Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
Campbell Barton
committed
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
from mathutils import (
Matrix,
Vector,
)
from math import (
sin,
cos,
tan,
radians,
)
# Global_Scale = 0.001 # 1 blender unit = X mm
GLOBAL_SCALE = 0.1 # 1 blender unit = X mm
# Global_Scale = 1.0 # 1 blender unit = X mm
# next two utility functions are stolen from import_obj.py
def unpack_list(list_of_tuples):
l = []
for t in list_of_tuples:
l.extend(t)
return l
def unpack_face_list(list_of_tuples):
l = []
for t in list_of_tuples:
face = [i for i in t]
if len(face) != 3 and len(face) != 4:
raise RuntimeError("{0} vertices in face".format(len(face)))
Campbell Barton
committed
# rotate indices if the 4th is 0
if len(face) == 4 and face[3] == 0:
face = [face[3], face[0], face[1], face[2]]
if len(face) == 3:
face.append(0)
Campbell Barton
committed
Remove Doubles takes a list on Verts and a list of Faces and
removes the doubles, much like Blender does in edit mode.
It doesn’t have the range function but it will round the corrdinates
and remove verts that are very close togther. The function
is useful because you can perform a “Remove Doubles” with out
having to enter Edit Mode. Having to enter edit mode has the
disadvantage of not being able to interactively change the properties.
def RemoveDoubles(verts, faces, Decimal_Places=4):
Campbell Barton
committed
new_verts = []
new_faces = []
dict_verts = {}
Rounded_Verts = []
Campbell Barton
committed
Campbell Barton
committed
for v in verts:
Rounded_Verts.append([round(v[0], Decimal_Places),
round(v[1], Decimal_Places),
round(v[2], Decimal_Places)])
Campbell Barton
committed
for face in faces:
new_face = []
for vert_index in face:
Real_co = tuple(verts[vert_index])
Rounded_co = tuple(Rounded_Verts[vert_index])
if Rounded_co not in dict_verts:
dict_verts[Rounded_co] = len(dict_verts)
new_verts.append(Real_co)
Campbell Barton
committed
if dict_verts[Rounded_co] not in new_face:
Campbell Barton
committed
new_face.append(dict_verts[Rounded_co])
if len(new_face) == 3 or len(new_face) == 4:
new_faces.append(new_face)
def Scale_Mesh_Verts(verts, scale_factor):
Ret_verts.append([v[0] * scale_factor, v[1] * scale_factor, v[2] * scale_factor])
# Create a matrix representing a rotation.
#
# * angle (float) - The angle of rotation desired.
# * matSize (int) - The size of the rotation matrix to construct. Can be 2d, 3d, or 4d.
# * axisFlag (string (optional)) - Possible values:
# o "x - x-axis rotation"
# o "y - y-axis rotation"
# o "z - z-axis rotation"
# o "r - arbitrary rotation around vector"
# * axis (Vector object. (optional)) - The arbitrary axis of rotation used with "R"
#
Campbell Barton
committed
# A new rotation matrix.
def Simple_RotationMatrix(angle, matSize, axisFlag):
if matSize != 4:
print("Simple_RotationMatrix can only do 4x4")
Campbell Barton
committed
q = radians(angle) # make the rotation go clockwise
Campbell Barton
committed
matrix = Matrix.Rotation(q, 4, 'X')
elif axisFlag == 'y':
matrix = Matrix.Rotation(q, 4, 'Y')
matrix = Matrix.Rotation(q, 4, 'Z')
print("Simple_RotationMatrix can only do x y z axis")
# ####################################################################
# Converter Functions For Bolt Factory
# ####################################################################
h = (float(FLAT) / 2) / cos(radians(30))
Flat_Width_half = (Bit_Dia * (0.5 / 1.82)) / 2.0
Bit_Rad = Bit_Dia / 2.0
x = Bit_Rad - Flat_Width_half
Campbell Barton
committed
return float(y)
# ####################################################################
# Miscellaneous Utilities
# ####################################################################
# Returns a list of verts rotated by the given matrix. Used by SpinDup
def Rot_Mesh(verts, matrix):
Campbell Barton
committed
from mathutils import Vector
return [(matrix * Vector(v))[:] for v in verts]
Campbell Barton
committed
# Returns a list of faces that has there index incremented by offset
return [[(i + offset) for i in f] for f in faces]
# Much like Blenders built in SpinDup
def SpinDup(VERTS, FACES, DEGREE, DIVISIONS, AXIS):
verts = []
faces = []
Campbell Barton
committed
Campbell Barton
committed
DIVISIONS = 1
step = DEGREE / DIVISIONS # set step so pieces * step = degrees in arc
Campbell Barton
committed
rotmat = Simple_RotationMatrix(step * i, 4, AXIS) # 4x4 rotation matrix, 30d about the x axis.
Rot = Rot_Mesh(VERTS, rotmat)
faces.extend(Copy_Faces(FACES, len(verts)))
# Returns a list of verts that have been moved up the z axis by DISTANCE
def Move_Verts_Up_Z(VERTS, DISTANCE):
ret.append([v[0], v[1], v[2] + DISTANCE])
Campbell Barton
committed
# Returns a list of verts and faces that has been mirrored in the AXIS
def Mirror_Verts_Faces(VERTS, FACES, AXIS, FLIP_POINT=0):
Campbell Barton
committed
offset = len(VERTS)
if AXIS == 'y':
for v in VERTS:
Delta = v[0] - FLIP_POINT
ret_vert.append([FLIP_POINT - Delta, v[1], v[2]])
if AXIS == 'x':
for v in VERTS:
Delta = v[1] - FLIP_POINT
ret_vert.append([v[0], FLIP_POINT - Delta, v[2]])
if AXIS == 'z':
for v in VERTS:
Delta = v[2] - FLIP_POINT
ret_vert.append([v[0], v[1], FLIP_POINT - Delta])
Campbell Barton
committed
for f in FACES:
fsub = []
for i in range(len(f)):
fsub.append(f[i] + offset)
