Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
Campbell Barton
committed
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
from mathutils import (
Matrix,
Vector,
)
from math import (
sin, cos,
tan, radians,
from random import triangular
from bpy_extras.object_utils import AddObjectHelper, object_data_add
Spivak Vladimir (cwolf3d)
committed
GLOBAL_SCALE = 1 # 1 blender unit = X mm
# next two utility functions are stolen from import_obj.py
def unpack_list(list_of_tuples):
l = []
for t in list_of_tuples:
l.extend(t)
return l
def unpack_face_list(list_of_tuples):
l = []
for t in list_of_tuples:
face = [i for i in t]
if len(face) != 3 and len(face) != 4:
raise RuntimeError("{0} vertices in face".format(len(face)))
Campbell Barton
committed
# rotate indices if the 4th is 0
if len(face) == 4 and face[3] == 0:
face = [face[3], face[0], face[1], face[2]]
if len(face) == 3:
face.append(0)
Campbell Barton
committed
Remove Doubles takes a list on Verts and a list of Faces and
removes the doubles, much like Blender does in edit mode.
It doesn’t have the range function but it will round the corrdinates
and remove verts that are very close together. The function
is useful because you can perform a "Remove Doubles" with out
having to enter Edit Mode. Having to enter edit mode has the
disadvantage of not being able to interactively change the properties.
def RemoveDoubles(verts, faces, Decimal_Places=4):
Campbell Barton
committed
new_verts = []
new_faces = []
dict_verts = {}
Rounded_Verts = []
Campbell Barton
committed
Campbell Barton
committed
for v in verts:
Rounded_Verts.append([round(v[0], Decimal_Places),
round(v[1], Decimal_Places),
round(v[2], Decimal_Places)])
Campbell Barton
committed
for face in faces:
new_face = []
for vert_index in face:
Real_co = tuple(verts[vert_index])
Rounded_co = tuple(Rounded_Verts[vert_index])
if Rounded_co not in dict_verts:
dict_verts[Rounded_co] = len(dict_verts)
new_verts.append(Real_co)
Campbell Barton
committed
if dict_verts[Rounded_co] not in new_face:
Campbell Barton
committed
new_face.append(dict_verts[Rounded_co])
if len(new_face) == 3 or len(new_face) == 4:
new_faces.append(new_face)
def Scale_Mesh_Verts(verts, scale_factor):
Ret_verts.append([v[0] * scale_factor, v[1] * scale_factor, v[2] * scale_factor])
# Create a matrix representing a rotation.
#
# * angle (float) - The angle of rotation desired.
# * matSize (int) - The size of the rotation matrix to construct. Can be 2d, 3d, or 4d.
# * axisFlag (string (optional)) - Possible values:
# o "x - x-axis rotation"
# o "y - y-axis rotation"
# o "z - z-axis rotation"
# o "r - arbitrary rotation around vector"
# * axis (Vector object. (optional)) - The arbitrary axis of rotation used with "R"
#
Campbell Barton
committed
# A new rotation matrix.
def Simple_RotationMatrix(angle, matSize, axisFlag):
if matSize != 4:
print("Simple_RotationMatrix can only do 4x4")
Campbell Barton
committed
q = radians(angle) # make the rotation go clockwise
Campbell Barton
committed
matrix = Matrix.Rotation(q, 4, 'X')
elif axisFlag == 'y':
matrix = Matrix.Rotation(q, 4, 'Y')
matrix = Matrix.Rotation(q, 4, 'Z')
print("Simple_RotationMatrix can only do x y z axis")
# ####################################################################
# Converter Functions For Bolt Factory
# ####################################################################
h = (float(FLAT) / 2) / cos(radians(30))
Flat_Width_half = (Bit_Dia * (0.5 / 1.82)) / 2.0
Bit_Rad = Bit_Dia / 2.0
x = Bit_Rad - Flat_Width_half
Campbell Barton
committed
return float(y)
# ####################################################################
# Miscellaneous Utilities
# ####################################################################
# Returns a list of verts rotated by the given matrix. Used by SpinDup
def Rot_Mesh(verts, matrix):
Campbell Barton
committed
from mathutils import Vector
Campbell Barton
committed
# Returns a list of faces that has there index incremented by offset
return [[(i + offset) for i in f] for f in faces]
# Much like Blenders built in SpinDup
def SpinDup(VERTS, FACES, DEGREE, DIVISIONS, AXIS):
verts = []
faces = []
Campbell Barton
committed
Campbell Barton
committed
DIVISIONS = 1
step = DEGREE / DIVISIONS # set step so pieces * step = degrees in arc
Campbell Barton
committed
rotmat = Simple_RotationMatrix(step * i, 4, AXIS) # 4x4 rotation matrix, 30d about the x axis.
