Skip to content
Snippets Groups Projects
import_svg.py 29.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • # ##### BEGIN GPL LICENSE BLOCK #####
    #
    #  This program is free software; you can redistribute it and/or
    #  modify it under the terms of the GNU General Public License
    #  as published by the Free Software Foundation; either version 2
    #  of the License, or (at your option) any later version.
    #
    #  This program is distributed in the hope that it will be useful,
    #  but WITHOUT ANY WARRANTY; without even the implied warranty of
    #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    #  GNU General Public License for more details.
    #
    #  You should have received a copy of the GNU General Public License
    #  along with this program; if not, write to the Free Software Foundation,
    #  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    #
    # ##### END GPL LICENSE BLOCK #####
    
    # <pep8 compliant>
    
    import re
    import xml.dom.minidom
    from math import cos, sin, tan, atan2, pi, ceil
    
    import bpy
    from mathutils import Vector, Matrix
    
    from . import svg_colors
    
    #### Common utilities ####
    
    # TODO: 'em' and 'ex' aren't actually supported
    SVGUnits = {'': 1.0,
                'px': 1.0,
                'in': 90,
                'mm': 90 * 0.254,
                'cm': 90 * 2.54,
                'pt': 1.25,
                'pc': 15.0,
                'em': 1.0,
                'ex': 1.0}
    
    
    def SVGCreateCurve():
        """
        Create new curve object to hold splines in
        """
    
        cu = bpy.data.curves.new("Curve", 'CURVE')
        obj = bpy.data.objects.new("Curve", cu)
        bpy.context.scene.objects.link(obj)
    
        return obj
    
    
    def SVGFinishCurve():
        """
        Finish curve creation
        """
    
        pass
    
    
    def SVGFlipHandle(x, y, x1, y1):
        """
        Flip handle around base point
        """
    
        x = x + (x - x1)
        y = y + (y - y1)
    
        return x, y
    
    
    def SVGParseCoord(coord, size):
        """
        Parse coordinate component to common basis
    
        Needed to handle coordinates set in cm, mm, iches..
        """
    
        r = re.compile('([0-9\\-\\+\\.])([A-z%]*)')
        val = float(r.sub('\\1', coord))
        unit = r.sub('\\2', coord).lower()
    
        if unit == '%':
            return float(size) / 100.0 * val
        else:
            global SVGUnits
    
            return val * SVGUnits[unit]
    
        return val
    
    
    def SVGRectFromNode(node, context):
        """
        Get display rectangle from node
        """
    
        w = context['rect'][0]
        h = context['rect'][1]
    
        if node.getAttribute('viewBox'):
            viewBox = node.getAttribute('viewBox').split()
            w = SVGParseCoord(viewBox[2], w)
            h = SVGParseCoord(viewBox[3], h)
        else:
            if node.getAttribute('width'):
                w = SVGParseCoord(node.getAttribute('width'), w)
    
            if node.getAttribute('height'):
                h = SVGParseCoord(node.getAttribute('height'), h)
    
        return (w, h)
    
    
    def SVGMatrixFromNode(node, context):
        """
        Get transformation matrix from given node
        """
    
        rect = context['rect']
    
        m = Matrix()
        x = SVGParseCoord(node.getAttribute('x') or '0', rect[0])
        y = SVGParseCoord(node.getAttribute('y') or '0', rect[1])
        w = SVGParseCoord(node.getAttribute('width') or str(rect[0]), rect[0])
        h = SVGParseCoord(node.getAttribute('height') or str(rect[1]), rect[1])
    
        m = m.Translation(Vector((x, y, 0.0)))
        if len(context['rects']) > 1:
            m = m * m.Scale(w / rect[0], 4, Vector((1.0, 0.0, 0.0)))
            m = m * m.Scale(h / rect[1], 4, Vector((0.0, 1.0, 0.0)))
    
