((0, 0, 1))
            self.adhesionVector = Vector((0, 0, 0))
            self.smoothAdhesionVector = Vector((0, 0, 0))
            self.length = 0.0001
            self.floatingLength = 0.0
            self.climb = True
    
    
    class IvyRoot:
        """ The class used to hold all ivy nodes growing from this root point."""
        __slots__ = ('ivyNodes', 'alive', 'parents')
    
        def __init__(self):
            self.ivyNodes = deque()
            self.alive = True
            self.parents = 0
    
    
    class Ivy:
        """ The class holding all parameters and ivy roots."""
        __slots__ = ('ivyRoots', 'primaryWeight', 'randomWeight',
                     'gravityWeight', 'adhesionWeight', 'branchingProbability',
                     'leafProbability', 'ivySize', 'ivyLeafSize', 'ivyBranchSize',
                     'maxFloatLength', 'maxAdhesionDistance', 'maxLength')
    
        def __init__(self,
                     primaryWeight=0.5,
                     randomWeight=0.2,
                     gravityWeight=1.0,
                     adhesionWeight=0.1,
                     branchingProbability=0.05,
                     leafProbability=0.35,
                     ivySize=0.02,
                     ivyLeafSize=0.02,
                     ivyBranchSize=0.001,
                     maxFloatLength=0.5,
                     maxAdhesionDistance=1.0):
    
            self.ivyRoots = deque()
            self.primaryWeight = primaryWeight
            self.randomWeight = randomWeight
            self.gravityWeight = gravityWeight
            self.adhesionWeight = adhesionWeight
            self.branchingProbability = 1 - branchingProbability
            self.leafProbability = 1 - leafProbability
            self.ivySize = ivySize
            self.ivyLeafSize = ivyLeafSize
            self.ivyBranchSize = ivyBranchSize
            self.maxFloatLength = maxFloatLength
            self.maxAdhesionDistance = maxAdhesionDistance
            self.maxLength = 0.0
    
            # Normalise all the weights only on intialisation
            sum = self.primaryWeight + self.randomWeight + self.adhesionWeight
            self.primaryWeight /= sum
            self.randomWeight /= sum
            self.adhesionWeight /= sum
    
        def seed(self, seedPos):
            # Seed the Ivy by making a new root and first node
            tmpRoot = IvyRoot()
            tmpIvy = IvyNode()
            tmpIvy.pos = seedPos
    
            tmpRoot.ivyNodes.append(tmpIvy)
            self.ivyRoots.append(tmpRoot)
    
        def grow(self, ob):
            # Determine the local sizes
            #local_ivySize = self.ivySize  # * radius
            #local_maxFloatLength = self.maxFloatLength  # * radius
            #local_maxAdhesionDistance = self.maxAdhesionDistance  # * radius
    
            for root in self.ivyRoots:
                # Make sure the root is alive, if not, skip
                if not root.alive:
                    continue
    
                # Get the last node in the current root
                prevIvy = root.ivyNodes[-1]
    
                # If the node is floating for too long, kill the root
                if prevIvy.floatingLength > self.maxFloatLength:
                    root.alive = False
    
                # Set the primary direction from the last node
                primaryVector = prevIvy.primaryDir
    
                # Make the random vector and normalise
                randomVector = Vector((rand_val() - 0.5, rand_val() - 0.5,
                                       rand_val() - 0.5)) + Vector((0, 0, 0.2))
                randomVector.normalize()
    
                # Calculate the adhesion vector
                adhesionVector = adhesion(prevIvy.pos, ob,
                                                          self.maxAdhesionDistance)
    
                # Calculate the growing vector
                growVector = self.ivySize * (primaryVector * self.primaryWeight +
                                              randomVector * self.randomWeight +
                                              adhesionVector * self.adhesionWeight)
    
                # Find the gravity vector
                gravityVector = (self.ivySize * self.gravityWeight *
                                                                Vector((0, 0, -1)))
                gravityVector *= pow(prevIvy.floatingLength / self.maxFloatLength,
                                     0.7)
    
                # Determine the new position vector
                newPos = prevIvy.pos + growVector + gravityVector
    
                # Check for collisions with the object
                climbing = collision(ob, prevIvy.pos, newPos)
    
                # Update the growing vector for any collisions
                growVector = newPos - prevIvy.pos - gravityVector
                growVector.normalize()
    