Rot = Rot_Mesh(VERTS, rotmat)
faces.extend(Copy_Faces(FACES, len(verts)))
# Returns a list of verts that have been moved up the z axis by DISTANCE
def Move_Verts_Up_Z(VERTS, DISTANCE):
ret.append([v[0], v[1], v[2] + DISTANCE])
Campbell Barton
committed
# Returns a list of verts and faces that has been mirrored in the AXIS
def Mirror_Verts_Faces(VERTS, FACES, AXIS, FLIP_POINT=0):
Campbell Barton
committed
offset = len(VERTS)
if AXIS == 'y':
for v in VERTS:
Delta = v[0] - FLIP_POINT
ret_vert.append([FLIP_POINT - Delta, v[1], v[2]])
if AXIS == 'x':
for v in VERTS:
Delta = v[1] - FLIP_POINT
ret_vert.append([v[0], FLIP_POINT - Delta, v[2]])
if AXIS == 'z':
for v in VERTS:
Delta = v[2] - FLIP_POINT
ret_vert.append([v[0], v[1], FLIP_POINT - Delta])
Campbell Barton
committed
for f in FACES:
fsub = []
for i in range(len(f)):
fsub.append(f[i] + offset)
fsub.reverse() # flip the order to make norm point out
Campbell Barton
committed
Campbell Barton
committed
# Returns a list of faces that
# make up an array of 4 point polygon.
def Build_Face_List_Quads(OFFSET, COLUMN, ROW, FLIP=0):
for i in range(COLUMN):
Res2 = RowStart + i + (COLUMN + 1)
Res3 = RowStart + i + (COLUMN + 1) + 1
Ret.append([OFFSET + Res1, OFFSET + Res2, OFFSET + Res3, OFFSET + Res4])
Ret.append([OFFSET + Res4, OFFSET + Res3, OFFSET + Res2, OFFSET + Res1])
RowStart += COLUMN + 1
Campbell Barton
committed
# Returns a list of faces that makes up a fill pattern for a
def Fill_Ring_Face(OFFSET, NUM, FACE_DOWN=0):
Ret = []
Face = [1, 2, 0]
TempFace = [0, 0, 0]
for i in range(NUM - 2):
if (i % 2):
TempFace[0] = Face[C]
TempFace[1] = Face[C] + 1
TempFace[2] = Face[B]
Ret.append([OFFSET + Face[2], OFFSET + Face[1], OFFSET + Face[0]])
Ret.append([OFFSET + Face[0], OFFSET + Face[1], OFFSET + Face[2]])
TempFace[1] = Face[C] - 1
TempFace[2] = Face[B]
Ret.append([OFFSET + Face[0], OFFSET + Face[1], OFFSET + Face[2]])
Ret.append([OFFSET + Face[2], OFFSET + Face[1], OFFSET + Face[0]])
Campbell Barton
committed
Face[0] = TempFace[0]
Face[1] = TempFace[1]
Face[2] = TempFace[2]
return Ret
Campbell Barton
committed
# ####################################################################
# Create Allen Bit
# ####################################################################
Lookup = [[19, 1, 0],
[19, 2, 1],
[19, 3, 2],
[19, 20, 3],
[20, 4, 3],
[20, 5, 4],
[20, 6, 5],
[20, 7, 6],
[20, 8, 7],
[20, 9, 8],
[20, 21, 9],
[21, 10, 9],
[21, 11, 10],
[21, 12, 11],
[21, 13, 12],
[21, 14, 13],
[21, 15, 14],
[21, 22, 15],
[22, 16, 15],
[22, 17, 16],
[22, 18, 17]
faces.append([OFFSET + i[2], OFFSET + i[1], OFFSET + i[0]])
faces.append([OFFSET + i[0], OFFSET + i[1], OFFSET + i[2]])
Campbell Barton
committed
Flat_Radius = (float(FLAT_DISTANCE) / 2.0) / cos(radians(30))
Campbell Barton
committed
def Allen_Bit_Dia_To_Flat(DIA):
Flat_Radius = (DIA / 2.0) / 1.05
return (Flat_Radius * cos(radians(30))) * 2.0
Campbell Barton