fsub.reverse() # flip the order to make norm point out
Campbell Barton
committed
Campbell Barton
committed
# Returns a list of faces that
# make up an array of 4 point polygon.
def Build_Face_List_Quads(OFFSET, COLUM, ROW, FLIP=0):
Ret = []
RowStart = 0
Res1 = RowStart + i
Res2 = RowStart + i + (COLUM + 1)
Res3 = RowStart + i + (COLUM + 1) + 1
Res4 = RowStart + i + 1
Ret.append([OFFSET + Res1, OFFSET + Res2, OFFSET + Res3, OFFSET + Res4])
Ret.append([OFFSET + Res4, OFFSET + Res3, OFFSET + Res2, OFFSET + Res1])
RowStart += COLUM + 1
Campbell Barton
committed
# Returns a list of faces that makes up a fill pattern for a
def Fill_Ring_Face(OFFSET, NUM, FACE_DOWN=0):
Ret = []
Face = [1, 2, 0]
TempFace = [0, 0, 0]
for i in range(NUM - 2):
if (i % 2):
TempFace[0] = Face[C]
TempFace[1] = Face[C] + 1
TempFace[2] = Face[B]
Ret.append([OFFSET + Face[2], OFFSET + Face[1], OFFSET + Face[0]])
Ret.append([OFFSET + Face[0], OFFSET + Face[1], OFFSET + Face[2]])
TempFace[1] = Face[C] - 1
TempFace[2] = Face[B]
Ret.append([OFFSET + Face[0], OFFSET + Face[1], OFFSET + Face[2]])
Ret.append([OFFSET + Face[2], OFFSET + Face[1], OFFSET + Face[0]])
Campbell Barton
committed
Face[0] = TempFace[0]
Face[1] = TempFace[1]
Face[2] = TempFace[2]
return Ret
Campbell Barton
committed
# ####################################################################
# Create Allen Bit
# ####################################################################
Lookup = [[19, 1, 0],
[19, 2, 1],
[19, 3, 2],
[19, 20, 3],
[20, 4, 3],
[20, 5, 4],
[20, 6, 5],
[20, 7, 6],
[20, 8, 7],
[20, 9, 8],
[20, 21, 9],
[21, 10, 9],
[21, 11, 10],
[21, 12, 11],
[21, 13, 12],
[21, 14, 13],
[21, 15, 14],
[21, 22, 15],
[22, 16, 15],
[22, 17, 16],
[22, 18, 17]
faces.append([OFFSET + i[2], OFFSET + i[1], OFFSET + i[0]])
faces.append([OFFSET + i[0], OFFSET + i[1], OFFSET + i[2]])
Campbell Barton
committed
Flat_Radius = (float(FLAT_DISTANCE) / 2.0) / cos(radians(30))
Campbell Barton
committed
def Allen_Bit_Dia_To_Flat(DIA):
Flat_Radius = (DIA / 2.0) / 1.05
return (Flat_Radius * cos(radians(30))) * 2.0
Campbell Barton
committed
def Create_Allen_Bit(FLAT_DISTANCE, HEIGHT):
DIV_COUNT = 36
Campbell Barton
committed
Flat_Radius = (float(FLAT_DISTANCE) / 2.0) / cos(radians(30))
Outter_Radius_Height = Flat_Radius * (0.1 / 5.77)
Deg_Step = 360.0 / float(DIV_COUNT)
Campbell Barton
committed
for i in range(int(DIV_COUNT / 2) + 1): # only do half and mirror later
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
verts.append([x, y, 0])
Campbell Barton
committed
Campbell Barton
committed
Deg_Step = 360.0 / float(6)
for i in range(int(6 / 2) + 1):
x = sin(radians(i * Deg_Step)) * Flat_Radius
y = cos(radians(i * Deg_Step)) * Flat_Radius
verts.append([x, y, 0 - Outter_Radius_Height])
Campbell Barton
committed
faces.extend(Allen_Fill(FaceStart_Outside, 0))
Campbell Barton
committed
Campbell Barton
committed
Deg_Step = 360.0 / float(6)
for i in range(int(6 / 2) + 1):
x = sin(radians(i * Deg_Step)) * Flat_Radius
y = cos(radians(i * Deg_Step)) * Flat_Radius
verts.append([x, y, 0 - HEIGHT])
Campbell Barton
committed
faces.extend(Build_Face_List_Quads(FaceStart_Inside, 3, 1, True))
faces.extend(Fill_Ring_Face(FaceStart_Bottom, 4))
Campbell Barton
committed
M_Verts, M_Faces = Mirror_Verts_Faces(verts, faces, 'y')
Campbell Barton
committed
return verts, faces, OUTTER_RADIUS * 2.0
# ####################################################################
# Create Phillips Bit
# ####################################################################
def Phillips_Fill(OFFSET, FLIP=0):
Lookup = [[0, 1, 10],
[1, 11, 10],
[1, 2, 11],
[2, 12, 11],
[2, 3, 12],
[3, 4, 12],
[4, 5, 12],
[5, 6, 12],
[6, 7, 12],
[7, 13, 12],
[7, 8, 13],
[8, 14, 13],
[8, 9, 14],
[10, 11, 16, 15],
[11, 12, 16],
[12, 13, 16],
[13, 14, 17, 16],
[15, 16, 17, 18]
]
for i in Lookup:
if FLIP:
if len(i) == 3:
faces.append([OFFSET + i[2], OFFSET + i[1], OFFSET + i[0]])
Campbell Barton
committed
else:
faces.append([OFFSET + i[3], OFFSET + i[2], OFFSET + i[1], OFFSET + i[0]])
faces.append([OFFSET + i[0], OFFSET + i[1], OFFSET + i[2]])
faces.append([OFFSET + i[0], OFFSET + i[1], OFFSET + i[2], OFFSET + i[3]])
def Create_Phillips_Bit(FLAT_DIA, FLAT_WIDTH, HEIGHT):
Campbell Barton
committed
DIV_COUNT = 36
FLAT_RADIUS = FLAT_DIA * 0.5
OUTTER_RADIUS = FLAT_RADIUS * 1.05
Campbell Barton
committed
Flat_Half = float(FLAT_WIDTH) / 2.0
Campbell Barton
committed
Deg_Step = 360.0 / float(DIV_COUNT)
for i in range(int(DIV_COUNT / 4) + 1): # only do half and mirror later
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
verts.append([x, y, 0])
# FaceStart_Inside = len(verts) # UNUSED
verts.append([0, FLAT_RADIUS, 0]) # 10
verts.append([Flat_Half, FLAT_RADIUS, 0]) # 11
verts.append([Flat_Half, Flat_Half, 0]) # 12
verts.append([FLAT_RADIUS, Flat_Half, 0]) # 13
verts.append([FLAT_RADIUS, 0, 0]) # 14
Campbell Barton
committed
verts.append([0, Flat_Half, 0 - HEIGHT]) # 15
verts.append([Flat_Half, Flat_Half, 0 - HEIGHT]) # 16
verts.append([Flat_Half, 0, 0 - HEIGHT]) # 17
Campbell Barton
committed
verts.append([0, 0, 0 - HEIGHT]) # 18
Campbell Barton
committed
faces.extend(Phillips_Fill(FaceStart_Outside, True))
Spin_Verts, Spin_Face = SpinDup(verts, faces, 360, 4, 'z')
Campbell Barton
committed
return Spin_Verts, Spin_Face, OUTTER_RADIUS * 2
Campbell Barton
committed
# ####################################################################
# Create Head Types
# ####################################################################
def Max_Pan_Bit_Dia(HEAD_DIA):
HEAD_RADIUS = HEAD_DIA * 0.5
XRad = HEAD_RADIUS * 1.976
return (sin(radians(10)) * XRad) * 2.0
def Create_Pan_Head(HOLE_DIA, HEAD_DIA, SHANK_DIA, HEIGHT, RAD1, RAD2, FACE_OFFSET, DIV_COUNT):
HOLE_RADIUS = HOLE_DIA * 0.5
HEAD_RADIUS = HEAD_DIA * 0.5
SHANK_RADIUS = SHANK_DIA * 0.5
verts = []
faces = []
Row = 0
XRad = HEAD_RADIUS * 1.976
ZRad = HEAD_RADIUS * 1.768
EndRad = HEAD_RADIUS * 0.284
EndZOffset = HEAD_RADIUS * 0.432
HEIGHT = HEAD_RADIUS * 0.59
Campbell Barton
committed
"""
Dome_Rad = 5.6
RAD_Offset = 4.9
OtherRad = 0.8
OtherRad_X_Offset = 4.2
OtherRad_Z_Offset = 2.52
XRad = 9.88
ZRad = 8.84
EndRad = 1.42
EndZOffset = 2.16
HEIGHT = 2.95
"""
z = cos(radians(10)) * ZRad
verts.append([HOLE_RADIUS, 0.0, (0.0 - ZRad) + z])
Start_Height = 0 - ((0.0 - ZRad) + z)