        if node.getAttribute('viewBox'):
            viewBox = node.getAttribute('viewBox').split()
            vx = SVGParseCoord(viewBox[0], w)
            vy = SVGParseCoord(viewBox[1], h)
            vw = SVGParseCoord(viewBox[2], w)
            vh = SVGParseCoord(viewBox[3], h)
    
            m = m * m.Translation(Vector((-vx, -vy, 0.0)))
            m = m * m.Scale(w / vw, 4, Vector((1.0, 0.0, 0.0)))
            m = m * m.Scale(h / vh, 4, Vector((0.0, 1.0, 0.0)))
    
        return m
    
    
    def SVGParseTransform(transform):
        """
        Parse transform string and return transformation matrix
        """
    
        m = Matrix()
        r = re.compile('\s*([A-z]+)\s*\((.*?)\)')
    
        for match in r.finditer(transform):
            func = match.group(1)
            params = match.group(2)
            params = params.replace(',', ' ').split()
    
            proc = SVGTransforms.get(func)
            if proc is None:
                raise Exception('Unknown trasnform function: ' + func)
    
            m = m * proc(params)
    
        return m
    
    
    def SVGGetMaterial(color, context):
        """
        Get material for specified color
        """
    
        materials = context['materials']
    
        if color in materials:
            return materials[color]
    
        diff = None
        if color.startswith('#'):
            color = color[1:]
    
            if len(color) == 3:
                color = color[0] * 2 + color[1] * 2 + color[2] * 2
    
            diff = (int(color[0:2], 16), int(color[2:4], 16), int(color[4:6], 16))
        elif color in svg_colors.SVGColors:
            diff = svg_colors.SVGColors[color]
        else:
            return None
    
        mat = bpy.data.materials.new(name='SVGMat')
    
    Sergey Sharybin's avatar
    Sergey Sharybin committed
        mat.diffuse_color = ([x / 255.0 for x in diff])
    
    
        materials[color] = mat
    
        return mat
    
    
    def SVGTransformTranslate(params):
        """
        translate SVG transform command
        """
    
        tx = float(params[0])
        ty = float(params[1])
        return Matrix.Translation(Vector((tx, ty, 0.0)))
    
    
    def SVGTransformMatrix(params):
        """
        matrix SVG transform command
        """
    
        a = float(params[0])
        b = float(params[1])
        c = float(params[2])
        d = float(params[3])
        e = float(params[4])
        f = float(params[5])
    
        return Matrix(((a, c, 0.0, 0.0),
                       (b, d, 0.0, 0.0),
                       (0, 0, 1.0, 0.0),
                       (e, f, 0.0, 1.0)))
    
    
    def SVGTransformScale(params):
        """
        scale SVG transform command
        """
    
        sx = sy = float(params[0])
        if len(params) > 1:
            sy = float(params[1])
    
        m = Matrix()
    
        m = m * m.Scale(sx, 4, Vector((1.0, 0.0, 0.0)))
        m = m * m.Scale(sy, 4, Vector((0.0, 1.0, 0.0)))
    
        return m
    
    
    def SVGTransformSkewX(params):
        """
        skewX SVG transform command
        """
    
        ang = float(params[0]) * pi / 180.0
    
        return Matrix(((1.0, 0.0, 0.0),
                      (tan(ang), 1.0, 0.0),
                      (0.0, 0.0, 1.0))).to_4x4()
    
    
    def SVGTransformSkewY(params):
        """
        skewX SVG transform command
        """
    
        ang = float(params[0]) * pi / 180.0
    
        return Matrix(((1.0, tan(ang), 0.0),
                      (0.0, 1.0, 0.0),
                      (0.0, 0.0, 1.0))).to_4x4()
    
    
    def SVGTransformRotate(params):
        """
        skewX SVG transform command
        """
    
        ang = float(params[0]) * pi / 180.0
        cx = cy = 0.0
        if len(params) >= 3:
            cx = float(params[1])
            cy = float(params[2])
    
        tm = Matrix.Translation(Vector((cx, cy, 0.0)))
        rm = Matrix.Rotation(ang, 4, Vector((0.0, 0.0, 1.0)))
    
        return tm * rm * tm.inverted()
    
