Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
InnerMid = (RNerEdge + LNerEdge)/2
#maximum distance to span with one block
MaxWid = (settings['w']+settings['wv'])/r1
AveWid = settings['w']
MinWid = settings['wm']
#check the left and right sides for wedge blocks
#Check and run the left edge first
#find the edge of the correct side, offset for minimum block height. The LEB decides top or bottom
ZPositionCheck = row.z + (row.h/2-settings['hm'])*LEB
#edgeS may return "None"
LeftWedgeEdge = leftOpening.edgeS(ZPositionCheck,1)
if (abs(LDiff) > AveWid) or (not LeftWedgeEdge):
#make wedge blocks
if not LeftWedgeEdge: LeftWedgeEdge = leftOpening.x
wedgeBlocks(row, leftOpening, LeftWedgeEdge, LNerEdge, LEB, r1)
#set the near and far edge settings to vertical, so the other edge blocks don't interfere
LFarEdge , LTop , LBtm = LNerEdge, LNerEdge, LNerEdge
LDiff = 0
#Now do the wedge blocks for the right, same drill... repeated code?
#find the edge of the correct side, offset for minimum block height. The REB decides top or bottom
ZPositionCheck = row.z + (row.h/2-settings['hm'])*REB
#edgeS may return "None"
RightWedgeEdge = rightOpening.edgeS(ZPositionCheck,-1)
if (abs(RDiff) > AveWid) or (not RightWedgeEdge):
#make wedge blocks
if not RightWedgeEdge: RightWedgeEdge = rightOpening.x
wedgeBlocks(row, rightOpening, RNerEdge, RightWedgeEdge, REB, r1)
#set the near and far edge settings to vertical, so the other edge blocks don't interfere
RFarEdge , RTop , RBtm = RNerEdge, RNerEdge, RNerEdge
RDiff = 0
#Check to see if the edges are close enough toegther to warrant a single block filling it
if (InnerDiff < MaxWid):
#if this is true, then this row is just one block!
x = (LNerEdge + RNerEdge)/2.
w = InnerDiff
ThisBlockDepth = rndd()*settings['dv']+settings['d']
BtmOff = LBtm - LNerEdge
TopOff = LTop - LNerEdge
ThisBlockOffsets = [[BtmOff,0,0]]*2 + [[TopOff,0,0]]*2
BtmOff = RBtm - RNerEdge
TopOff = RTop - RNerEdge
ThisBlockOffsets += [[BtmOff,0,0]]*2 + [[TopOff,0,0]]*2
bevel = leftOpening.edgeBev(rowTop)
bevelBlockOffsets(ThisBlockOffsets, bevel, 1)
bevel = rightOpening.edgeBev(rowTop)
bevelBlockOffsets(ThisBlockOffsets, bevel, -1)
row.BlocksEdge.append([x,row.z,w,row.h,ThisBlockDepth,ThisBlockOffsets])
continue
# it's not one block, must be two or more
# set up the offsets for the left
BtmOff = LBtm - LNerEdge
TopOff = LTop - LNerEdge
leftOffsets = [[BtmOff,0,0]]*2 + [[TopOff,0,0]]*2 + [[0]*3]*4
bevelL = leftOpening.edgeBev(rowTop)
bevelBlockOffsets(leftOffsets, bevelL, 1)
# and now for the right
BtmOff = RBtm - RNerEdge
TopOff = RTop - RNerEdge
rightOffsets = [[0]*3]*4 + [[BtmOff,0,0]]*2 + [[TopOff,0,0]]*2
bevelR = rightOpening.edgeBev(rowTop)
bevelBlockOffsets(rightOffsets, bevelR, -1)
# check to see if it is only two blocks
if (InnerDiff < MaxWid*2):
#this row is just two blocks! Left block, then right block
#div is the x position of the dividing point between the two bricks
div = InnerMid + (rndd()*settings['wv'])/r1
#set the grout distance, since we need grout seperation between the blocks
grt = (settings['g'] + rndc()*settings['gv'])/r1
#set the x position and width for the left block
x = (div + LNerEdge)/2 - grt/4
w = (div - LNerEdge) - grt/2
ThisBlockDepth = rndd()*settings['dv']+settings['d']
#For reference: EdgeBlocks = [[x,z,w,h,d,[corner offset matrix]],[etc.]]