committed
def Create_Allen_Bit(FLAT_DISTANCE, HEIGHT):
DIV_COUNT = 36
Campbell Barton
committed
Flat_Radius = (float(FLAT_DISTANCE) / 2.0) / cos(radians(30))
Outter_Radius_Height = Flat_Radius * (0.1 / 5.77)
Deg_Step = 360.0 / float(DIV_COUNT)
Campbell Barton
committed
for i in range(int(DIV_COUNT / 2) + 1): # only do half and mirror later
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
verts.append([x, y, 0])
Campbell Barton
committed
Campbell Barton
committed
Deg_Step = 360.0 / float(6)
for i in range(int(6 / 2) + 1):
x = sin(radians(i * Deg_Step)) * Flat_Radius
y = cos(radians(i * Deg_Step)) * Flat_Radius
verts.append([x, y, 0 - Outter_Radius_Height])
Campbell Barton
committed
faces.extend(Allen_Fill(FaceStart_Outside, 0))
Campbell Barton
committed
Campbell Barton
committed
Deg_Step = 360.0 / float(6)
for i in range(int(6 / 2) + 1):
x = sin(radians(i * Deg_Step)) * Flat_Radius
y = cos(radians(i * Deg_Step)) * Flat_Radius
verts.append([x, y, 0 - HEIGHT])
Campbell Barton
committed
faces.extend(Build_Face_List_Quads(FaceStart_Inside, 3, 1, True))
faces.extend(Fill_Ring_Face(FaceStart_Bottom, 4))
Campbell Barton
committed
M_Verts, M_Faces = Mirror_Verts_Faces(verts, faces, 'y')
Campbell Barton
committed
return verts, faces, OUTTER_RADIUS * 2.0
# ####################################################################
# Create Phillips Bit
# ####################################################################
def Phillips_Fill(OFFSET, FLIP=0):
Lookup = [[0, 1, 10],
[1, 11, 10],
[1, 2, 11],
[2, 12, 11],
[2, 3, 12],
[3, 4, 12],
[4, 5, 12],
[5, 6, 12],
[6, 7, 12],
[7, 13, 12],
[7, 8, 13],
[8, 14, 13],
[8, 9, 14],
[10, 11, 16, 15],
[11, 12, 16],
[12, 13, 16],
[13, 14, 17, 16],
[15, 16, 17, 18]
]
for i in Lookup:
if FLIP:
if len(i) == 3:
faces.append([OFFSET + i[2], OFFSET + i[1], OFFSET + i[0]])
Campbell Barton
committed
else:
faces.append([OFFSET + i[3], OFFSET + i[2], OFFSET + i[1], OFFSET + i[0]])
faces.append([OFFSET + i[0], OFFSET + i[1], OFFSET + i[2]])
faces.append([OFFSET + i[0], OFFSET + i[1], OFFSET + i[2], OFFSET + i[3]])
def Create_Phillips_Bit(FLAT_DIA, FLAT_WIDTH, HEIGHT):
Campbell Barton
committed
DIV_COUNT = 36
FLAT_RADIUS = FLAT_DIA * 0.5
OUTTER_RADIUS = FLAT_RADIUS * 1.05
Campbell Barton
committed
Flat_Half = float(FLAT_WIDTH) / 2.0
Campbell Barton
committed
Deg_Step = 360.0 / float(DIV_COUNT)
for i in range(int(DIV_COUNT / 4) + 1): # only do half and mirror later
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
verts.append([x, y, 0])
# FaceStart_Inside = len(verts) # UNUSED
verts.append([0, FLAT_RADIUS, 0]) # 10
verts.append([Flat_Half, FLAT_RADIUS, 0]) # 11
verts.append([Flat_Half, Flat_Half, 0]) # 12
verts.append([FLAT_RADIUS, Flat_Half, 0]) # 13
verts.append([FLAT_RADIUS, 0, 0]) # 14
Campbell Barton
committed
verts.append([0, Flat_Half, 0 - HEIGHT]) # 15
verts.append([Flat_Half, Flat_Half, 0 - HEIGHT]) # 16