    SVGTransforms = {'translate': SVGTransformTranslate,
                     'scale': SVGTransformScale,
                     'skewX': SVGTransformSkewX,
                     'skewY': SVGTransformSkewY,
                     'matrix': SVGTransformMatrix,
                     'rotate': SVGTransformRotate}
    
    
    Sergey Sharybin's avatar
    Sergey Sharybin committed
    
    def SVGParseStyles(node, context):
        """
        Parse node to get different styles for displaying geometries
        (materilas, filling flags, etc..)
        """
    
        styles = {'useFill': None,
                  'fill': None}
    
        style = node.getAttribute('style')
        if style:
            elems = style.split(';')
            print(elems)
            for elem in elems:
                s = elem.split(':')
    
                name = s[0].strip().lower()
                val = s[1].strip()
    
                if name == 'fill':
                    val = val.lower()
                    if val == 'none':
                        styles['useFill'] = False
                    else:
                        styles['useFill'] = True
                        styles['fill'] = SVGGetMaterial(val, context)
    
            return styles
    
        if styles['useFill'] is None:
    
    Sergey Sharybin's avatar
    Sergey Sharybin committed
            fill = node.getAttribute('fill')
    
    Sergey Sharybin's avatar
    Sergey Sharybin committed
            if fill:
                fill = fill.lower()
                if fill == 'none':
                    styles['useFill'] = False
                else:
                    styles['useFill'] = True
                    styles['fill'] = SVGGetMaterial(fill, context)
    
        return styles
    
    
    #### SVG path helpers ####
    
    
    class SVGPathData:
        """
        SVG Path data token supplier
        """
    
        __slots__ = ('_data',  # List of tokens
                     '_index',  # Index of current token in tokens list
                     '_len')  # Lenght og tokens list
    
        def __init__(self, d):
            """
            Initialize new path data supplier
    
            d - the definition of the outline of a shape
            """
    
            # Convert to easy-to-parse format
    
    Sergey Sharybin's avatar
    Sergey Sharybin committed
            d = d.replace(',', ' ').replace('-', ' -')
    
    358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
            d = re.sub('([A-z])', ' \\1 ', d)
    
            self._data = d.split()
            self._index = 0
            self._len = len(self._data)
    
        def eof(self):
            """
            Check if end of data reached
            """
    
            return self._index >= self._len
    
        def cur(self):
            """
            Return current token
            """
    
            if self.eof():
                return None
    
            return self._data[self._index]
    
        def next(self):
            """
            Return current token and go to next one
            """
    
            if self.eof():
                return None
    
            token = self._data[self._index]
            self._index += 1
    
            return token
    
        def nextCoord(self):
            """
            Return coordinate created from current token and move to next token
            """
    
            token = self.next()
    
            if token is None:
                return None
    
            return float(token)
    
    
    class SVGPathParser:
        """
        Parser of SVG path data
        """
    
        __slots__ = ('_data',  # Path data supplird
                     '_point',  # Current point coorfinate
                     '_handle',  # Last handle coordinate
                     '_splines',  # List of all splies created during parsing
                     '_spline',  # Currently handling spline
                     '_commands')  # Hash of all supported path commands
    
        def __init__(self, d):
            """
            Initialize path parser
    
            d - the definition of the outline of a shape
            """
    
            self._data = SVGPathData(d)
            self._point = None   # Current point
            self._handle = None  # Last handle
            self._splines = []   # List of splines in path
            self._spline = None  # Current spline
    
            self._commands = {'M': self._pathMoveTo,
                              'L': self._pathLineTo,
                              'H': self._pathLineTo,
                              'V': self._pathLineTo,
                              'C': self._pathCurveToCS,
                              'S': self._pathCurveToCS,
                              'Q': self._pathCurveToQT,
                              'T': self._pathCurveToQT,
                              'A': self._pathCurveToA,
                              'Z': self._pathClose,
    