# for i in range(0,30,10): was 0 to 30 more work needed to make this look good.
for i in range(10, 30, 10):
x = sin(radians(i)) * XRad
z = cos(radians(i)) * ZRad
verts.append([x, 0.0, (0.0 - ZRad) + z])
for i in range(20, 140, 10):
x = sin(radians(i)) * EndRad
z = cos(radians(i)) * EndRad
if ((0.0 - EndZOffset) + z) < (0.0 - HEIGHT):
verts.append([(HEAD_RADIUS - EndRad) + x, 0.0, 0.0 - HEIGHT])
verts.append([(HEAD_RADIUS - EndRad) + x, 0.0, (0.0 - EndZOffset) + z])
Campbell Barton
committed
verts.append([SHANK_RADIUS, 0.0, (0.0 - HEIGHT)])
Campbell Barton
committed
verts.append([SHANK_RADIUS, 0.0, (0.0 - HEIGHT) - Start_Height])
sVerts, sFaces = SpinDup(verts, faces, 360, DIV_COUNT, 'z')
sVerts.extend(verts) # add the start verts to the Spin verts to complete the loop
faces.extend(Build_Face_List_Quads(FaceStart, Row - 1, DIV_COUNT))
return Move_Verts_Up_Z(sVerts, Start_Height), faces, HEIGHT
def Create_Dome_Head(HOLE_DIA, HEAD_DIA, SHANK_DIA, HEIGHT, RAD1, RAD2, FACE_OFFSET, DIV_COUNT):
HOLE_RADIUS = HOLE_DIA * 0.5
HEAD_RADIUS = HEAD_DIA * 0.5
SHANK_RADIUS = SHANK_DIA * 0.5
Campbell Barton
committed
# Dome_Rad = HEAD_RADIUS * (1.0/1.75)
Campbell Barton
committed
Dome_Rad = HEAD_RADIUS * 1.12
# Head_Height = HEAD_RADIUS * 0.78
RAD_Offset = HEAD_RADIUS * 0.98
Dome_Height = HEAD_RADIUS * 0.64
OtherRad = HEAD_RADIUS * 0.16
OtherRad_X_Offset = HEAD_RADIUS * 0.84
OtherRad_Z_Offset = HEAD_RADIUS * 0.504
Campbell Barton
committed
"""
Dome_Rad = 5.6
RAD_Offset = 4.9
Dome_Height = 3.2
OtherRad = 0.8
OtherRad_X_Offset = 4.2
OtherRad_Z_Offset = 2.52
"""
Campbell Barton
committed
Campbell Barton
committed
verts.append([HOLE_RADIUS, 0.0, 0.0])
for i in range(0, 60, 10):
x = sin(radians(i)) * Dome_Rad
z = cos(radians(i)) * Dome_Rad
if ((0.0 - RAD_Offset) + z) <= 0:
verts.append([x, 0.0, (0.0 - RAD_Offset) + z])
for i in range(60, 160, 10):
x = sin(radians(i)) * OtherRad
z = cos(radians(i)) * OtherRad
z = (0.0 - OtherRad_Z_Offset) + z
if z < (0.0 - Dome_Height):
z = (0.0 - Dome_Height)
verts.append([OtherRad_X_Offset + x, 0.0, z])
Campbell Barton
committed
verts.append([SHANK_RADIUS, 0.0, (0.0 - Dome_Height)])
sVerts, sFaces = SpinDup(verts, faces, 360, DIV_COUNT, 'z')
sVerts.extend(verts) # add the start verts to the Spin verts to complete the loop
faces.extend(Build_Face_List_Quads(FaceStart, Row - 1, DIV_COUNT))
return sVerts, faces, Dome_Height
def Create_CounterSink_Head(HOLE_DIA, HEAD_DIA, SHANK_DIA, HEIGHT, RAD1, DIV_COUNT):
Campbell Barton
committed
HOLE_RADIUS = HOLE_DIA * 0.5
HEAD_RADIUS = HEAD_DIA * 0.5
SHANK_RADIUS = SHANK_DIA * 0.5
Campbell Barton
committed
# HEAD_RADIUS = (HEIGHT/tan(radians(60))) + SHANK_RADIUS
HEIGHT = tan(radians(60)) * (HEAD_RADIUS - SHANK_RADIUS)
Campbell Barton
committed
verts.append([HOLE_RADIUS, 0.0, 0.0])
# rad
for i in range(0, 100, 10):
x = sin(radians(i)) * RAD1
z = cos(radians(i)) * RAD1
verts.append([(HEAD_RADIUS - RAD1) + x, 0.0, (0.0 - RAD1) + z])
Campbell Barton
committed
verts.append([SHANK_RADIUS, 0.0, 0.0 - HEIGHT])
sVerts, sFaces = SpinDup(verts, faces, 360, DIV_COUNT, 'z')
sVerts.extend(verts) # add the start verts to the Spin verts to complete the loop
faces.extend(Build_Face_List_Quads(FaceStart, Row - 1, DIV_COUNT, 1))
Campbell Barton
committed
def Create_Cap_Head(HOLE_DIA, HEAD_DIA, SHANK_DIA, HEIGHT, RAD1, RAD2, DIV_COUNT):
Campbell Barton
committed
HOLE_RADIUS = HOLE_DIA * 0.5
HEAD_RADIUS = HEAD_DIA * 0.5
SHANK_RADIUS = SHANK_DIA * 0.5
Campbell Barton
committed
verts = []
faces = []
Row = 0
BEVEL = HEIGHT * 0.01
Campbell Barton
committed
verts.append([HOLE_RADIUS, 0.0, 0.0])
# rad
for i in range(0, 100, 10):
x = sin(radians(i)) * RAD1
z = cos(radians(i)) * RAD1
verts.append([(HEAD_RADIUS - RAD1) + x, 0.0, (0.0 - RAD1) + z])
Campbell Barton
committed
verts.append([HEAD_RADIUS, 0.0, 0.0 - HEIGHT + BEVEL])
verts.append([HEAD_RADIUS - BEVEL, 0.0, 0.0 - HEIGHT])
# rad2
for i in range(0, 100, 10):
x = sin(radians(i)) * RAD2
z = cos(radians(i)) * RAD2
verts.append([(SHANK_RADIUS + RAD2) - x, 0.0, (0.0 - HEIGHT - RAD2) + z])
Campbell Barton
committed
sVerts, sFaces = SpinDup(verts, faces, 360, DIV_COUNT, 'z')
sVerts.extend(verts) # add the start verts to the Spin verts to complete the loop
faces.extend(Build_Face_List_Quads(FaceStart, Row - 1, DIV_COUNT))
Campbell Barton
committed
return sVerts, faces, HEIGHT + RAD2
def Create_Hex_Head(FLAT, HOLE_DIA, SHANK_DIA, HEIGHT):
Campbell Barton
committed
verts = []
faces = []
HOLE_RADIUS = HOLE_DIA * 0.5
Half_Flat = FLAT / 2
TopBevelRadius = Half_Flat - (Half_Flat * (0.05 / 8))
Undercut_Height = (Half_Flat * (0.05 / 8))
Shank_Bevel = (Half_Flat * (0.05 / 8))
Flat_Height = HEIGHT - Undercut_Height - Shank_Bevel
# Undercut_Height = 5
SHANK_RADIUS = SHANK_DIA / 2
Row = 0
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
# inner hole
x = sin(radians(0)) * HOLE_RADIUS
y = cos(radians(0)) * HOLE_RADIUS
verts.append([x, y, 0.0])
Campbell Barton
committed
x = sin(radians(60 / 6)) * HOLE_RADIUS
y = cos(radians(60 / 6)) * HOLE_RADIUS
verts.append([x, y, 0.0])
Campbell Barton
committed
x = sin(radians(60 / 3)) * HOLE_RADIUS
y = cos(radians(60 / 3)) * HOLE_RADIUS
verts.append([x, y, 0.0])
Campbell Barton
committed
x = sin(radians(60 / 2)) * HOLE_RADIUS
y = cos(radians(60 / 2)) * HOLE_RADIUS
verts.append([x, y, 0.0])
Campbell Barton
committed
# bevel
x = sin(radians(0)) * TopBevelRadius
y = cos(radians(0)) * TopBevelRadius
vec1 = Vector([x, y, 0.0])
verts.append([x, y, 0.0])
x = sin(radians(60 / 6)) * TopBevelRadius
y = cos(radians(60 / 6)) * TopBevelRadius
vec2 = Vector([x, y, 0.0])
verts.append([x, y, 0.0])
x = sin(radians(60 / 3)) * TopBevelRadius
y = cos(radians(60 / 3)) * TopBevelRadius
vec3 = Vector([x, y, 0.0])
verts.append([x, y, 0.0])
x = sin(radians(60 / 2)) * TopBevelRadius
y = cos(radians(60 / 2)) * TopBevelRadius
vec4 = Vector([x, y, 0.0])
verts.append([x, y, 0.0])
Campbell Barton
committed
# Flats
x = tan(radians(0)) * Half_Flat
dvec = vec1 - Vector([x, Half_Flat, 0.0])
verts.append([x, Half_Flat, -dvec.length])
Campbell Barton
committed
x = tan(radians(60 / 6)) * Half_Flat
dvec = vec2 - Vector([x, Half_Flat, 0.0])
verts.append([x, Half_Flat, -dvec.length])
Campbell Barton
committed
x = tan(radians(60 / 3)) * Half_Flat
dvec = vec3 - Vector([x, Half_Flat, 0.0])
verts.append([x, Half_Flat, -dvec.length])
x = tan(radians(60 / 2)) * Half_Flat
dvec = vec4 - Vector([x, Half_Flat, 0.0])
verts.append([x, Half_Flat, -dvec.length])
Campbell Barton
committed
# down Bits Tri
x = tan(radians(0)) * Half_Flat
verts.append([x, Half_Flat, Lowest_Point])
Campbell Barton
committed
x = tan(radians(60 / 6)) * Half_Flat
verts.append([x, Half_Flat, Lowest_Point])
x = tan(radians(60 / 3)) * Half_Flat
verts.append([x, Half_Flat, Lowest_Point])
Campbell Barton
committed
x = tan(radians(60 / 2)) * Half_Flat
verts.append([x, Half_Flat, Lowest_Point])
Campbell Barton
committed
x = tan(radians(0)) * Half_Flat
verts.append([x, Half_Flat, -Flat_Height])
Campbell Barton
committed
x = tan(radians(60 / 6)) * Half_Flat