verts.append([Flat_Half, 0, 0 - HEIGHT]) # 17
Campbell Barton
committed
verts.append([0, 0, 0 - HEIGHT]) # 18
Campbell Barton
committed
faces.extend(Phillips_Fill(FaceStart_Outside, True))
Spin_Verts, Spin_Face = SpinDup(verts, faces, 360, 4, 'z')
Campbell Barton
committed
return Spin_Verts, Spin_Face, OUTTER_RADIUS * 2
Campbell Barton
committed
# ####################################################################
# Create Head Types
# ####################################################################
def Max_Pan_Bit_Dia(HEAD_DIA):
HEAD_RADIUS = HEAD_DIA * 0.5
XRad = HEAD_RADIUS * 1.976
return (sin(radians(10)) * XRad) * 2.0
def Create_Pan_Head(HOLE_DIA, HEAD_DIA, SHANK_DIA, HEIGHT, RAD1, RAD2, FACE_OFFSET, DIV_COUNT):
HOLE_RADIUS = HOLE_DIA * 0.5
HEAD_RADIUS = HEAD_DIA * 0.5
SHANK_RADIUS = SHANK_DIA * 0.5
verts = []
faces = []
Row = 0
XRad = HEAD_RADIUS * 1.976
ZRad = HEAD_RADIUS * 1.768
EndRad = HEAD_RADIUS * 0.284
EndZOffset = HEAD_RADIUS * 0.432
HEIGHT = HEAD_RADIUS * 0.59
Campbell Barton
committed
"""
Dome_Rad = 5.6
RAD_Offset = 4.9
OtherRad = 0.8
OtherRad_X_Offset = 4.2
OtherRad_Z_Offset = 2.52
XRad = 9.88
ZRad = 8.84
EndRad = 1.42
EndZOffset = 2.16
HEIGHT = 2.95
"""
z = cos(radians(10)) * ZRad
verts.append([HOLE_RADIUS, 0.0, (0.0 - ZRad) + z])
Start_Height = 0 - ((0.0 - ZRad) + z)
# for i in range(0,30,10): was 0 to 30 more work needed to make this look good.
for i in range(10, 30, 10):
x = sin(radians(i)) * XRad
z = cos(radians(i)) * ZRad
verts.append([x, 0.0, (0.0 - ZRad) + z])
for i in range(20, 140, 10):
x = sin(radians(i)) * EndRad
z = cos(radians(i)) * EndRad
if ((0.0 - EndZOffset) + z) < (0.0 - HEIGHT):
verts.append([(HEAD_RADIUS - EndRad) + x, 0.0, 0.0 - HEIGHT])
verts.append([(HEAD_RADIUS - EndRad) + x, 0.0, (0.0 - EndZOffset) + z])
Campbell Barton
committed
verts.append([SHANK_RADIUS, 0.0, (0.0 - HEIGHT)])
Campbell Barton
committed
verts.append([SHANK_RADIUS, 0.0, (0.0 - HEIGHT) - Start_Height])
sVerts, sFaces = SpinDup(verts, faces, 360, DIV_COUNT, 'z')
sVerts.extend(verts) # add the start verts to the Spin verts to complete the loop
faces.extend(Build_Face_List_Quads(FaceStart, Row - 1, DIV_COUNT))
return Move_Verts_Up_Z(sVerts, Start_Height), faces, HEIGHT
def Create_Dome_Head(HOLE_DIA, HEAD_DIA, SHANK_DIA, HEIGHT, RAD1, RAD2, FACE_OFFSET, DIV_COUNT):
HOLE_RADIUS = HOLE_DIA * 0.5
HEAD_RADIUS = HEAD_DIA * 0.5
SHANK_RADIUS = SHANK_DIA * 0.5
Campbell Barton
committed
# Dome_Rad = HEAD_RADIUS * (1.0/1.75)
Campbell Barton
committed
Dome_Rad = HEAD_RADIUS * 1.12
# Head_Height = HEAD_RADIUS * 0.78
RAD_Offset = HEAD_RADIUS * 0.98
Dome_Height = HEAD_RADIUS * 0.64
OtherRad = HEAD_RADIUS * 0.16
OtherRad_X_Offset = HEAD_RADIUS * 0.84
OtherRad_Z_Offset = HEAD_RADIUS * 0.504
Campbell Barton
committed
"""
Dome_Rad = 5.6
RAD_Offset = 4.9
Dome_Height = 3.2
OtherRad = 0.8
OtherRad_X_Offset = 4.2
OtherRad_Z_Offset = 2.52