                              'm': self._pathMoveTo,
                              'l': self._pathLineTo,
                              'h': self._pathLineTo,
                              'v': self._pathLineTo,
                              'c': self._pathCurveToCS,
                              's': self._pathCurveToCS,
                              'q': self._pathCurveToQT,
                              't': self._pathCurveToQT,
                              'a': self._pathCurveToA,
                              'z': self._pathClose}
    
        def _getCoordPair(self, relative, point):
            """
            Get next coordinate pair
            """
    
            x = self._data.nextCoord()
            y = self._data.nextCoord()
    
            if relative and point is not None:
                x += point[0]
                y += point[1]
    
            return x, y
    
        def _appendPoint(self, x, y, handle_left=None, handle_left_type='VECTOR',
                        handle_right=None, handle_right_type='VECTOR'):
            """
            Append point to spline
    
            If there's no active spline, create one and set it's first point
            to current point coordinate
            """
    
            if self._spline is None:
                self._spline = {'points': [],
                                'closed': False}
    
                self._splines.append(self._spline)
    
            point = {'x': x,
                     'y': y,
    
                     'handle_left': handle_left,
                     'handle_left_type': handle_left_type,
    
                     'handle_right': handle_right,
                     'handle_right_type': handle_right_type}
    
            self._spline['points'].append(point)
    
        def _updateHandle(self, handle=None, handle_type=None):
            """
            Update right handle of previous point when adding new point to spline
            """
    
            point = self._spline['points'][-1]
    
            if handle_type is not None:
                point['handle_right_type'] = handle_type
    
            if handle is not None:
                point['handle_right'] = handle
    
        def _pathMoveTo(self, code):
            """
            MoveTo path command
            """
    
            relative = code.islower()
            x, y = self._getCoordPair(relative, self._point)
    
            self._spline = None  # Flag to start new spline
            self._point = (x, y)
    
            cur = self._data.cur()
            while  cur is not None and not cur.isalpha():
                x, y = self._getCoordPair(relative, self._point)
    
                if self._spline is None:
                    self._appendPoint(self._point[0], self._point[1])
    
                self._appendPoint(x, y)
    
                self._point = (x, y)
                cur = self._data.cur()
    
            self._handle = None
    
        def _pathLineTo(self, code):
            """
            LineTo path command
            """
    
            c = code.lower()
    
            cur = self._data.cur()
            while cur is not None and not cur.isalpha():
                if c == 'l':
                    x, y = self._getCoordPair(code == 'l', self._point)
                elif c == 'h':
                    x = self._data.nextCoord()
                    y = self._point[1]
                else:
                    x = self._point[0]
                    y = self._data.nextCoord()
    
                if code == 'h':
                    x += self._point[0]
                elif code == 'v':
                    y += self._point[1]
    
                if self._spline is None:
                    self._appendPoint(self._point[0], self._point[1])
    
                self._appendPoint(x, y)
    
                self._point = (x, y)
                cur = self._data.cur()
    
            self._handle = None
    
        def _pathCurveToCS(self, code):
            """
            Cubic BEZIER CurveTo  path command
            """
    
            c = code.lower()
            cur = self._data.cur()
            while cur is not None and not cur.isalpha():
                if c == 'c':
                    x1, y1 = self._getCoordPair(code.islower(), self._point)
                    x2, y2 = self._getCoordPair(code.islower(), self._point)
                else:
                    if self._handle is not None:
                        x1, y1 = SVGFlipHandle(self._point[0], self._point[1],
                                            self._handle[0], self._handle[1])
                    else:
                        x1, y1 = self._point
    