row.BlocksEdge.append([x,row.z,w,row.h,ThisBlockDepth,leftOffsets])
#Initialize for the block on the right side
x = (div + RNerEdge)/2 + grt/4
w = (RNerEdge - div) - grt/2
ThisBlockDepth = rndd()*settings['dv']+settings['d']
row.BlocksEdge.append([x,row.z,w,row.h,ThisBlockDepth,rightOffsets])
continue
#program should only get here if there are more than two blocks in the row, and no wedge blocks
#make Left edge block
#set the grout
grt = (settings['g'] + rndc()*settings['gv'])/r1
#set the x position and width for the left block
widOptions = [settings['w'], bevelL + settings['wm'], leftOpening.ts]
baseWid = max(widOptions)
w = (rndd()*settings['wv']+baseWid+row.EdgeOffset)
widOptions[0] = settings['wm']
widOptions[2] = w
w = max(widOptions) / r1 - grt
x = w/2 + LNerEdge + grt/2
BlockRowL = x + w/2
ThisBlockDepth = rndd()*settings['dv']+settings['d']
row.BlocksEdge.append([x,row.z,w,row.h,ThisBlockDepth,leftOffsets])
#make Right edge block
#set the grout
grt = (settings['g'] + rndc()*settings['gv'])/r1
#set the x position and width for the left block
widOptions = [settings['w'], bevelR + settings['wm'], rightOpening.ts]
baseWid = max(widOptions)
w = (rndd()*settings['wv']+baseWid+row.EdgeOffset)
widOptions[0] = settings['wm']
widOptions[2] = w
w = max(widOptions) / r1 - grt
x = RNerEdge - w/2 - grt/2
BlockRowR = x - w/2
ThisBlockDepth = rndd()*settings['dv']+settings['d']
row.BlocksEdge.append([x,row.z,w,row.h,ThisBlockDepth,rightOffsets])
row.RowSegments.append([BlockRowL,BlockRowR])
return None
def plan(Thesketch, oldrows = 0):
__doc__ = """\
The 'plan' function takes the data generated by the sketch function and the global settings
and creates a list of blocks.
It passes out a list of row heights, edge positions, edge blocks, and rows of blocks.
"""
# if we were passed a list of rows already, use those; else make a list.
if oldrows: rows = oldrows
else:
#rows holds the important information common to all rows
#rows = [list of row objects]
rows = []
#splits are places where we NEED a row division, to accomidate openings
#add a split for the bottom row
splits = [dims['b']+settings['hb']]
#add a split for each critical point on each opening
for hole in Thesketch: splits += hole.crits()
#and, a split for the top row
splits.append(dims['t']-settings['ht'])
splits.sort()
#divs are the normal old row divisions, add them between the top and bottom split
divs = fill(splits[0],splits[-1],settings['h'],settings['hm']+settings['g'],settings['hv'])[1:-1]
#remove the divisions that are too close to the splits, so we don't get tiny thin rows
for i in range(len(divs)-1,-1,-1):
for j in range(len(splits)):
diff = abs(divs[i] - splits[j])
#(settings['hm']+settings['g']) is the old minimum value
if diff < (settings['h']-settings['hv']+settings['g']):
del(divs[i])
break
#now merge the divs and splits lists
divs += splits
#add bottom and/or top points, if bottom and/or top row heights are more than zero
if settings['hb']>0: divs.insert(0,dims['b'])
if settings['ht']>0: divs.append(dims['t'])
divs.sort()
#trim the rows to the bottom and top of the wall
if divs[0] < dims['b']: divs[:1] = []
if divs[-1] > dims['t']: divs[-1:] = []
#now, make the data for each row
#rows = [[center height,row height,edge offset],[etc.]]
divCount = len(divs)-1 # number of divs to check
divCheck = 0 # current div entry
while divCheck < divCount:
RowZ = (divs[divCheck]+divs[divCheck+1])/2
RowHeight = divs[divCheck+1]-divs[divCheck]-settings['g']+rndc()*settings['rwhl']*settings['gv']
EdgeOffset = settings['eoff']*(fmod(divCheck,2)-0.5)+settings['eoffv']*rndd()
# if row height is too shallow: delete next div entry, decrement total, and recheck current entry.
if RowHeight < settings['hm']:
del(divs[divCheck+1])
divCount -= 1 # Adjust count for removed div entry.
continue
rows.append(rowOb(RowZ, RowHeight, EdgeOffset))
divCheck += 1 # on to next div entry
#set up a special opening object to handle the edges of the wall
x = (dims['s'] + dims['e'])/2
z = (dims['t'] + dims['b'])/2
w = (dims['e'] - dims['s'])
h = (dims['t'] - dims['b'])
WallBoundaries = OpeningInv(x,z,w,h)
#Go over each row in the list, set up edge blocks and block sections
for rownum in range(len(rows)):
rowProcessing(rows[rownum], Thesketch, WallBoundaries)
#now return the things everyone needs
#return [rows,edgeBlocks,blockRows,Asketch]
return [rows,Thesketch]
def archGeneration(hole, vlist, flist, sideSign):
__doc__ = """\
Makes arches for the top and bottom, depending on sideSign
example, Lower arch:
archGeneration(hole, vlist, flist, -1)
example, Upper arch:
archGeneration(hole, vlist, flist, 1)
hole is the opening object that the arch is for
add the verticies to vlist
add the faces to flist
sideSign is + or - 1, for the top or bottom arch. Other values may cause errors.
"""
# working arrays for vectors and faces
avlist = []
aflist = []
# Top (1) or bottom (-1)
if sideSign == -1:
r = hole.rl #radius of the arch
rt = hole.rtl #thickness of the arch (stone height)
v = hole.vl #height of the arch
c = hole.cl
else:
r = hole.r #radius of the arch
rt = hole.rt #thickness of the arch (stone height)
v = hole.v #height of the arch
c = hole.c
ra = r + rt/2 #average radius of the arch
x = hole.x
w = hole.w
h = hole.h
z = hole.z
bev = hole.b
sideSignInv = -sideSign
if v > w/2: #two arcs, to make a pointed arch
# positioning
zpos = z + (h/2)*sideSign
xoffset = r - w/2
#left side top, right side bottom
#angles reference straight up, and are in radians
bevRad = r + bev
bevHt = sqrt(bevRad**2 - (bevRad - (w/2 + bev))**2)
midHalfAngle = atan(v/(r-w/2))
midHalfAngleBevel = atan(bevHt/(r-w/2))
bevelAngle = midHalfAngle - midHalfAngleBevel
anglebeg = (PI/2)*(sideSignInv)
angleend = (PI/2)*(sideSignInv) + midHalfAngle
avlist,aflist = arch(ra,rt,(xoffset)*(sideSign),zpos,anglebeg,angleend,bev,bevelAngle,len(vlist))
for i,vert in enumerate(avlist): avlist[i] = [vert[0]+hole.x,vert[1],vert[2]]
vlist += avlist
flist += aflist
#right side top, left side bottom
#angles reference straight up, and are in radians
anglebeg = (PI/2)*(sideSign) - midHalfAngle
angleend = (PI/2)*(sideSign)
avlist,aflist = arch(ra,rt,(xoffset)*(sideSignInv),zpos,anglebeg,angleend,bev,bevelAngle,len(vlist))
for i,vert in enumerate(avlist): avlist[i] = [vert[0]+hole.x,vert[1],vert[2]]
vlist += avlist
flist += aflist
#keystone
Dpth = settings['d']+rndc()*settings['dv']
Grout = settings['g'] + rndc()*settings['gv']
angleBevel = (PI/2)*(sideSign) - midHalfAngle
Wdth = (rt - Grout - bev) * 2 * sin(angleBevel) * sideSign #note, sin may be negative
MidZ = ((sideSign)*(bevHt + h/2.0) + z) + (rt - Grout - bev) * cos(angleBevel) #note, cos may come out negative too
nearCorner = sideSign*(MidZ - z) - v - h/2
if sideSign == 1:
TopHt = hole.top() - MidZ - Grout
BtmHt = nearCorner
else:
BtmHt = - (hole.btm() - MidZ) - Grout
TopHt = nearCorner
# set the amout to bevel the keystone
keystoneBevel = (bevHt - v)*sideSign
if Wdth >= settings['hm']:
avlist,aflist = MakeAKeystone(x, Wdth, MidZ, TopHt, BtmHt, Dpth, keystoneBevel, len(vlist))
if radialized:
for i,vert in enumerate(avlist):
if slope: r1 = dims['t']*sin(vert[2]*PI/(dims['t']*2))
else: r1 = vert[2]
avlist[i] = [((vert[0]-hole.x)/r1)+hole.x,vert[1],vert[2]]