"""
Campbell Barton
committed
Campbell Barton
committed
verts.append([HOLE_RADIUS, 0.0, 0.0])
for i in range(0, 60, 10):
x = sin(radians(i)) * Dome_Rad
z = cos(radians(i)) * Dome_Rad
if ((0.0 - RAD_Offset) + z) <= 0:
verts.append([x, 0.0, (0.0 - RAD_Offset) + z])
for i in range(60, 160, 10):
x = sin(radians(i)) * OtherRad
z = cos(radians(i)) * OtherRad
z = (0.0 - OtherRad_Z_Offset) + z
if z < (0.0 - Dome_Height):
z = (0.0 - Dome_Height)
verts.append([OtherRad_X_Offset + x, 0.0, z])
Campbell Barton
committed
verts.append([SHANK_RADIUS, 0.0, (0.0 - Dome_Height)])
sVerts, sFaces = SpinDup(verts, faces, 360, DIV_COUNT, 'z')
sVerts.extend(verts) # add the start verts to the Spin verts to complete the loop
faces.extend(Build_Face_List_Quads(FaceStart, Row - 1, DIV_COUNT))
return sVerts, faces, Dome_Height
def Create_CounterSink_Head(HOLE_DIA, HEAD_DIA, SHANK_DIA, HEIGHT, RAD1, DIV_COUNT):
Campbell Barton
committed
HOLE_RADIUS = HOLE_DIA * 0.5
HEAD_RADIUS = HEAD_DIA * 0.5
SHANK_RADIUS = SHANK_DIA * 0.5
Campbell Barton
committed
# HEAD_RADIUS = (HEIGHT/tan(radians(60))) + SHANK_RADIUS
HEIGHT = tan(radians(60)) * (HEAD_RADIUS - SHANK_RADIUS)
Campbell Barton
committed
verts.append([HOLE_RADIUS, 0.0, 0.0])
# rad
for i in range(0, 100, 10):
x = sin(radians(i)) * RAD1
z = cos(radians(i)) * RAD1
verts.append([(HEAD_RADIUS - RAD1) + x, 0.0, (0.0 - RAD1) + z])
Campbell Barton
committed
verts.append([SHANK_RADIUS, 0.0, 0.0 - HEIGHT])
sVerts, sFaces = SpinDup(verts, faces, 360, DIV_COUNT, 'z')
sVerts.extend(verts) # add the start verts to the Spin verts to complete the loop
faces.extend(Build_Face_List_Quads(FaceStart, Row - 1, DIV_COUNT))
Campbell Barton
committed
def Create_Cap_Head(HOLE_DIA, HEAD_DIA, SHANK_DIA, HEIGHT, RAD1, RAD2, DIV_COUNT):
Campbell Barton
committed
HOLE_RADIUS = HOLE_DIA * 0.5
HEAD_RADIUS = HEAD_DIA * 0.5
SHANK_RADIUS = SHANK_DIA * 0.5
Campbell Barton
committed
verts = []
faces = []
Row = 0
BEVEL = HEIGHT * 0.01
Campbell Barton
committed
verts.append([HOLE_RADIUS, 0.0, 0.0])
# rad
for i in range(0, 100, 10):
x = sin(radians(i)) * RAD1
z = cos(radians(i)) * RAD1
verts.append([(HEAD_RADIUS - RAD1) + x, 0.0, (0.0 - RAD1) + z])
Campbell Barton
committed
verts.append([HEAD_RADIUS, 0.0, 0.0 - HEIGHT + BEVEL])
verts.append([HEAD_RADIUS - BEVEL, 0.0, 0.0 - HEIGHT])
# rad2
for i in range(0, 100, 10):
x = sin(radians(i)) * RAD2
z = cos(radians(i)) * RAD2
verts.append([(SHANK_RADIUS + RAD2) - x, 0.0, (0.0 - HEIGHT - RAD2) + z])
Campbell Barton
committed
sVerts, sFaces = SpinDup(verts, faces, 360, DIV_COUNT, 'z')
sVerts.extend(verts) # add the start verts to the Spin verts to complete the loop
faces.extend(Build_Face_List_Quads(FaceStart, Row - 1, DIV_COUNT))
Campbell Barton
committed
return sVerts, faces, HEIGHT + RAD2
def Create_Hex_Head(FLAT, HOLE_DIA, SHANK_DIA, HEIGHT):
Campbell Barton
committed
verts = []
faces = []
HOLE_RADIUS = HOLE_DIA * 0.5