verts.append([x, Half_Flat, -Flat_Height])
x = tan(radians(60 / 3)) * Half_Flat
verts.append([x, Half_Flat, -Flat_Height])
Campbell Barton
committed
x = tan(radians(60 / 2)) * Half_Flat
verts.append([x, Half_Flat, -Flat_Height])
Campbell Barton
committed
# Under cut
x = sin(radians(0)) * Half_Flat
y = cos(radians(0)) * Half_Flat
vec1 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height])
x = sin(radians(60 / 6)) * Half_Flat
y = cos(radians(60 / 6)) * Half_Flat
vec2 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height])
x = sin(radians(60 / 3)) * Half_Flat
y = cos(radians(60 / 3)) * Half_Flat
vec3 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height])
x = sin(radians(60 / 2)) * Half_Flat
y = cos(radians(60 / 2)) * Half_Flat
vec3 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height])
Campbell Barton
committed
# Under cut down bit
x = sin(radians(0)) * Half_Flat
y = cos(radians(0)) * Half_Flat
vec1 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height])
x = sin(radians(60 / 6)) * Half_Flat
y = cos(radians(60 / 6)) * Half_Flat
vec2 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height])
x = sin(radians(60 / 3)) * Half_Flat
y = cos(radians(60 / 3)) * Half_Flat
vec3 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height])
x = sin(radians(60 / 2)) * Half_Flat
y = cos(radians(60 / 2)) * Half_Flat
vec3 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height])
Campbell Barton
committed
# Under cut to Shank BEVEL
x = sin(radians(0)) * (SHANK_RADIUS + Shank_Bevel)
y = cos(radians(0)) * (SHANK_RADIUS + Shank_Bevel)
vec1 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height])
x = sin(radians(60 / 6)) * (SHANK_RADIUS + Shank_Bevel)
y = cos(radians(60 / 6)) * (SHANK_RADIUS + Shank_Bevel)
vec2 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height])
x = sin(radians(60 / 3)) * (SHANK_RADIUS + Shank_Bevel)
y = cos(radians(60 / 3)) * (SHANK_RADIUS + Shank_Bevel)
vec3 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height])
x = sin(radians(60 / 2)) * (SHANK_RADIUS + Shank_Bevel)
y = cos(radians(60 / 2)) * (SHANK_RADIUS + Shank_Bevel)
vec3 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height])
Campbell Barton
committed
# Under cut to Shank BEVEL
x = sin(radians(0)) * SHANK_RADIUS
y = cos(radians(0)) * SHANK_RADIUS
vec1 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height - Shank_Bevel])
x = sin(radians(60 / 6)) * SHANK_RADIUS
y = cos(radians(60 / 6)) * SHANK_RADIUS
vec2 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height - Shank_Bevel])
x = sin(radians(60 / 3)) * SHANK_RADIUS
y = cos(radians(60 / 3)) * SHANK_RADIUS
vec3 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height - Shank_Bevel])
x = sin(radians(60 / 2)) * SHANK_RADIUS
y = cos(radians(60 / 2)) * SHANK_RADIUS
vec3 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height - Shank_Bevel])
Campbell Barton
committed
# Global_Head_Height = 0 - (-HEIGHT-0.1)
faces.extend(Build_Face_List_Quads(FaceStart, 3, Row - 1))
Campbell Barton
committed
Mirror_Verts, Mirror_Faces = Mirror_Verts_Faces(verts, faces, 'y')
verts.extend(Mirror_Verts)
faces.extend(Mirror_Faces)
Campbell Barton
committed
Spin_Verts, Spin_Faces = SpinDup(verts, faces, 360, 6, 'z')
Campbell Barton
committed
return Spin_Verts, Spin_Faces, 0 - (-HEIGHT)
Campbell Barton
committed
# ####################################################################
# Create External Thread
# ####################################################################
def Thread_Start3(verts, INNER_RADIUS, OUTTER_RADIUS, PITCH, DIV_COUNT,
CREST_PERCENT, ROOT_PERCENT, Height_Offset):
Campbell Barton
committed
Height_Step = float(PITCH) / float(DIV_COUNT)
Deg_Step = 360.0 / float(DIV_COUNT)
Campbell Barton
committed
Crest_Height = float(PITCH) * float(CREST_PERCENT) / float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT) / float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height)) / 2.0
Campbell Barton
committed
# thread start
Rank = float(OUTTER_RADIUS - INNER_RADIUS) / float(DIV_COUNT)
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
z = Height_Offset - (Height_Step * i)
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
verts.append([x, y, z])
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
z = Height_Offset - (Height_Step * i)
Campbell Barton
committed
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
verts.append([x, y, z])
Height_Offset -= Crest_to_Root_Height
Ret_Row += 1
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
z = Height_Offset - (Height_Step * i)
Campbell Barton
committed
x = sin(radians(i * Deg_Step)) * INNER_RADIUS
y = cos(radians(i * Deg_Step)) * INNER_RADIUS
x = sin(radians(i * Deg_Step)) * (OUTTER_RADIUS - (i * Rank))
y = cos(radians(i * Deg_Step)) * (OUTTER_RADIUS - (i * Rank))
verts.append([x, y, z])
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
z = Height_Offset - (Height_Step * i)
Campbell Barton
committed
x = sin(radians(i * Deg_Step)) * INNER_RADIUS
y = cos(radians(i * Deg_Step)) * INNER_RADIUS
x = sin(radians(i * Deg_Step)) * (OUTTER_RADIUS - (i * Rank))
y = cos(radians(i * Deg_Step)) * (OUTTER_RADIUS - (i * Rank))
verts.append([x, y, z])
Height_Offset -= Root_to_Crest_Height
Ret_Row += 1
Campbell Barton
committed
def Create_Shank_Verts(START_DIA, OUTTER_DIA, LENGTH, Z_LOCATION, DIV_COUNT):
Campbell Barton
committed
START_RADIUS = START_DIA / 2
OUTTER_RADIUS = OUTTER_DIA / 2
Campbell Barton
committed
Taper_Lentgh = Opp / tan(radians(31))
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
Deg_Step = 360.0 / float(DIV_COUNT)
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
# Ring
for i in range(DIV_COUNT + 1):
x = sin(radians(i * Deg_Step)) * START_RADIUS
y = cos(radians(i * Deg_Step)) * START_RADIUS
z = Height_Offset - 0
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
for i in range(DIV_COUNT + 1):
x = sin(radians(i * Deg_Step)) * START_RADIUS
y = cos(radians(i * Deg_Step)) * START_RADIUS
z = Height_Offset - 0
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
return verts, Row, Height_Offset
def Create_Thread_Start_Verts(INNER_DIA, OUTTER_DIA, PITCH, CREST_PERCENT,
ROOT_PERCENT, Z_LOCATION, DIV_COUNT):
Campbell Barton
committed
INNER_RADIUS = INNER_DIA / 2
OUTTER_RADIUS = OUTTER_DIA / 2
Campbell Barton
committed
Deg_Step = 360.0 / float(DIV_COUNT)
Height_Step = float(PITCH) / float(DIV_COUNT)
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
Height_Start = Height_Offset
Crest_Height = float(PITCH) * float(CREST_PERCENT) / float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT) / float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height)) / 2.0
Rank = float(OUTTER_RADIUS - INNER_RADIUS) / float(DIV_COUNT)
Campbell Barton
committed
Height_Offset = Z_LOCATION + PITCH
Campbell Barton
committed
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
z = Height_Offset - (Height_Step * i)
if z > Cut_off:
z = Cut_off
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
z = Height_Offset - (Height_Step * i)
if z > Cut_off:
z = Cut_off