vlist += avlist
flist += aflist
# remove "debug note" once bevel is finalized.
else: print("keystone was too narrow - " + str(Wdth))
else: # only one arc - curve not peak.
#bottom (sideSign -1) arch has poorly sized blocks...
zpos = z + (sideSign * (h/2 + v - r)) # single arc positioning
#angles reference straight up, and are in radians
if sideSign == -1: angleOffset = PI
else: angleOffset = 0.0
if v < w/2:
halfangle = atan(w/(2*(r-v)))
anglebeg = angleOffset - halfangle
angleend = angleOffset + halfangle
else:
anglebeg = angleOffset - PI/2
angleend = angleOffset + PI/2
avlist,aflist = arch(ra,rt,0,zpos,anglebeg,angleend,bev,0.0,len(vlist))
for i,vert in enumerate(avlist): avlist[i] = [vert[0]+x,vert[1],vert[2]]
vlist += avlist
flist += aflist
#Make the Side Stones
grt = (settings['g'] + rndc()*settings['gv'])
width = sqrt(rt**2 - c**2) - grt
if c > settings['hm'] + grt and c < width + grt:
if radialized: subdivision = settings['sdv'] * (zpos + (h/2)*sideSign)
else: subdivision = settings['sdv']
#set the height of the block, it should be as high as the max corner position, minus grout
height = c - grt*(0.5 + c/(width + grt))
#the vertical offset for the short side of the block
voff = sideSign * (settings['hm'] - height)
xstart = w/2
zstart = z + sideSign * (h/2 + grt/2)
woffset = width*(settings['hm'] + grt/2)/(c - grt/2)
depth = rndd()*settings['dv']+settings['d']
if sideSign == 1:
offsets = [[0]*3]*6 + [[0]*2 + [voff]]*2
topSide = zstart+height
btmSide = zstart
else:
offsets = [[0]*3]*4 + [[0]*2 + [voff]]*2 + [[0]*3]*2
topSide = zstart
btmSide = zstart-height
# Do some stuff to incorporate bev here
bevelBlockOffsets(offsets, bev, -1)
avlist,aflist = MakeABlock([x-xstart-width, x-xstart- woffset, btmSide, topSide, -depth/2, depth/2], subdivision, len(vlist), Offsets=offsets, xBevScl=1)
# top didn't use radialized in prev version; just noting for clarity - may need to revise for "sideSign == 1"
if radialized:
for i,vert in enumerate(avlist): avlist[i] = [((vert[0]-x)/vert[2])+x,vert[1],vert[2]]
vlist += avlist
flist += aflist
# keep sizing same - neat arches = master masons :)
# grt = (settings['g'] + rndc()*settings['gv'])
# height = c - grt*(0.5 + c/(width + grt))
# if grout varies may as well change width too... width = sqrt(rt**2 - c**2) - grt
# voff = sideSign * (settings['hm'] - height)
# woffset = width*(settings['hm'] + grt/2)/(c - grt/2)
if sideSign == 1:
offsets = [[0]*3]*2 + [[0]*2 + [voff]]*2 + [[0]*3]*4
topSide = zstart+height
btmSide = zstart
else:
offsets = [[0]*2 + [voff]]*2 + [[0]*3]*6
topSide = zstart
btmSide = zstart-height
# Do some stuff to incorporate bev here
bevelBlockOffsets(offsets, bev, 1)
avlist,aflist = MakeABlock([x+xstart+woffset, x+xstart+width, btmSide, topSide, -depth/2, depth/2], subdivision, len(vlist), Offsets=offsets, xBevScl=1)
# top didn't use radialized in prev version; just noting for clarity - may need to revise for "sideSign == 1"
if radialized:
for i,vert in enumerate(avlist): avlist[i] = [((vert[0]-x)/vert[2])+x,vert[1],vert[2]]
vlist += avlist
flist += aflist
return None
def build(Aplan):
__doc__ = """\
Build creates the geometry for the wall, based on the
"Aplan" object from the "plan" function. If physics is
enabled, then it make a number of individual blocks with
physics interaction enabled. Otherwise it creates
geometry for the blocks, arches, etc. of the wall.