Half_Flat = FLAT / 2
TopBevelRadius = Half_Flat - (Half_Flat * (0.05 / 8))
Undercut_Height = (Half_Flat * (0.05 / 8))
Shank_Bevel = (Half_Flat * (0.05 / 8))
Flat_Height = HEIGHT - Undercut_Height - Shank_Bevel
# Undercut_Height = 5
SHANK_RADIUS = SHANK_DIA / 2
Row = 0
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
# inner hole
x = sin(radians(0)) * HOLE_RADIUS
y = cos(radians(0)) * HOLE_RADIUS
verts.append([x, y, 0.0])
Campbell Barton
committed
x = sin(radians(60 / 6)) * HOLE_RADIUS
y = cos(radians(60 / 6)) * HOLE_RADIUS
verts.append([x, y, 0.0])
Campbell Barton
committed
x = sin(radians(60 / 3)) * HOLE_RADIUS
y = cos(radians(60 / 3)) * HOLE_RADIUS
verts.append([x, y, 0.0])
Campbell Barton
committed
x = sin(radians(60 / 2)) * HOLE_RADIUS
y = cos(radians(60 / 2)) * HOLE_RADIUS
verts.append([x, y, 0.0])
Campbell Barton
committed
# bevel
x = sin(radians(0)) * TopBevelRadius
y = cos(radians(0)) * TopBevelRadius
vec1 = Vector([x, y, 0.0])
verts.append([x, y, 0.0])
x = sin(radians(60 / 6)) * TopBevelRadius
y = cos(radians(60 / 6)) * TopBevelRadius
vec2 = Vector([x, y, 0.0])
verts.append([x, y, 0.0])
x = sin(radians(60 / 3)) * TopBevelRadius
y = cos(radians(60 / 3)) * TopBevelRadius
vec3 = Vector([x, y, 0.0])
verts.append([x, y, 0.0])
x = sin(radians(60 / 2)) * TopBevelRadius
y = cos(radians(60 / 2)) * TopBevelRadius
vec4 = Vector([x, y, 0.0])
verts.append([x, y, 0.0])
Campbell Barton
committed
# Flats
x = tan(radians(0)) * Half_Flat
dvec = vec1 - Vector([x, Half_Flat, 0.0])
verts.append([x, Half_Flat, -dvec.length])
Campbell Barton
committed
x = tan(radians(60 / 6)) * Half_Flat
dvec = vec2 - Vector([x, Half_Flat, 0.0])
verts.append([x, Half_Flat, -dvec.length])
Campbell Barton
committed
x = tan(radians(60 / 3)) * Half_Flat
dvec = vec3 - Vector([x, Half_Flat, 0.0])
verts.append([x, Half_Flat, -dvec.length])
x = tan(radians(60 / 2)) * Half_Flat
dvec = vec4 - Vector([x, Half_Flat, 0.0])
verts.append([x, Half_Flat, -dvec.length])
Campbell Barton
committed
# down Bits Tri
x = tan(radians(0)) * Half_Flat
verts.append([x, Half_Flat, Lowest_Point])
Campbell Barton
committed
x = tan(radians(60 / 6)) * Half_Flat
verts.append([x, Half_Flat, Lowest_Point])
x = tan(radians(60 / 3)) * Half_Flat
verts.append([x, Half_Flat, Lowest_Point])
Campbell Barton
committed
x = tan(radians(60 / 2)) * Half_Flat
verts.append([x, Half_Flat, Lowest_Point])
Campbell Barton
committed
x = tan(radians(0)) * Half_Flat
verts.append([x, Half_Flat, -Flat_Height])
Campbell Barton
committed
x = tan(radians(60 / 6)) * Half_Flat
verts.append([x, Half_Flat, -Flat_Height])
x = tan(radians(60 / 3)) * Half_Flat
verts.append([x, Half_Flat, -Flat_Height])
Campbell Barton
committed
x = tan(radians(60 / 2)) * Half_Flat
verts.append([x, Half_Flat, -Flat_Height])
Campbell Barton
committed
# Under cut
x = sin(radians(0)) * Half_Flat
y = cos(radians(0)) * Half_Flat
vec1 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height])
x = sin(radians(60 / 6)) * Half_Flat
y = cos(radians(60 / 6)) * Half_Flat
vec2 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height])
x = sin(radians(60 / 3)) * Half_Flat
y = cos(radians(60 / 3)) * Half_Flat
vec3 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height])
x = sin(radians(60 / 2)) * Half_Flat
y = cos(radians(60 / 2)) * Half_Flat
vec3 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height])
Campbell Barton
committed
# Under cut down bit
x = sin(radians(0)) * Half_Flat
y = cos(radians(0)) * Half_Flat
vec1 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height])
x = sin(radians(60 / 6)) * Half_Flat
y = cos(radians(60 / 6)) * Half_Flat
vec2 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height])
x = sin(radians(60 / 3)) * Half_Flat
y = cos(radians(60 / 3)) * Half_Flat
vec3 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height])
x = sin(radians(60 / 2)) * Half_Flat
y = cos(radians(60 / 2)) * Half_Flat
vec3 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height])
Campbell Barton
committed
# Under cut to Shank BEVEL
x = sin(radians(0)) * (SHANK_RADIUS + Shank_Bevel)
y = cos(radians(0)) * (SHANK_RADIUS + Shank_Bevel)
vec1 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height])
x = sin(radians(60 / 6)) * (SHANK_RADIUS + Shank_Bevel)
y = cos(radians(60 / 6)) * (SHANK_RADIUS + Shank_Bevel)
vec2 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height])
x = sin(radians(60 / 3)) * (SHANK_RADIUS + Shank_Bevel)
y = cos(radians(60 / 3)) * (SHANK_RADIUS + Shank_Bevel)
vec3 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height])
x = sin(radians(60 / 2)) * (SHANK_RADIUS + Shank_Bevel)
y = cos(radians(60 / 2)) * (SHANK_RADIUS + Shank_Bevel)
vec3 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height])
Campbell Barton
committed
# Under cut to Shank BEVEL
x = sin(radians(0)) * SHANK_RADIUS
y = cos(radians(0)) * SHANK_RADIUS
vec1 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height - Shank_Bevel])
x = sin(radians(60 / 6)) * SHANK_RADIUS
y = cos(radians(60 / 6)) * SHANK_RADIUS
vec2 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height - Shank_Bevel])
x = sin(radians(60 / 3)) * SHANK_RADIUS
y = cos(radians(60 / 3)) * SHANK_RADIUS
vec3 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height - Shank_Bevel])
x = sin(radians(60 / 2)) * SHANK_RADIUS
y = cos(radians(60 / 2)) * SHANK_RADIUS
vec3 = Vector([x, y, 0.0])
verts.append([x, y, -Flat_Height - Undercut_Height - Shank_Bevel])
Campbell Barton
committed
faces.extend(Build_Face_List_Quads(FaceStart, 3, Row - 1))
Campbell Barton
committed
Mirror_Verts, Mirror_Faces = Mirror_Verts_Faces(verts, faces, 'y')
verts.extend(Mirror_Verts)
faces.extend(Mirror_Faces)
Campbell Barton
committed
Spin_Verts, Spin_Faces = SpinDup(verts, faces, 360, 6, 'z')
Campbell Barton
committed