                    x2, y2 = self._getCoordPair(code.islower(), self._point)
    
                x, y = self._getCoordPair(code.islower(), self._point)
    
                if self._spline is None:
                    self._appendPoint(self._point[0], self._point[1],
                        handle_left_type='FREE', handle_left=self._point,
                        handle_right_type='FREE', handle_right=(x1, y1))
                else:
                    self._updateHandle(handle=(x1, y1), handle_type='FREE')
    
                self._appendPoint(x, y,
                    handle_left_type='FREE', handle_left=(x2, y2),
                    handle_right_type='FREE', handle_right=(x, y))
    
                self._point = (x, y)
                self._handle = (x2, y2)
                cur = self._data.cur()
    
        def _pathCurveToQT(self, code):
            """
            Qyadracic BEZIER CurveTo  path command
            """
    
            c = code.lower()
            cur = self._data.cur()
    
            while cur is not None and not cur.isalpha():
                if c == 'q':
                    x1, y1 = self._getCoordPair(code.islower(), self._point)
                else:
                    if self._handle is not None:
                        x1, y1 = SVGFlipHandle(self._point[0], self._point[1],
                                            self._handle[0], self._handle[1])
                    else:
                        x1, y1 = self._point
    
                x, y = self._getCoordPair(code.islower(), self._point)
    
                if self._spline is None:
                    self._appendPoint(self._point[0], self._point[1],
                        handle_left_type='FREE', handle_left=self._point,
                        handle_right_type='FREE', handle_right=self._point)
    
                self._appendPoint(x, y,
                    handle_left_type='FREE', handle_left=(x1, y1),
                    handle_right_type='FREE', handle_right=(x, y))
    
                self._point = (x, y)
                self._handle = (x1, y1)
                cur = self._data.cur()
    
        def _calcArc(self, rx, ry,  ang, fa, fs, x, y):
            """
            Calc arc paths
    
            Copied and adoptedfrom paths_svg2obj.py scring for Blender 2.49
            which is Copyright (c) jm soler juillet/novembre 2004-april 2009,
            """
    
            cpx = self._point[0]
            cpy = self._point[1]
            rx = abs(rx)
            ry = abs(ry)
            px = abs((cos(ang) * (cpx - x) + sin(ang) * (cpy - y)) * 0.5) ** 2.0
            py = abs((cos(ang) * (cpy - y) - sin(ang) * (cpx - x)) * 0.5) ** 2.0
            rpx = rpy = 0.0
    
            if abs(rx) > 0.0:
                px = px / (rx ** 2.0)
    
            if abs(ry) > 0.0:
                rpy = py / (ry ** 2.0)
    
            pl = rpx + rpy
            if pl > 1.0:
                pl = pl ** 0.5
                rx *= pl
                ry *= pl
    
            carx = sarx = cary = sary = 0.0
    
            if abs(rx) > 0.0:
                carx = cos(ang) / rx
                sarx = sin(ang) / rx
    
            if abs(ry) > 0.0:
                cary = cos(ang) / ry
                sary = sin(ang) / ry
    
            x0 = carx * cpx + sarx * cpy
            y0 = -sary * cpx + cary * cpy
            x1 = carx * x + sarx * y
            y1 = -sary * x + cary * y
            d = (x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0)
    
            if abs(d) > 0.0:
                sq = 1.0 / d - 0.25
            else:
                sq = -0.25
    
            if sq < 0.0:
                sq = 0.0
    
            sf = sq ** 0.5
            if fs == fa:
                sf = -sf
    
            xc = 0.5 * (x0 + x1) - sf * (y1 - y0)
            yc = 0.5 * (y0 + y1) + sf * (x1 - x0)
            ang_0 = atan2(y0 - yc, x0 - xc)
            ang_1 = atan2(y1 - yc, x1 - xc)
            ang_arc = ang_1 - ang_0
    