"""
vlist = []
flist = []
rows = Aplan[0]
#dead code...
#Physics setup is horribly broken. Revisit when new API is in place.
'''if False: #settings['physics']:
geom = MakeABlock([-0.5,0.5,-0.5,0.5,-0.5,0.5], 3, 0, None,[], 3*settings['b']/(settings['w'] + settings['h'] + settings['d']))
blockmesh = Blender.Mesh.New('block')
vlist += geom[0]
flist += geom[1]
blockmesh.verts.extend(vlist)
blockmesh.faces.extend(flist)
for block in Aplan[1]:
x,z,w,h,d = block[:5]
block = scn.objects.new(blockmesh, 'block')
block.loc = [x, 0, z]
block.size = [w,d,h]
block.rbFlags = Blender.Object.RBFlags['BOUNDS'] | Blender.Object.RBFlags['ACTOR'] | Blender.Object.RBFlags['DYNAMIC'] | Blender.Object.RBFlags['RIGIDBODY']
block.rbShapeBoundType = Blender.Object.RBShapes['BOX']
for row in Aplan[2]:#row=[xstart,xend,z,h]
#currently, radial geometry is disabled for physics blocks setup
if radialized:
if slope: r1 = dims['t']*sin(row[2]*PI/(dims['t']*2))
else: r1 = row[2]
else: r1 = 1
divs = fill(row[0], row[1], settings['w'], settings['wm'], settings['wv'])
for i in range(len(divs)-1):
block = scn.objects.new(blockmesh, 'block')
block.loc = [(divs[i]+divs[i+1])/2, 0, row[2]]
block.size = [(divs[i + 1] - divs[i]) - settings['g'], (settings['d'] + rndd()*settings['dv'])*(1-settings['t']*((row[3]-dims['b'])/(dims['t'] - dims['b']))), row[3]]
block.rbFlags = Blender.Object.RBFlags['BOUNDS'] | Blender.Object.RBFlags['ACTOR'] | Blender.Object.RBFlags['DYNAMIC'] | Blender.Object.RBFlags['RIGIDBODY']
block.rbShapeBoundType = Blender.Object.RBShapes['BOX']
return None'''
#end dead code...
# all the edge blocks, redacted
#AllBlocks = [[x,z,w,h,d,[corner offset matrix]],[etc.]]
#loop through each row, adding the normal old blocks
for rowidx in range(len(rows)):#row = row object
rows[rowidx].FillBlocks()
AllBlocks = []
# If the wall is set to merge blocks, check all the blocks to see if you can merge any
#seems to only merge vertical, should do horizontal too
if bigBlock:
for rowidx in range(len(rows)-1):
if radialized:
if slope: r1 = dims['t']*sin(abs(rows[rowidx].z)*PI/(dims['t']*2))
else: r1 = abs(rows[rowidx].z)
else: r1 = 1
Tollerance = settings['g']/r1
idxThis = len(rows[rowidx].BlocksNorm[:]) - 1
idxThat = len(rows[rowidx+1].BlocksNorm[:]) - 1
while True:
# end loop when either array idx wraps
if idxThis < 0 or idxThat < 0: break
blockThis = rows[rowidx].BlocksNorm[idxThis]
blockThat = rows[rowidx+1].BlocksNorm[idxThat]
#seems to only merge vertical, should do horizontal too...