                # Create a new IvyNode and set its properties
                tmpNode = IvyNode()
                tmpNode.climb = climbing
                tmpNode.pos = newPos
                tmpNode.primaryDir = prevIvy.primaryDir.lerp(growVector, 0.5)
                tmpNode.primaryDir.normalize()
                tmpNode.adhesionVector = adhesionVector
                tmpNode.length = prevIvy.length + (newPos - prevIvy.pos).length
    
                if tmpNode.length > self.maxLength:
                    self.maxLength = tmpNode.length
    
                # If the node isn't climbing, update it's floating length
                # Otherwise set it to 0
                if not climbing:
                    tmpNode.floatingLength = prevIvy.floatingLength + (newPos -
                                                                prevIvy.pos).length
                else:
                    tmpNode.floatingLength = 0.0
    
                root.ivyNodes.append(tmpNode)
    
            # Loop through all roots to check if a new root is generated
            for root in self.ivyRoots:
                # Check the root is alive and isn't at high level of recursion
                if (root.parents > 3) or (not root.alive):
                    continue
    
                # Check to make sure there's more than 1 node
                if len(root.ivyNodes) > 1:
                    # Loop through all nodes in root to check if new root is grown
                    for node in root.ivyNodes:
                        # Set the last node of the root and find the weighting
                        prevIvy = root.ivyNodes[-1]
                        weight = 1.0 - (cos(2.0 * pi * node.length /
                                            prevIvy.length) * 0.5 + 0.5)
    
                        probability = rand_val()
    
                        # Check if a new root is grown and if so, set its values
                        if (probability * weight > self.branchingProbability):
                            tmpNode = IvyNode()
                            tmpNode.pos = node.pos
                            tmpNode.floatingLength = node.floatingLength
    
                            tmpRoot = IvyRoot()
                            tmpRoot.parents = root.parents + 1
    
                            tmpRoot.ivyNodes.append(tmpNode)
                            self.ivyRoots.append(tmpRoot)
                            return
    
    
    def adhesion(loc, ob, max_l):
        # Get transfor vector and transformed loc
        tran_mat = ob.matrix_world.inverted()
        tran_loc = tran_mat * loc
    
        # Compute the adhesion vector by finding the nearest point
        nearest_result = ob.closest_point_on_mesh(tran_loc, max_l)
        adhesion_vector = Vector((0, 0, 0))
        if nearest_result[2] != -1:
            # Compute the distance to the nearest point
            adhesion_vector = ob.matrix_world * nearest_result[0] - loc
            distance = adhesion_vector.length
            # If it's less than the maximum allowed and not 0, continue
            if distance:
                # Compute the direction vector between the closest point and loc
                adhesion_vector.normalize()
                adhesion_vector *= 1.0 - distance / max_l
                #adhesion_vector *= getFaceWeight(ob.data, nearest_result[2])
        return adhesion_vector
    
    
    def collision(ob, pos, new_pos):
        # Check for collision with the object
        climbing = False
    
        # Transform vecs
        tran_mat = ob.matrix_world.inverted()
        tran_pos = tran_mat * pos
        tran_new_pos = tran_mat * new_pos
    
        ray_result = ob.ray_cast(tran_pos, tran_new_pos)
        # If there's a collision we need to check it
        if ray_result[2] != -1:
            # Check whether the collision is going into the object
            if (tran_new_pos - tran_pos).dot(ray_result[1]) < 0.0:
                # Find projection of the piont onto the plane
                p0 = tran_new_pos - (tran_new_pos -
                                              ray_result[0]).project(ray_result[1])
                # Reflect in the plane
                tran_new_pos += 2 * (p0 - tran_new_pos)
                new_pos *= 0
                new_pos += ob.matrix_world * tran_new_pos
                climbing = True
        return climbing
    
    
    class IvyGen(bpy.types.Operator):
        bl_idname = "curve.ivy_gen"
        bl_label = "IvyGen"
        bl_options = {'REGISTER', 'UNDO'}
    
        maxIvyLength = FloatProperty(name="Max Ivy Length",
                        description="Maximum ivy length in Blender Units.",
                        default=1.0,
                        min=0.0,
                        soft_max=3.0,
                        subtype='DISTANCE',
                        unit='LENGTH')
        primaryWeight = FloatProperty(name="Primary Weight",
                        description="Weighting given to the current direction.",
                        default=0.5,
                        min=0.0,
                        soft_max=1.0)
        randomWeight = FloatProperty(name="Random Weight",
                        description="Weighting given to the random direction.",
                        default=0.2,
                        min=0.0,
                        soft_max=1.0)
        gravityWeight = FloatProperty(name="Gravity Weight",
                        description="Weighting given to the gravity direction.",
                        default=1.0,
                        min=0.0,
                        soft_max=1.0)
        adhesionWeight = FloatProperty(name="Adhesion Weight",
                        description="Weighting given to the adhesion direction.",
                        default=0.1,
                        min=0.0,
                        soft_max=1.0)
        branchingProbability = FloatProperty(name="Branching Probability",
                        description="Probability of a new branch forming.",
                        default=0.05,
                        min=0.0,
                        soft_max=1.0)
        leafProbability = FloatProperty(name="Leaf Probability",
                        description="Probability of a leaf forming.",
                        default=0.35,
                        min=0.0,
                        soft_max=1.0)
        ivySize = FloatProperty(name="Ivy Size",
                        description="The length of an ivy segment in Blender"\
                                    " Units.",
                        default=0.02,
                        min=0.0,
                        soft_max=1.0,
                        precision=3)
        ivyLeafSize = FloatProperty(name="Ivy Leaf Size",
                        description="The size of the ivy leaves",
                        default=0.02,
                        min=0.0,
                        soft_max=0.5,
                        precision=3)
        ivyBranchSize = FloatProperty(name="Ivy Branch Size",
                        description="The size of the ivy branches",
                        default=0.001,
                        min=0.0,
                        soft_max=0.1,
                        precision=4)
        maxFloatLength = FloatProperty(name="Max Float Length",
                        description="The maximum distance that a branch"\
                                    "can live while floating.",
                        default=0.5,
                        min=0.0,
                        soft_max=1.0)
        maxAdhesionDistance = FloatProperty(name="Max Adhesion Length",
                        description="The maximum distance that a branch"\
                                    "will feel the effects of adhesion.",
                        default=1.0,
                        min=0.0,
                        soft_max=2.0,
                        precision=2)
        randomSeed = FloatProperty(name="Random Seed",
                        description="The seed governing random generation.",
                        default=0,
                        min=0.0,
                        soft_max=10)
        maxTime = FloatProperty(name="Maximum Time",
                        description="The maximum time to run the generation for"\
                                    "in seconds generation (0.0 = Disabled)",
                        default=0.0,
                        min=0.0,
                        soft_max=10)
        growLeaves = BoolProperty(name="Grow Leaves",
                        description="Grow leaves or not.",
                        default=True)
        updateIvy = BoolProperty(name="Update Ivy", default=False)
    
        @classmethod
        def poll(self, context):
            # Check if there's an object and whether it's a mesh
            ob = context.active_object
            if (ob is not None) and\
               (ob.type == 'MESH') and\
               (context.mode == 'OBJECT'):
                return True
            return False
    
        def execute(self, context):
            if self.updateIvy:
                bpy.ops.object.mode_set(mode='EDIT', toggle=False)
                bpy.ops.object.mode_set(mode='OBJECT', toggle=False)
    
                # Get the selected object
                ob = context.active_object
    
                # Compute bounding sphere radius
                #radius = computeBoundingSphere(ob)  # Not needed anymore
    
                # Get the seeding point
                seedPoint = context.scene.cursor_location
    
                # Fix the random seed
                rand_seed(int(self.randomSeed))
    
                # Make the new ivy
                IVY = Ivy(**self.as_keywords(ignore=('randomSeed', 'growLeaves',
                                          'maxIvyLength', 'maxTime', 'updateIvy')))
    
                # Generate first root and node
                IVY.seed(seedPoint)
    
                checkAlive = True
                checkTime = False
                maxLength = self.maxIvyLength  # * radius
    