return Spin_Verts, Spin_Faces, 0 - (-HEIGHT)
Campbell Barton
committed
# ####################################################################
# Create External Thread
# ####################################################################
def Thread_Start3(verts, INNER_RADIUS, OUTTER_RADIUS, PITCH, DIV_COUNT,
CREST_PERCENT, ROOT_PERCENT, Height_Offset):
Campbell Barton
committed
Height_Step = float(PITCH) / float(DIV_COUNT)
Deg_Step = 360.0 / float(DIV_COUNT)
Campbell Barton
committed
Crest_Height = float(PITCH) * float(CREST_PERCENT) / float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT) / float(100)
Root_to_Crest_Height = Crest_to_Root_Height = \
(float(PITCH) - (Crest_Height + Root_Height)) / 2.0
Campbell Barton
committed
# thread start
Rank = float(OUTTER_RADIUS - INNER_RADIUS) / float(DIV_COUNT)
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
z = Height_Offset - (Height_Step * i)
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
verts.append([x, y, z])
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
z = Height_Offset - (Height_Step * i)
Campbell Barton
committed
x = sin(radians(i * Deg_Step)) * OUTTER_RADIUS
y = cos(radians(i * Deg_Step)) * OUTTER_RADIUS
verts.append([x, y, z])
Height_Offset -= Crest_to_Root_Height
Ret_Row += 1
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
z = Height_Offset - (Height_Step * i)
Campbell Barton
committed
x = sin(radians(i * Deg_Step)) * INNER_RADIUS
y = cos(radians(i * Deg_Step)) * INNER_RADIUS
x = sin(radians(i * Deg_Step)) * (OUTTER_RADIUS - (i * Rank))
y = cos(radians(i * Deg_Step)) * (OUTTER_RADIUS - (i * Rank))
verts.append([x, y, z])
Campbell Barton
committed
for i in range(DIV_COUNT + 1):
z = Height_Offset - (Height_Step * i)
Campbell Barton
committed
x = sin(radians(i * Deg_Step)) * INNER_RADIUS
y = cos(radians(i * Deg_Step)) * INNER_RADIUS
x = sin(radians(i * Deg_Step)) * (OUTTER_RADIUS - (i * Rank))
y = cos(radians(i * Deg_Step)) * (OUTTER_RADIUS - (i * Rank))
verts.append([x, y, z])
Height_Offset -= Root_to_Crest_Height
Ret_Row += 1
Campbell Barton
committed
def Create_Shank_Verts(START_DIA, OUTTER_DIA, LENGTH, Z_LOCATION, DIV_COUNT):
Campbell Barton
committed
START_RADIUS = START_DIA / 2
OUTTER_RADIUS = OUTTER_DIA / 2
Campbell Barton
committed
Taper_Lentgh = Opp / tan(radians(31))
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
Deg_Step = 360.0 / float(DIV_COUNT)
Campbell Barton
committed
Campbell Barton
committed
Campbell Barton
committed
# Ring
for i in range(DIV_COUNT + 1):
x = sin(radians(i * Deg_Step)) * START_RADIUS
y = cos(radians(i * Deg_Step)) * START_RADIUS
z = Height_Offset - 0
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)
for i in range(DIV_COUNT + 1):
x = sin(radians(i * Deg_Step)) * START_RADIUS
y = cos(radians(i * Deg_Step)) * START_RADIUS
z = Height_Offset - 0
verts.append([x, y, z])
Lowest_Z_Vert = min(Lowest_Z_Vert, z)