cx, cz, cw, ch, cd = blockThis[:5]
ox, oz, ow, oh, od = blockThat[:5]
if (abs(cw - ow) < Tollerance) and (abs(cx - ox) < Tollerance) :
if cw > ow: BlockW = ow
else: BlockW = cw
AllBlocks.append([(cx+ox)/2,(cz+oz+(oh-ch)/2)/2,BlockW,abs(cz-oz)+(ch+oh)/2,(cd+od)/2,None])
rows[rowidx].BlocksNorm.pop(idxThis)
rows[rowidx+1].BlocksNorm.pop(idxThat)
idxThis -= 1
idxThat -= 1
elif cx > ox: idxThis -= 1
else: idxThat -= 1
#
#
# Add blocks to create a "shelf/platform".
# Does not account for openings (crosses gaps - which is a good thing)
if shelfExt:
SetGrtOff = settings['g']/2 # half grout for block size modifier
# Use wall block settings for shelf
SetBW = settings['w']
SetBWVar = settings['wv']
SetBWMin = settings['wm']
SetBH = settings['h']
# Shelf area settings
ShelfLft = shelfSpecs['x']
ShelfBtm = shelfSpecs['z']
ShelfEnd = ShelfLft + shelfSpecs['w']
ShelfTop = ShelfBtm + shelfSpecs['h']
ShelfThk = shelfSpecs['d'] * 2 # use double-depth due to offsets to position at cursor.
# Use "corners" to adjust position so not centered on depth.
# Facing shelf, at cursor (middle of wall blocks) - this way no gaps between platform and wall face due to wall block depth.
wallDepth = settings['d']/2 # offset by wall depth so step depth matches UI setting :)
if shelfBack: # place blocks on backside of wall
ShelfOffsets = [[0,ShelfThk/2,0],[0,wallDepth,0],[0,ShelfThk/2,0],[0,wallDepth,0],[0,ShelfThk/2,0],[0,wallDepth,0],[0,ShelfThk/2,0],[0,wallDepth,0]]
else:
ShelfOffsets = [[0,-wallDepth,0],[0,-ShelfThk/2,0],[0,-wallDepth,0],[0,-ShelfThk/2,0],[0,-wallDepth,0],[0,-ShelfThk/2,0],[0,-wallDepth,0],[0,-ShelfThk/2,0]]
# Add blocks for each "shelf row" in area
while ShelfBtm < ShelfTop:
# Make blocks for each row - based on rowOb::fillblocks
# Does not vary grout.
divs = fill(ShelfLft, ShelfEnd, SetBW, SetBWMin, SetBWVar)
#loop through the row divisions, adding blocks for each one
for i in range(len(divs)-1):
ThisBlockx = (divs[i]+divs[i+1])/2
ThisBlockw = divs[i+1]-divs[i]-SetGrtOff
AllBlocks.append([ThisBlockx, ShelfBtm, ThisBlockw, SetBH, ShelfThk, ShelfOffsets])
ShelfBtm += SetBH + SetGrtOff # moving up to next row...
#
#
# Add blocks to create "steps".
# Does not account for openings (crosses gaps - which is a good thing)
if stepMod:
SetGrtOff = settings['g']/2 # half grout for block size modifier
# Vary block width by wall block variations.
SetWidVar = settings['wv']
SetWidMin = settings['wm']
StepXMod = stepSpecs['t'] # width of step/tread, also sets basic block size.
StepZMod = stepSpecs['v']
StepLft = stepSpecs['x']
StepRt = stepSpecs['x'] + stepSpecs['w']
StepBtm = stepSpecs['z'] + StepZMod/2 # Start offset for centered blocks
StepWide = stepSpecs['w']
StepTop = StepBtm + stepSpecs['h']
StepThk = stepSpecs['d'] * 2 # use double-depth due to offsets to position at cursor.
# Use "corners" to adjust steps so not centered on depth.
# Facing steps, at cursor (middle of wall blocks) - this way no gaps between steps and wall face due to wall block depth.