            if ang_arc < 0.0 and fs == 1:
                ang_arc += 2.0 * pi
            elif ang_arc > 0.0 and fs == 0:
                ang_arc -= 2.0 * pi
    
            n_segs = int(ceil(abs(ang_arc * 2.0 / (pi * 0.5 + 0.001))))
    
            if self._spline is None:
                self._appendPoint(cpx, cpy,
                    handle_left_type='FREE', handle_left=(cpx, cpy),
                    handle_right_type='FREE', handle_right=(cpx, cpy))
    
            for i in range(n_segs):
                ang0 = ang_0 + i * ang_arc / n_segs
                ang1 = ang_0 + (i + 1) * ang_arc / n_segs
                ang_demi = 0.25 * (ang1 - ang0)
                t = 2.66666 * sin(ang_demi) * sin(ang_demi) / sin(ang_demi * 2.0)
                x1 = xc + cos(ang0) - t * sin(ang0)
                y1 = yc + sin(ang0) + t * cos(ang0)
                x2 = xc + cos(ang1)
                y2 = yc + sin(ang1)
                x3 = x2 + t * sin(ang1)
                y3 = y2 - t * cos(ang1)
    
                coord1 = ((cos(ang) * rx) * x1 + (-sin(ang) * ry) * y1,
                          (sin(ang) * rx) * x1 + (cos(ang) * ry) * y1)
                coord2 = ((cos(ang) * rx) * x3 + (-sin(ang) * ry) * y3,
                          (sin(ang) * rx) * x3 + (cos(ang) * ry) * y3)
                coord3 = ((cos(ang) * rx) * x2 + (-sin(ang) * ry) * y2,
                          (sin(ang) * rx) * x2 + (cos(ang) * ry) * y2)
    
                self._updateHandle(handle=coord1, handle_type='FREE')
    
                self._appendPoint(coord3[0], coord3[1],
                    handle_left_type='FREE', handle_left=coord2,
                    handle_right_type='FREE', handle_right=coord3)
    
        def _pathCurveToA(self, code):
            """
            Elliptical arc CurveTo path command
            """
    
            c = code.lower()
            cur = self._data.cur()
    
            while cur is not None and not cur.isalpha():
                rx = float(self._data.next())
                ry = float(self._data.next())
                ang = float(self._data.next()) / 180 * pi
                fa = float(self._data.next())
                fs = float(self._data.next())
                x, y = self._getCoordPair(code.islower(), self._point)
    
                self._calcArc(rx, ry,  ang, fa, fs, x, y)
    
                self._point = (x, y)
                self._handle = None
                cur = self._data.cur()
    
        def _pathClose(self, code):
            """
            Close path command
            """
    
            if self._spline:
                self._spline['closed'] = True
    
        def parse(self):
            """
            Execute parser
            """
    
            while not self._data.eof():
                code = self._data.next()
                cmd = self._commands.get(code)
    
                if cmd is None:
                    raise Exception('Unknown path command: {0}' . format(code))
    
                cmd(code)
    
        def getSplines(self):
            """
            Get splines definitions
            """
    
            return self._splines
    
    
    class SVGGeometry:
        """
        Abstract SVG geometry
        """
    
        __slots__ = ('_node',  # XML node for geometry
                     '_context',  # Global SVG context (holds matrices stack, i.e.)
    