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Height_Offset -= Crest_to_Root_Height
Row += 1
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
z = Height_Offset - (Height_Step * i)
if z > Cut_off:
z = Cut_off
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
z = Height_Offset - (Height_Step * i)
if z > Cut_off:
z = Cut_off
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Height_Offset -= Root_to_Crest_Height
Row += 1
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
z = Height_Offset - (Height_Step * i)
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
z = Height_Offset - (Height_Step * i)
Campbell Barton
committed
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Height_Offset -= Crest_to_Root_Height
Row += 1
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
z = Height_Offset - (Height_Step * i)
Campbell Barton
committed
x = sin(radians(i * Deg_Step)) * INNER_RADIUS
y = cos(radians(i * Deg_Step)) * INNER_RADIUS
x = sin(radians(i * Deg_Step)) * (OUTTER_RADIUS - (i * Rank))
y = cos(radians(i * Deg_Step)) * (OUTTER_RADIUS - (i * Rank))
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
z = Height_Offset - (Height_Step * i)
Campbell Barton
committed
x = sin(radians(i * Deg_Step)) * INNER_RADIUS
y = cos(radians(i * Deg_Step)) * INNER_RADIUS
x = sin(radians(i * Deg_Step)) * (OUTTER_RADIUS - (i * Rank))
y = cos(radians(i * Deg_Step)) * (OUTTER_RADIUS - (i * Rank))
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Height_Offset -= Root_to_Crest_Height
Row += 1
Campbell Barton
committed
return verts, Row, Height_Offset
def Create_Thread_Verts(INNER_DIA, OUTTER_DIA, PITCH, HEIGHT,
CREST_PERCENT, ROOT_PERCENT, Z_LOCATION, DIV_COUNT):
Campbell Barton
committed
INNER_RADIUS = INNER_DIA / 2
OUTTER_RADIUS = OUTTER_DIA / 2
Campbell Barton
committed
Deg_Step = 360.0 / float(DIV_COUNT)
Height_Step = float(PITCH) / float(DIV_COUNT)
NUM_OF_START_THREADS = 4.0
NUM_OF_END_THREADS = 3.0
Num = int((HEIGHT - ((NUM_OF_START_THREADS * PITCH) + (NUM_OF_END_THREADS * PITCH))) / PITCH)
Campbell Barton
committed
Crest_Height = float(PITCH) * float(CREST_PERCENT) / float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT) / float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height)) / 2.0
Campbell Barton
committed
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
z = Height_Offset - (Height_Step * i)
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
z = Height_Offset - (Height_Step * i)
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Height_Offset -= Crest_to_Root_Height
Row += 1
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
x = sin(radians(i * Deg_Step)) * INNER_RADIUS
y = cos(radians(i * Deg_Step)) * INNER_RADIUS
z = Height_Offset - (Height_Step * i)
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
x = sin(radians(i * Deg_Step)) * INNER_RADIUS
y = cos(radians(i * Deg_Step)) * INNER_RADIUS
z = Height_Offset - (Height_Step * i)
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Height_Offset -= Root_to_Crest_Height
Row += 1
Campbell Barton
committed
return verts, Row, Height_Offset
def Create_Thread_End_Verts(INNER_DIA, OUTTER_DIA, PITCH, CREST_PERCENT,
ROOT_PERCENT, Z_LOCATION, DIV_COUNT):
Campbell Barton
committed
INNER_RADIUS = INNER_DIA / 2
OUTTER_RADIUS = OUTTER_DIA / 2
Campbell Barton
committed
Deg_Step = 360.0 / float(DIV_COUNT)
Height_Step = float(PITCH) / float(DIV_COUNT)
Crest_Height = float(PITCH) * float(CREST_PERCENT) / float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT) / float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height)) / 2.0
Campbell Barton
committed
Campbell Barton
committed
Height_Offset = Z_LOCATION
Tapper_Height_Start = Height_Offset - PITCH - PITCH
Max_Height = Tapper_Height_Start - PITCH
Campbell Barton
committed
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
z = Height_Offset - (Height_Step * i)
z = max(z, Max_Height)
Tapper_Radius = OUTTER_RADIUS
if z < Tapper_Height_Start:
Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z)
x = sin(radians(i * Deg_Step)) * (Tapper_Radius)
y = cos(radians(i * Deg_Step)) * (Tapper_Radius)
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
z = Height_Offset - (Height_Step * i)
z = max(z, Max_Height)
Tapper_Radius = OUTTER_RADIUS
if z < Tapper_Height_Start:
Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z)
x = sin(radians(i * Deg_Step)) * (Tapper_Radius)
y = cos(radians(i * Deg_Step)) * (Tapper_Radius)
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Height_Offset -= Crest_to_Root_Height
Row += 1
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
z = Height_Offset - (Height_Step * i)
z = max(z, Max_Height)
Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z)
if Tapper_Radius > INNER_RADIUS:
Campbell Barton
committed
Tapper_Radius = INNER_RADIUS
Campbell Barton
committed
x = sin(radians(i * Deg_Step)) * (Tapper_Radius)
y = cos(radians(i * Deg_Step)) * (Tapper_Radius)
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
z = Height_Offset - (Height_Step * i)
z = max(z, Max_Height)
Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z)
if Tapper_Radius > INNER_RADIUS:
Campbell Barton
committed
Tapper_Radius = INNER_RADIUS
Campbell Barton
committed
x = sin(radians(i * Deg_Step)) * (Tapper_Radius)
y = cos(radians(i * Deg_Step)) * (Tapper_Radius)
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Height_Offset -= Root_to_Crest_Height
Row += 1
Campbell Barton
committed
return verts, Row, Height_Offset, Lowest_Z_Vert
def Create_External_Thread(SHANK_DIA, SHANK_LENGTH, INNER_DIA, OUTTER_DIA,
PITCH, LENGTH, CREST_PERCENT, ROOT_PERCENT, DIV_COUNT):
Campbell Barton
committed
verts = []
faces = []
Total_Row = 0
Campbell Barton
committed
Campbell Barton
committed
Shank_Verts, Shank_Row, Offset = Create_Shank_Verts(
SHANK_DIA, OUTTER_DIA, SHANK_LENGTH,
Offset, DIV_COUNT
)
Thread_Start_Verts, Thread_Start_Row, Offset = Create_Thread_Start_Verts(
INNER_DIA, OUTTER_DIA, PITCH, CREST_PERCENT,
ROOT_PERCENT, Offset, DIV_COUNT
)
Campbell Barton
committed
Thread_Verts, Thread_Row, Offset = Create_Thread_Verts(
INNER_DIA, OUTTER_DIA, PITCH, LENGTH,
CREST_PERCENT, ROOT_PERCENT, Offset, DIV_COUNT
)
Campbell Barton
committed
Thread_End_Verts, Thread_End_Row, Offset, Lowest_Z_Vert = Create_Thread_End_Verts(
INNER_DIA, OUTTER_DIA, PITCH, CREST_PERCENT,
ROOT_PERCENT, Offset, DIV_COUNT
)
Campbell Barton
committed
Total_Row += Thread_End_Row
verts.extend(Shank_Verts)
verts.extend(Thread_Start_Verts)
verts.extend(Thread_Verts)
verts.extend(Thread_End_Verts)
Campbell Barton
committed
faces.extend(Build_Face_List_Quads(Face_Start, DIV_COUNT, Total_Row - 1, 0))
faces.extend(Fill_Ring_Face(len(verts) - DIV_COUNT, DIV_COUNT, 1))
Campbell Barton
committed
return verts, faces, 0.0 - Lowest_Z_Vert
Campbell Barton
committed
# ####################################################################
# Create Nut
# ####################################################################
def add_Hex_Nut(FLAT, HOLE_DIA, HEIGHT):
global Global_Head_Height
global Global_NutRad
Campbell Barton
committed
verts = []
faces = []
HOLE_RADIUS = HOLE_DIA * 0.5
Half_Flat = FLAT / 2
Half_Height = HEIGHT / 2
Campbell Barton
committed
Row = 0
Lowest_Z_Vert = 0.0
Campbell Barton
committed
Campbell Barton
committed
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
# inner hole
x = sin(radians(0)) * HOLE_RADIUS
y = cos(radians(0)) * HOLE_RADIUS
# print ("rad 0 x;", x, "y:" ,y )
verts.append([x, y, 0.0])
x = sin(radians(60 / 6)) * HOLE_RADIUS
y = cos(radians(60 / 6)) * HOLE_RADIUS
# print ("rad 60/6x;", x, "y:" ,y )
verts.append([x, y, 0.0])
x = sin(radians(60 / 3)) * HOLE_RADIUS
y = cos(radians(60 / 3)) * HOLE_RADIUS
# print ("rad 60/3x;", x, "y:" ,y )
verts.append([x, y, 0.0])
x = sin(radians(60 / 2)) * HOLE_RADIUS
y = cos(radians(60 / 2)) * HOLE_RADIUS
# print ("rad 60/2x;", x, "y:" ,y )
verts.append([x, y, 0.0])
Campbell Barton
committed
Campbell Barton
committed
x = sin(radians(0)) * TopBevelRadius
y = cos(radians(0)) * TopBevelRadius
vec1 = Vector([x, y, 0.0])
verts.append([x, y, 0.0])
Campbell Barton
committed
x = sin(radians(60 / 6)) * TopBevelRadius
y = cos(radians(60 / 6)) * TopBevelRadius
vec2 = Vector([x, y, 0.0])
verts.append([x, y, 0.0])
Campbell Barton
committed
x = sin(radians(60 / 3)) * TopBevelRadius
y = cos(radians(60 / 3)) * TopBevelRadius
vec3 = Vector([x, y, 0.0])
verts.append([x, y, 0.0])
Campbell Barton
committed
x = sin(radians(60 / 2)) * TopBevelRadius
y = cos(radians(60 / 2)) * TopBevelRadius
vec4 = Vector([x, y, 0.0])
verts.append([x, y, 0.0])
Campbell Barton
committed
# Flats
x = tan(radians(0)) * Half_Flat
dvec = vec1 - Vector([x, Half_Flat, 0.0])
verts.append([x, Half_Flat, -dvec.length])
Lowest_Z_Vert = min(Lowest_Z_Vert, -dvec.length)
Campbell Barton
committed
x = tan(radians(60 / 6)) * Half_Flat
dvec = vec2 - Vector([x, Half_Flat, 0.0])
verts.append([x, Half_Flat, -dvec.length])
Lowest_Z_Vert = min(Lowest_Z_Vert, -dvec.length)
Campbell Barton
committed
x = tan(radians(60 / 3)) * Half_Flat
dvec = vec3 - Vector([x, Half_Flat, 0.0])
verts.append([x, Half_Flat, -dvec.length])
Lowest_Z_Vert = min(Lowest_Z_Vert, -dvec.length)
x = tan(radians(60 / 2)) * Half_Flat
dvec = vec4 - Vector([x, Half_Flat, 0.0])
verts.append([x, Half_Flat, -dvec.length])
Lowest_Z_Vert = min(Lowest_Z_Vert, -dvec.length)
Campbell Barton
committed
# down Bits Tri
x = tan(radians(0)) * Half_Flat
verts.append([x, Half_Flat, Lowest_Point])
Campbell Barton
committed
x = tan(radians(60 / 6)) * Half_Flat
verts.append([x, Half_Flat, Lowest_Point])
x = tan(radians(60 / 3)) * Half_Flat
verts.append([x, Half_Flat, Lowest_Point])
Campbell Barton
committed
x = tan(radians(60 / 2)) * Half_Flat
verts.append([x, Half_Flat, Lowest_Point])
Lowest_Z_Vert = min(Lowest_Z_Vert, Lowest_Point)
Campbell Barton
committed
x = tan(radians(0)) * Half_Flat
verts.append([x, Half_Flat, -Half_Height])
Campbell Barton
committed
x = tan(radians(60 / 6)) * Half_Flat
verts.append([x, Half_Flat, -Half_Height])
x = tan(radians(60 / 3)) * Half_Flat
verts.append([x, Half_Flat, -Half_Height])
Campbell Barton
committed
x = tan(radians(60 / 2)) * Half_Flat
verts.append([x, Half_Flat, -Half_Height])
Lowest_Z_Vert = min(Lowest_Z_Vert, -Half_Height)
Campbell Barton
committed
faces.extend(Build_Face_List_Quads(FaceStart, 3, Row - 1))
Campbell Barton
committed
Tvert, tface = Mirror_Verts_Faces(verts, faces, 'z', Lowest_Z_Vert)
Campbell Barton
committed
Tvert, tface = Mirror_Verts_Faces(verts, faces, 'y')
Campbell Barton
committed
S_verts, S_faces = SpinDup(verts, faces, 360, 6, 'z')
# return verts, faces, TopBevelRadius
return S_verts, S_faces, TopBevelRadius
def add_Nylon_Head(OUTSIDE_RADIUS, Z_LOCATION, DIV_COUNT):
INNER_HOLE = OUTSIDE_RADIUS - (OUTSIDE_RADIUS * (1.25 / 4.75))
EDGE_THICKNESS = (OUTSIDE_RADIUS * (0.4 / 4.75))
RAD1 = (OUTSIDE_RADIUS * (0.5 / 4.75))
OVER_ALL_HEIGTH = (OUTSIDE_RADIUS * (2.0 / 4.75))
Campbell Barton
committed
Height_Offset = Z_LOCATION
Lowest_Z_Vert = 0
Campbell Barton
committed
x = INNER_HOLE
z = (Height_Offset - OVER_ALL_HEIGTH) + EDGE_THICKNESS
verts.append([x, 0.0, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Campbell Barton
committed
x = INNER_HOLE
z = (Height_Offset - OVER_ALL_HEIGTH)
verts.append([x, 0.0, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Campbell Barton
committed
for i in range(180, 80, -10):
x = sin(radians(i)) * RAD1
z = cos(radians(i)) * RAD1
verts.append([(OUTSIDE_RADIUS - RAD1) + x, 0.0, ((Height_Offset - OVER_ALL_HEIGTH) + RAD1) + z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset
verts.append([x, 0.0, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
sVerts, sFaces = SpinDup(verts, faces, 360, DIV_COUNT, 'z')
sVerts.extend(verts) # add the start verts to the Spin verts to complete the loop
Campbell Barton
committed
faces.extend(Build_Face_List_Quads(FaceStart, Row - 1, DIV_COUNT))
return Move_Verts_Up_Z(sVerts, 0), faces, Lowest_Z_Vert
def add_Nylon_Part(OUTSIDE_RADIUS, Z_LOCATION, DIV_COUNT):
INNER_HOLE = OUTSIDE_RADIUS - (OUTSIDE_RADIUS * (1.5 / 4.75))
EDGE_THICKNESS = (OUTSIDE_RADIUS * (0.4 / 4.75))
OVER_ALL_HEIGTH = (OUTSIDE_RADIUS * (2.0 / 4.75))
PART_THICKNESS = OVER_ALL_HEIGTH - EDGE_THICKNESS
PART_INNER_HOLE = (OUTSIDE_RADIUS * (2.5 / 4.75))
Campbell Barton
committed
Height_Offset = Z_LOCATION
Lowest_Z_Vert = 0
Campbell Barton
committed
Campbell Barton
committed
z = Height_Offset
verts.append([x, 0.0, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Campbell Barton
committed
verts.append([x, 0.0, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Campbell Barton
committed
x = PART_INNER_HOLE
z = Height_Offset - PART_THICKNESS
verts.append([x, 0.0, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
Campbell Barton
committed
x = INNER_HOLE + EDGE_THICKNESS
z = Height_Offset - PART_THICKNESS
verts.append([x, 0.0, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
sVerts, sFaces = SpinDup(verts, faces, 360, DIV_COUNT, 'z')
sVerts.extend(verts) # add the start verts to the Spin verts to complete the loop
faces.extend(Build_Face_List_Quads(FaceStart, Row - 1, DIV_COUNT, 1))
return sVerts, faces, 0 - Lowest_Z_Vert
# ####################################################################
# Create Internal Thread
# ####################################################################
def Create_Internal_Thread_Start_Verts(verts, INNER_RADIUS, OUTTER_RADIUS, PITCH, DIV,
CREST_PERCENT, ROOT_PERCENT, Height_Offset):
Ret_Row = 0
# Move the offset up so that the verts start at
# at the correct place (Height_Start)
Height_Offset = Height_Offset + PITCH
Campbell Barton
committed
Campbell Barton
committed
Height_Start = Height_Offset - PITCH
Height_Step = float(PITCH) / float(DIV)
Deg_Step = 360.0 / float(DIV)
Campbell Barton
committed
Crest_Height = float(PITCH) * float(CREST_PERCENT) / float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT) / float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height)) / 2.0
Campbell Barton
committed
Rank = float(OUTTER_RADIUS - INNER_RADIUS) / float(DIV)
for j in range(1): # FIXME - for j in range(1) what?!
for i in range(DIV + 1):
z = Height_Offset - (Height_Step * i)
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
verts.append([x, y, z])
Campbell Barton
committed
for i in range(DIV + 1):
z = Height_Offset - (Height_Step * i)
Campbell Barton
committed
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
verts.append([x, y, z])
Height_Offset -= Crest_to_Root_Height
Ret_Row += 1
Campbell Barton
committed
for i in range(DIV + 1):
z = Height_Offset - (Height_Step * i)
Campbell Barton
committed
x = sin(radians(i * Deg_Step)) * INNER_RADIUS
y = cos(radians(i * Deg_Step)) * INNER_RADIUS
x = sin(radians(i * Deg_Step)) * (OUTTER_RADIUS - (i * Rank))
y = cos(radians(i * Deg_Step)) * (OUTTER_RADIUS - (i * Rank))
verts.append([x, y, z])
Campbell Barton
committed
for i in range(DIV + 1):
z = Height_Offset - (Height_Step * i)
Campbell Barton
committed
x = sin(radians(i * Deg_Step)) * INNER_RADIUS
y = cos(radians(i * Deg_Step)) * INNER_RADIUS
x = sin(radians(i * Deg_Step)) * (OUTTER_RADIUS - (i * Rank))
y = cos(radians(i * Deg_Step)) * (OUTTER_RADIUS - (i * Rank))
verts.append([x, y, z])
Height_Offset -= Root_to_Crest_Height
Ret_Row += 1
Campbell Barton
committed
def Create_Internal_Thread_End_Verts(verts, INNER_RADIUS, OUTTER_RADIUS, PITCH,
DIV, CREST_PERCENT, ROOT_PERCENT, Height_Offset):
Campbell Barton
committed
Campbell Barton
committed
# Height_End = Height_Offset - PITCH - PITCH - PITCH- PITCH - PITCH- PITCH
Campbell Barton
committed
Height_End = Height_Offset - PITCH
# Height_End = -2.1
Height_Step = float(PITCH) / float(DIV)
Deg_Step = 360.0 / float(DIV)
Campbell Barton
committed
Crest_Height = float(PITCH) * float(CREST_PERCENT) / float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT) / float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height)) / 2.0
Rank = float(OUTTER_RADIUS - INNER_RADIUS) / float(DIV)
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
for i in range(DIV + 1):
z = Height_Offset - (Height_Step * i)
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
verts.append([x, y, z])
Campbell Barton
committed
for i in range(DIV + 1):
z = Height_Offset - (Height_Step * i)
Campbell Barton
committed
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
verts.append([x, y, z])
Height_Offset -= Crest_to_Root_Height
Ret_Row += 1
Campbell Barton
committed
for i in range(DIV + 1):
z = Height_Offset - (Height_Step * i)
Campbell Barton
committed
x = sin(radians(i * Deg_Step)) * INNER_RADIUS
y = cos(radians(i * Deg_Step)) * INNER_RADIUS
x = sin(radians(i * Deg_Step)) * (INNER_RADIUS + (i * Rank))
y = cos(radians(i * Deg_Step)) * (INNER_RADIUS + (i * Rank))
x = sin(radians(i * Deg_Step)) * (OUTTER_RADIUS)
y = cos(radians(i * Deg_Step)) * (OUTTER_RADIUS)
Campbell Barton
committed
Campbell Barton
committed
for i in range(DIV + 1):
z = Height_Offset - (Height_Step * i)
Campbell Barton
committed
x = sin(radians(i * Deg_Step)) * INNER_RADIUS
y = cos(radians(i * Deg_Step)) * INNER_RADIUS
x = sin(radians(i * Deg_Step)) * (INNER_RADIUS + (i * Rank))
y = cos(radians(i * Deg_Step)) * (INNER_RADIUS + (i * Rank))
x = sin(radians(i * Deg_Step)) * (OUTTER_RADIUS)
y = cos(radians(i * Deg_Step)) * (OUTTER_RADIUS)
Campbell Barton
committed
Height_Offset -= Root_to_Crest_Height
Ret_Row += 1
return Ret_Row, Height_End # send back Height End as this is the lowest point
Campbell Barton
committed
def Create_Internal_Thread(INNER_DIA, OUTTER_DIA, PITCH, HEIGHT,
CREST_PERCENT, ROOT_PERCENT, INTERNAL, DIV_COUNT):
Campbell Barton
committed
INNER_RADIUS = INNER_DIA / 2
OUTTER_RADIUS = OUTTER_DIA / 2
Campbell Barton
committed
# Half_Pitch = float(PITCH) / 2 # UNUSED
Deg_Step = 360.0 / float(DIV_COUNT)
Height_Step = float(PITCH) / float(DIV_COUNT)
Campbell Barton
committed
Num = int(round((HEIGHT - PITCH) / PITCH)) # less one pitch for the start and end that is 1/2 pitch high
Campbell Barton
committed
Campbell Barton
committed
Crest_Height = float(PITCH) * float(CREST_PERCENT) / float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT) / float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height)) / 2.0
Campbell Barton
committed
Campbell Barton
committed
Row_Inc, Height_Offset = Create_Internal_Thread_Start_Verts(
verts, INNER_RADIUS, OUTTER_RADIUS, PITCH,
DIV_COUNT, CREST_PERCENT, ROOT_PERCENT,
Height_Offset
)
Campbell Barton
committed
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
verts.append([x, y, Height_Offset - (Height_Step * i)])
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
verts.append([x, y, Height_Offset - (Height_Step * i)])
Height_Offset -= Crest_to_Root_Height
Row += 1
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
x = sin(radians(i * Deg_Step)) * INNER_RADIUS
y = cos(radians(i * Deg_Step)) * INNER_RADIUS
verts.append([x, y, Height_Offset - (Height_Step * i)])
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
x = sin(radians(i * Deg_Step)) * INNER_RADIUS
y = cos(radians(i * Deg_Step)) * INNER_RADIUS
verts.append([x, y, Height_Offset - (Height_Step * i)])
Height_Offset -= Root_to_Crest_Height
Row += 1
Campbell Barton
committed
Row_Inc, Height_Offset = Create_Internal_Thread_End_Verts(
verts, INNER_RADIUS, OUTTER_RADIUS,
PITCH, DIV_COUNT, CREST_PERCENT,
ROOT_PERCENT, Height_Offset
)
Campbell Barton
committed
faces.extend(Build_Face_List_Quads(FaceStart, DIV_COUNT, Row - 1, INTERNAL))
Campbell Barton
committed
return verts, faces, 0 - Height_Offset
def Nut_Mesh(props, context):
verts = []
faces = []
Head_Verts = []
Head_Faces = []
# sc = context.scene
Campbell Barton
committed
Thread_Verts, Thread_Faces, New_Nut_Height = Create_Internal_Thread(
props.bf_Minor_Dia, props.bf_Major_Dia,
props.bf_Pitch, props.bf_Hex_Nut_Height,
props.bf_Crest_Percent, props.bf_Root_Percent,
1, props.bf_Div_Count
)
faces.extend(Copy_Faces(Thread_Faces, Face_Start))
Campbell Barton
committed
Head_Verts, Head_Faces, Lock_Nut_Rad = add_Hex_Nut(
props.bf_Hex_Nut_Flat_Distance,
props.bf_Major_Dia, New_Nut_Height
)
faces.extend(Copy_Faces(Head_Faces, Face_Start))
Campbell Barton
committed
Campbell Barton
committed
if props.bf_Nut_Type == 'bf_Nut_Lock':
Face_Start = len(verts)
Nylon_Head_Verts, Nylon_Head_faces, LowZ = add_Nylon_Head(
Lock_Nut_Rad, 0 - New_Nut_Height,
props.bf_Div_Count
)
faces.extend(Copy_Faces(Nylon_Head_faces, Face_Start))
Campbell Barton
committed
Nylon_Verts, Nylon_faces, Temp_LowZ = add_Nylon_Part(
Lock_Nut_Rad, 0 - New_Nut_Height,
props.bf_Div_Count
)
faces.extend(Copy_Faces(Nylon_faces, Face_Start))
Campbell Barton
committed
return Move_Verts_Up_Z(verts, 0 - LowZ), faces
# ####################################################################
# Create Bolt
# ####################################################################
def Bolt_Mesh(props, context):
verts = []
faces = []
Bit_Verts = []
Bit_Faces = []
Bit_Dia = 0.001
Head_Verts = []
ReSized_Allen_Bit_Flat_Distance = props.bf_Allen_Bit_Flat_Distance # set default
Campbell Barton
committed
Head_Height = props.bf_Hex_Head_Height # will be changed by the Head Functions
Campbell Barton
committed
if props.bf_Bit_Type == 'bf_Bit_Allen' and props.bf_Head_Type == 'bf_Head_Pan':
# need to size Allen bit if it is too big.
if Allen_Bit_Dia(props.bf_Allen_Bit_Flat_Distance) > Max_Pan_Bit_Dia(props.bf_Pan_Head_Dia):
ReSized_Allen_Bit_Flat_Distance = Allen_Bit_Dia_To_Flat(
Max_Pan_Bit_Dia(props.bf_Pan_Head_Dia)
) * 1.05
# print ("Resized Allen Bit Flat Distance to ",ReSized_Allen_Bit_Flat_Distance)
# Bit Mesh
Bit_Verts, Bit_Faces, Bit_Dia = Create_Allen_Bit(
ReSized_Allen_Bit_Flat_Distance,
props.bf_Allen_Bit_Depth
)
Campbell Barton
committed
Bit_Verts, Bit_Faces, Bit_Dia = Create_Phillips_Bit(
props.bf_Philips_Bit_Dia,
props.bf_Philips_Bit_Dia * (0.5 / 1.82),
props.bf_Phillips_Bit_Depth
)
# Head Mesh
if props.bf_Head_Type == 'bf_Head_Hex':
Head_Verts, Head_Faces, Head_Height = Create_Hex_Head(
props.bf_Hex_Head_Flat_Distance, Bit_Dia,
props.bf_Shank_Dia, props.bf_Hex_Head_Height
)
Campbell Barton
committed
elif props.bf_Head_Type == 'bf_Head_Cap':
Head_Verts, Head_Faces, Head_Height = Create_Cap_Head(
Bit_Dia, props.bf_Cap_Head_Dia,
props.bf_Shank_Dia, props.bf_Cap_Head_Height,
props.bf_Cap_Head_Dia * (1.0 / 19.0),
props.bf_Cap_Head_Dia * (1.0 / 19.0),
props.bf_Div_Count
)
elif props.bf_Head_Type == 'bf_Head_Dome':
Head_Verts, Head_Faces, Head_Height = Create_Dome_Head(
Bit_Dia, props.bf_Dome_Head_Dia,
props.bf_Shank_Dia, props.bf_Hex_Head_Height,
1, 1, 0, props.bf_Div_Count
)
Campbell Barton
committed
elif props.bf_Head_Type == 'bf_Head_Pan':
Head_Verts, Head_Faces, Head_Height = Create_Pan_Head(
Bit_Dia, props.bf_Pan_Head_Dia,
props.bf_Shank_Dia,
props.bf_Hex_Head_Height, 1, 1, 0,
props.bf_Div_Count
)
Campbell Barton
committed
elif props.bf_Head_Type == 'bf_Head_CounterSink':
Head_Verts, Head_Faces, Head_Height = Create_CounterSink_Head(
Bit_Dia, props.bf_CounterSink_Head_Dia,
props.bf_Shank_Dia, props.bf_CounterSink_Head_Dia,
props.bf_CounterSink_Head_Dia * (0.09 / 6.31),
props.bf_Div_Count
)
"""
Head_Verts, Head_Faces, Head_Height = Create_CounterSink_Head(
Bit_Dia, props.bf_CounterSink_Head_Dia,
props.bf_Shank_Dia,
props.bf_CounterSink_Head_Dia,
props.bf_CounterSink_Head_Dia * (1.0 / 19.0)
)
"""
verts.extend(Move_Verts_Up_Z(Bit_Verts, Head_Height))
faces.extend(Copy_Faces(Bit_Faces, Face_Start))
verts.extend(Move_Verts_Up_Z(Head_Verts, Head_Height))
faces.extend(Copy_Faces(Head_Faces, Face_Start))
Thread_Verts, Thread_Faces, Thread_Height = Create_External_Thread(
props.bf_Shank_Dia, props.bf_Shank_Length,
props.bf_Minor_Dia, props.bf_Major_Dia,
props.bf_Pitch, props.bf_Thread_Length,
props.bf_Crest_Percent,
props.bf_Root_Percent, props.bf_Div_Count
)
verts.extend(Move_Verts_Up_Z(Thread_Verts, 00))
faces.extend(Copy_Faces(Thread_Faces, Face_Start))
return Move_Verts_Up_Z(verts, Thread_Height), faces
Campbell Barton
committed
# calculates the matrix for the new object
# depending on user pref
def align_matrix(context):
loc = Matrix.Translation(context.scene.cursor_location)
obj_align = context.user_preferences.edit.object_align
if (context.space_data.type == 'VIEW_3D' and obj_align == 'VIEW'):
rot = context.space_data.region_3d.view_matrix.to_3x3().inverted().to_4x4()
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
else:
rot = Matrix()
align_matrix = loc * rot
return align_matrix
# Create a new mesh (object) from verts/edges/faces.
# verts/edges/faces ... List of vertices/edges/faces for the
# new mesh (as used in from_pydata).
# name ... Name of the new mesh (& object).
# edit ... Replace existing mesh data.
# Note: Using "edit" will destroy/delete existing mesh data.
def create_mesh_object(context, verts, edges, faces, name, edit, align_matrix):
scene = context.scene
obj_act = scene.objects.active
# Can't edit anything, unless we have an active obj.
if edit and not obj_act:
return None
# Create new mesh
mesh = bpy.data.meshes.new(name)
# Make a mesh from a list of verts/edges/faces.
mesh.from_pydata(verts, edges, faces)
# Update mesh geometry after adding stuff.
mesh.update()
# Deselect all objects when in object mode
if bpy.ops.object.select_all.poll():
bpy.ops.object.select_all(action='DESELECT')
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
if edit:
# Replace geometry of existing object
# Use the active obj and select it.
ob_new = obj_act
ob_new.select = True
if obj_act.mode == 'OBJECT':
# Get existing mesh datablock.
old_mesh = ob_new.data
# Set object data to nothing
ob_new.data = None
# Clear users of existing mesh datablock.
old_mesh.user_clear()
# Remove old mesh datablock if no users are left.
if (old_mesh.users == 0):
bpy.data.meshes.remove(old_mesh)
# Assign new mesh datablock.
ob_new.data = mesh
else:
# Create new object
ob_new = bpy.data.objects.new(name, mesh)
# Link new object to the given scene and select it.
scene.objects.link(ob_new)
ob_new.select = True
# Place the object at the 3D cursor location.
# apply viewRotaion
ob_new.matrix_world = align_matrix
if obj_act and obj_act.mode == 'EDIT':
if not edit:
# We are in EditMode, switch to ObjectMode.
bpy.ops.object.mode_set(mode='OBJECT')
# Select the active object as well.
obj_act.select = True
# Apply location of new object.
scene.update()
# Join new object into the active.
bpy.ops.object.join()
# Switching back to EditMode.
bpy.ops.object.mode_set(mode='EDIT')
ob_new = obj_act
else:
# We are in ObjectMode.
# Make the new object the active one.
scene.objects.active = ob_new
return ob_new
def Create_New_Mesh(props, context, align_matrix):
verts = []
faces = []
Campbell Barton
committed
Campbell Barton
committed
sObjName = 'Nut'
verts, faces = RemoveDoubles(verts, faces)
Campbell Barton
committed
verts = Scale_Mesh_Verts(verts, GLOBAL_SCALE)
Campbell Barton
committed
obj = create_mesh_object(context, verts, [], faces, sObjName,
props.edit, align_matrix)