                # If we need to check time set the flag
                if self.maxTime != 0.0:
                    checkTime = True
    
                t = time.time()
                startPercent = 0.0
                checkAliveIter = [True, ]
    
                # Grow until 200 roots is reached or backup counter exceeds limit
                while any(checkAliveIter) and\
                      (IVY.maxLength < maxLength) and\
                      (not checkTime or (time.time() - t < self.maxTime)):
                    # Grow the ivy for this iteration
                    IVY.grow(ob)
    
                    # Print the proportion of ivy growth to console
                    if (IVY.maxLength / maxLength * 100) > 10 * startPercent // 10:
                        print('%0.2f%% of Ivy nodes have grown' %\
                                                 (IVY.maxLength / maxLength * 100))
                        startPercent += 10
                        if IVY.maxLength / maxLength > 1:
                            print("Halting Growth")
    
                    # Make an iterator to check if all are alive
                    checkAliveIter = (r.alive for r in IVY.ivyRoots)
    
                # Create the curve and leaf geometry
                createIvyGeometry(IVY, self.growLeaves)
                print("Geometry Generation Complete")
    
                print("Ivy generated in %0.2f s" % (time.time() - t))
    
                self.updateIvy = False
    
                return {'FINISHED'}
    
            return {'PASS_THROUGH'}
    
        def draw(self, context):
            layout = self.layout
            row = layout.row()
            row.alignment = 'EXPAND'
            row.prop(self, 'updateIvy', icon='CURVE_DATA')
    
            row = layout.row()
            properties = row.operator('curve.ivy_gen', text="Add New Ivy")
            properties.randomSeed = self.randomSeed
            properties.maxTime = self.maxTime
            properties.maxIvyLength = self.maxIvyLength
            properties.ivySize = self.ivySize
            properties.maxFloatLength = self.maxFloatLength
            properties.maxAdhesionDistance = self.maxAdhesionDistance
            properties.primaryWeight = self.primaryWeight
            properties.randomWeight = self.randomWeight
            properties.gravityWeight = self.gravityWeight
            properties.adhesionWeight = self.adhesionWeight
            properties.branchingProbability = self.branchingProbability
            properties.leafProbability = self.leafProbability
            properties.ivyBranchSize = self.ivyBranchSize
            properties.ivyLeafSize = self.ivyLeafSize
    
            row = layout.row()
            row.operator('curve.ivy_gen', text="Add New Default Ivy")
    
            row = layout.row()
            row.prop(self, 'growLeaves')
    
            box = layout.box()
            box.label("Generation Settings")
            row = box.row()
            row.prop(self, 'randomSeed')
            row = box.row()
            row.prop(self, 'maxTime')
            box = layout.box()
            box.label("Size Settings")
            row = box.row()
            row.prop(self, 'maxIvyLength')
            row = box.row()
            row.prop(self, 'ivySize')
            row = box.row()
            row.prop(self, 'maxFloatLength')
            row = box.row()
            row.prop(self, 'maxAdhesionDistance')
            box = layout.box()
            box.label("Weight Settings")
            row = box.row()
            row.prop(self, 'primaryWeight')
            row = box.row()
            row.prop(self, 'randomWeight')
            row = box.row()
            row.prop(self, 'gravityWeight')
            row = box.row()
            row.prop(self, 'adhesionWeight')
            box = layout.box()
            box.label("Branch Settings")
            row = box.row()
            row.prop(self, 'branchingProbability')
            row = box.row()
            row.prop(self, 'ivyBranchSize')
    
            if self.growLeaves:
                box = layout.box()
                box.label("Leaf Settings")
                row = box.row()
                row.prop(self, 'ivyLeafSize')
                row = box.row()
                row.prop(self, 'leafProbability')
    
    
    def menu_func(self, context):
        self.layout.operator(IvyGen.bl_idname, text="Add Ivy to Mesh",
                                                    icon='PLUGIN').updateIvy = True
    
    
    def register():
        bpy.utils.register_module(__name__)
        bpy.types.INFO_MT_curve_add.append(menu_func)
    
    
    def unregister():
        bpy.types.INFO_MT_curve_add.remove(menu_func)
        bpy.utils.unregister_module(__name__)
    
    
    if __name__ == "__main__":
        register()