# Also, will work fine as stand-alone if not used with wall (try block depth 0 and see what happens).
wallDepth = settings['d']/2 # offset by wall depth so step depth matches UI setting :)
if stepBack: # place blocks on backside of wall
StepOffsets = [[0,StepThk/2,0],[0,wallDepth,0],[0,StepThk/2,0],[0,wallDepth,0],[0,StepThk/2,0],[0,wallDepth,0],[0,StepThk/2,0],[0,wallDepth,0]]
else:
StepOffsets = [[0,-wallDepth,0],[0,-StepThk/2,0],[0,-wallDepth,0],[0,-StepThk/2,0],[0,-wallDepth,0],[0,-StepThk/2,0],[0,-wallDepth,0],[0,-StepThk/2,0]]
# Add steps for each "step row" in area (neg width is interesting but prevented)
while StepBtm < StepTop and StepWide > 0:
# Make blocks for each step row - based on rowOb::fillblocks
# Does not vary grout.
if stepOnly: # "cantilevered steps"
if stepLeft:
stepStart = StepRt - StepXMod
else:
stepStart = StepLft
AllBlocks.append([stepStart, StepBtm, StepXMod, StepZMod, StepThk, StepOffsets])
else:
divs = fill(StepLft, StepRt, StepXMod, SetWidMin, SetWidVar)
#loop through the row divisions, adding blocks for each one
for i in range(len(divs)-1):
ThisBlockx = (divs[i]+divs[i+1])/2
ThisBlockw = divs[i+1]-divs[i]-SetGrtOff
AllBlocks.append([ThisBlockx, StepBtm, ThisBlockw, StepZMod, StepThk, StepOffsets])
StepBtm += StepZMod + SetGrtOff # moving up to next row...
StepWide -= StepXMod # reduce step width
# adjust side limit depending on direction of steps
if stepLeft:
StepRt -= StepXMod # move in from right
else:
StepLft += StepXMod # move in from left
#Copy all the blocks out of the rows
for row in rows:
AllBlocks += row.BlocksEdge
AllBlocks += row.BlocksNorm
#This loop makes individual blocks for each block specified in the plan
for block in AllBlocks:
x,z,w,h,d,corners = block
if radialized:
if slope: r1 = dims['t']*sin(z*PI/(dims['t']*2))
else: r1 = z
else: r1 = 1
geom = MakeABlock([x-w/2, x+w/2, z-h/2, z+h/2, -d/2, d/2], settings['sdv'], len(vlist), corners, None, settings['b']+rndd()*settings['bv'], r1)
vlist += geom[0]
flist += geom[1]
# This loop makes Arches for every opening specified in the plan.
for hole in Aplan[1]:
# lower arch stones
if hole.vl > 0 and hole.rtl > (settings['g'] + settings['hm']):#make lower arch blocks
archGeneration(hole, vlist, flist, -1)
#top arch stones
if hole.v > 0 and hole.rt > (settings['g'] + settings['hm']):#make upper arch blocks
archGeneration(hole, vlist, flist, 1)
#
#Warp all the points for domed stonework
if slope:
for i,vert in enumerate(vlist):
vlist[i] = [vert[0],(dims['t']+vert[1])*cos(vert[2]*PI/(2*dims['t'])),(dims['t']+vert[1])*sin(vert[2]*PI/(2*dims['t']))]
#Warp all the points for radial stonework
if radialized:
for i,vert in enumerate(vlist):
vlist[i] = [vert[2]*cos(vert[0]),vert[2]*sin(vert[0]),vert[1]]
return vlist, flist
#The main function
def createWall(radial, curve, openings, mergeBlox, shelf, shelfSide,
steps, stepDir, stepBare, stepSide):
__doc__ = """\
Call all the funcitons you need to make a wall, return the verts and faces.
"""
global radialized
global slope
global openingSpecs
global bigBlock
global shelfExt
global stepMod
global stepLeft
global shelfBack
global stepOnly
global stepBack
# set all the working variables from passed parameters
radialized = radial
slope = curve
openingSpecs = openings
bigBlock = mergeBlox
shelfExt = shelf
stepMod = steps
stepLeft = stepDir
shelfBack = shelfSide
stepOnly = stepBare
stepBack = stepSide
asketch = sketch()
aplan = plan(asketch, 0)
return build(aplan)