                     '_creating')  # Flag if geometry is already creating
                                   # for this node
    
                                   # need to detect cycles for USE node
    
        def __init__(self, node, context):
            """
            Initialize SVG geometry
            """
    
            self._node = node
            self._context = context
            self._creating = False
    
            if hasattr(node, 'getAttribute'):
                defs = context['defines']
    
                id = node.getAttribute('id')
                if id and defs.get('#' + id) is None:
                    defs['#' + id] = self
    
                className = node.getAttribute('class')
                if className and defs.get(className) is None:
                    defs[className] = self
    
        def _pushRect(self, rect):
            """
            Push display rectangle
            """
    
            self._context['rects'].append(rect)
            self._context['rect'] = rect
    
        def _popRect(self):
            """
            Pop display rectangle
            """
    
            self._context['rects'].pop
            self._context['rect'] = self._context['rects'][-1]
    
        def _pushMatrix(self, matrix):
            """
            Push transformation matrix
            """
    
            self._context['transform'].append(matrix)
            self._context['matrix'] = self._context['matrix'] * matrix
    
        def _popMatrix(self):
            """
            Pop transformation matrix
            """
    
            matrix = self._context['transform'].pop()
            self._context['matrix'] = self._context['matrix'] * matrix.inverted()
    
        def _transformCoord(self, point):
            """
            Transform SVG-file coords
            """
    
            v = Vector((point[0], point[1], 0.0))
    
            return v * self._context['matrix']
    
        def getNodeMatrix(self):
            """
            Get transformation matrix of node
            """
    
            return SVGMatrixFromNode(self._node, self._context)
    
        def parse(self):
            """
            Parse XML node to memory
            """
    
            pass
    
        def _doCreateGeom(self):
            """
            Internal handler to create real geometries
            """
    
            pass
    
        def _getTranformMatrix(self):
            """
            Get matrix created from "transform" attribute
            """
    
            if not hasattr(self._node, 'getAttribute'):
                return None
    
            transform = self._node.getAttribute('transform')
    
            if transform:
                return SVGParseTransform(transform)
    
            return None
    
        def createGeom(self):
            """
            Create real geometries
            """
    
            if self._creating:
                return
    
            self._creating = True
    
            matrix = self._getTranformMatrix()
            if matrix is not None:
                self._pushMatrix(matrix)
    
            self._doCreateGeom()
    
            if matrix is not None:
                self._popMatrix()
    
            self._creating = False
    
    
    class SVGGeometryContainer(SVGGeometry):
        """
        Container of SVG geometries
        """
    
        __slots__ = ('_geometries')  # List of chold geometries
    
        def __init__(self, node, context):
            """
            Initialize SVG geometry container
            """
    
            super().__init__(node, context)
    
            self._geometries = []
    
        def parse(self):
            """
            Parse XML node to memory
            """
    
            for node in self._node.childNodes:
                if type(node) is not xml.dom.minidom.Element:
                    continue
    
                ob = parseAbstractNode(node, self._context)
                if ob is not None:
                    self._geometries.append(ob)
    
        def _doCreateGeom(self):
            """
            Create real geometries
            """
    
            for geom in self._geometries:
                geom.createGeom()
    
        def getGeometries(self):
            """
            Get list of parsed geometries
            """
    
            return self._geometries
    
    
    class SVGGeometryPATH(SVGGeometry):
        """
        SVG path geometry
        """
    
        __slots__ = ('_splines',  # List of splines after parsing
    
    Sergey Sharybin's avatar
    Sergey Sharybin committed
                     '_styles')  # Styles, used for displaying
    
    
        def __init__(self, node, context):
            """
            Initialize SVG path
            """
    
            super().__init__(node, context)
    
            self._splines = []
    
    Sergey Sharybin's avatar
    Sergey Sharybin committed
            self._styles = None
    
    
        def parse(self):
            """
            Parse SVG path node
            """
    
            d = self._node.getAttribute('d')
    
            pathParser = SVGPathParser(d)
            pathParser.parse()
    
            self._splines = pathParser.getSplines()
    
    Sergey Sharybin's avatar
    Sergey Sharybin committed
            self._styles = SVGParseStyles(self._node, self._context)
    
    
        def _doCreateGeom(self):
            """
            Create real geometries
            """
    
            ob = SVGCreateCurve()
            cu = ob.data
    
    
    Sergey Sharybin's avatar
    Sergey Sharybin committed
            if self._styles['useFill']: