Newer
Older
for vert in face.verts:
vert = vert.index
if vert in single_vertices:
for ek in face_edgekeys(face):
if not vert in ek:
edge_keys.append(ek)
if vert not in vert_to_single[ek[0]]:
vert_to_single[ek[0]].append(vert)
if vert not in vert_to_single[ek[1]]:
vert_to_single[ek[1]].append(vert)
break
CoDEmanX
committed
# sort edge-keys into loops
loops = get_connected_selections(edge_keys)
CoDEmanX
committed
# find out to which loops the single vertices belong
single_loops = dict([[i, []] for i in range(len(loops))])
if single_vertices and len(bm.faces)>0:
for i, [loop, circular] in enumerate(loops):
for vert in loop:
if vert_to_single[vert]:
for single in vert_to_single[vert]:
if single not in single_loops[i]:
single_loops[i].append(single)
CoDEmanX
committed
return(derived, bm_mod, single_vertices, single_loops, loops)
# recalculate positions based on the influence of the circle shape
def circle_influence_locs(locs_2d, new_locs_2d, influence):
for i in range(len(locs_2d)):
oldx, oldy, j = locs_2d[i]
newx, newy, k = new_locs_2d[i]
altx = newx*(influence/100)+ oldx*((100-influence)/100)
alty = newy*(influence/100)+ oldy*((100-influence)/100)
locs_2d[i] = [altx, alty, j]
CoDEmanX
committed
return(locs_2d)
# project 2d locations on circle, respecting distance relations between verts
def circle_project_non_regular(locs_2d, x0, y0, r):
for i in range(len(locs_2d)):
x, y, j = locs_2d[i]
loc = mathutils.Vector([x-x0, y-y0])
loc.length = r
locs_2d[i] = [loc[0], loc[1], j]
CoDEmanX
committed
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
return(locs_2d)
# project 2d locations on circle, with equal distance between all vertices
def circle_project_regular(locs_2d, x0, y0, r):
# find offset angle and circling direction
x, y, i = locs_2d[0]
loc = mathutils.Vector([x-x0, y-y0])
loc.length = r
offset_angle = loc.angle(mathutils.Vector([1.0, 0.0]), 0.0)
loca = mathutils.Vector([x-x0, y-y0, 0.0])
if loc[1] < -1e-6:
offset_angle *= -1
x, y, j = locs_2d[1]
locb = mathutils.Vector([x-x0, y-y0, 0.0])
if loca.cross(locb)[2] >= 0:
ccw = 1
else:
ccw = -1
# distribute vertices along the circle
for i in range(len(locs_2d)):
t = offset_angle + ccw * (i / len(locs_2d) * 2 * math.pi)
x = math.cos(t) * r
y = math.sin(t) * r
locs_2d[i] = [x, y, locs_2d[i][2]]
CoDEmanX
committed
return(locs_2d)
# shift loop, so the first vertex is closest to the center
def circle_shift_loop(bm_mod, loop, com):
verts, circular = loop
distances = [[(bm_mod.verts[vert].co - com).length, i] \
for i, vert in enumerate(verts)]
distances.sort()
shift = distances[0][1]
loop = [verts[shift:] + verts[:shift], circular]
CoDEmanX
committed
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
return(loop)
##########################################
####### Curve functions ##################
##########################################
# create lists with knots and points, all correctly sorted
def curve_calculate_knots(loop, verts_selected):
knots = [v for v in loop[0] if v in verts_selected]
points = loop[0][:]
# circular loop, potential for weird splines
if loop[1]:
offset = int(len(loop[0]) / 4)
kpos = []
for k in knots:
kpos.append(loop[0].index(k))
kdif = []
for i in range(len(kpos) - 1):
kdif.append(kpos[i+1] - kpos[i])
kdif.append(len(loop[0]) - kpos[-1] + kpos[0])
kadd = []
for k in kdif:
if k > 2 * offset:
kadd.append([kdif.index(k), True])
# next 2 lines are optional, they insert
# an extra control point in small gaps
#elif k > offset:
# kadd.append([kdif.index(k), False])
kins = []
krot = False
for k in kadd: # extra knots to be added
if k[1]: # big gap (break circular spline)
kpos = loop[0].index(knots[k[0]]) + offset
if kpos > len(loop[0]) - 1:
kpos -= len(loop[0])
kins.append([knots[k[0]], loop[0][kpos]])
kpos2 = k[0] + 1
if kpos2 > len(knots)-1:
kpos2 -= len(knots)
kpos2 = loop[0].index(knots[kpos2]) - offset
if kpos2 < 0:
kpos2 += len(loop[0])
kins.append([loop[0][kpos], loop[0][kpos2]])
krot = loop[0][kpos2]
else: # small gap (keep circular spline)
k1 = loop[0].index(knots[k[0]])
k2 = k[0] + 1
if k2 > len(knots)-1:
k2 -= len(knots)
k2 = loop[0].index(knots[k2])
if k2 < k1:
dif = len(loop[0]) - 1 - k1 + k2
else:
dif = k2 - k1
kn = k1 + int(dif/2)
if kn > len(loop[0]) - 1:
kn -= len(loop[0])
kins.append([loop[0][k1], loop[0][kn]])
for j in kins: # insert new knots
knots.insert(knots.index(j[0]) + 1, j[1])
if not krot: # circular loop
knots.append(knots[0])
points = loop[0][loop[0].index(knots[0]):]
points += loop[0][0:loop[0].index(knots[0]) + 1]
else: # non-circular loop (broken by script)
krot = knots.index(krot)
knots = knots[krot:] + knots[0:krot]
if loop[0].index(knots[0]) > loop[0].index(knots[-1]):
points = loop[0][loop[0].index(knots[0]):]
points += loop[0][0:loop[0].index(knots[-1])+1]
else:
points = loop[0][loop[0].index(knots[0]):\
loop[0].index(knots[-1]) + 1]
# non-circular loop, add first and last point as knots
else:
if loop[0][0] not in knots:
knots.insert(0, loop[0][0])
if loop[0][-1] not in knots:
knots.append(loop[0][-1])
CoDEmanX
committed
return(knots, points)
# calculate relative positions compared to first knot
def curve_calculate_t(bm_mod, knots, points, pknots, regular, circular):
tpoints = []
loc_prev = False
len_total = 0
CoDEmanX
committed
for p in points:
if p in knots:
loc = pknots[knots.index(p)] # use projected knot location
else:
loc = mathutils.Vector(bm_mod.verts[p].co[:])
if not loc_prev:
loc_prev = loc
len_total += (loc-loc_prev).length
tpoints.append(len_total)
loc_prev = loc
tknots = []
for p in points:
if p in knots:
tknots.append(tpoints[points.index(p)])
if circular:
tknots[-1] = tpoints[-1]
CoDEmanX
committed
# regular option
if regular:
tpoints_average = tpoints[-1] / (len(tpoints) - 1)
for i in range(1, len(tpoints) - 1):
tpoints[i] = i * tpoints_average
for i in range(len(knots)):
tknots[i] = tpoints[points.index(knots[i])]
if circular:
tknots[-1] = tpoints[-1]
CoDEmanX
committed
return(tknots, tpoints)
# change the location of non-selected points to their place on the spline
def curve_calculate_vertices(bm_mod, knots, tknots, points, tpoints, splines,
interpolation, restriction):
newlocs = {}
move = []
CoDEmanX
committed
for p in points:
if p in knots:
continue
m = tpoints[points.index(p)]
if m in tknots:
n = tknots.index(m)
else:
t = tknots[:]
t.append(m)
t.sort()
n = t.index(m) - 1
if n > len(splines) - 1:
n = len(splines) - 1
elif n < 0:
n = 0
CoDEmanX
committed
if interpolation == 'cubic':
ax, bx, cx, dx, tx = splines[n][0]
x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
ay, by, cy, dy, ty = splines[n][1]
y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
az, bz, cz, dz, tz = splines[n][2]
z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
newloc = mathutils.Vector([x,y,z])
else: # interpolation == 'linear'
a, d, t, u = splines[n]
newloc = ((m-t)/u)*d + a
if restriction != 'none': # vertex movement is restricted
newlocs[p] = newloc
else: # set the vertex to its new location
move.append([p, newloc])
CoDEmanX
committed
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
if restriction != 'none': # vertex movement is restricted
for p in points:
if p in newlocs:
newloc = newlocs[p]
else:
move.append([p, bm_mod.verts[p].co])
continue
oldloc = bm_mod.verts[p].co
normal = bm_mod.verts[p].normal
dloc = newloc - oldloc
if dloc.length < 1e-6:
move.append([p, newloc])
elif restriction == 'extrude': # only extrusions
if dloc.angle(normal, 0) < 0.5 * math.pi + 1e-6:
move.append([p, newloc])
else: # restriction == 'indent' only indentations
if dloc.angle(normal) > 0.5 * math.pi - 1e-6:
move.append([p, newloc])
return(move)
# trim loops to part between first and last selected vertices (including)
def curve_cut_boundaries(bm_mod, loops):
cut_loops = []
for loop, circular in loops:
if circular:
# don't cut
cut_loops.append([loop, circular])
continue
selected = [bm_mod.verts[v].select for v in loop]
first = selected.index(True)
selected.reverse()
last = -selected.index(True)
if last == 0:
cut_loops.append([loop[first:], circular])
else:
cut_loops.append([loop[first:last], circular])
CoDEmanX
committed
return(cut_loops)
# calculate input loops
def curve_get_input(object, bm, boundaries, scene):
# get mesh with modifiers applied
derived, bm_mod = get_derived_bmesh(object, bm, scene)
CoDEmanX
committed
# vertices that still need a loop to run through it
verts_unsorted = [v.index for v in bm_mod.verts if \
v.select and not v.hide]
# necessary dictionaries
vert_edges = dict_vert_edges(bm_mod)
edge_faces = dict_edge_faces(bm_mod)
correct_loops = []
# find loops through each selected vertex
while len(verts_unsorted) > 0:
loops = curve_vertex_loops(bm_mod, verts_unsorted[0], vert_edges,
edge_faces)
verts_unsorted.pop(0)
CoDEmanX
committed
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
# check if loop is fully selected
search_perpendicular = False
i = -1
for loop, circular in loops:
i += 1
selected = [v for v in loop if bm_mod.verts[v].select]
if len(selected) < 2:
# only one selected vertex on loop, don't use
loops.pop(i)
continue
elif len(selected) == len(loop):
search_perpendicular = loop
break
# entire loop is selected, find perpendicular loops
if search_perpendicular:
for vert in loop:
if vert in verts_unsorted:
verts_unsorted.remove(vert)
perp_loops = curve_perpendicular_loops(bm_mod, loop,
vert_edges, edge_faces)
for perp_loop in perp_loops:
correct_loops.append(perp_loop)
# normal input
else:
for loop, circular in loops:
correct_loops.append([loop, circular])
CoDEmanX
committed
# boundaries option
if boundaries:
correct_loops = curve_cut_boundaries(bm_mod, correct_loops)
CoDEmanX
committed
return(derived, bm_mod, correct_loops)
# return all loops that are perpendicular to the given one
def curve_perpendicular_loops(bm_mod, start_loop, vert_edges, edge_faces):
# find perpendicular loops
perp_loops = []
for start_vert in start_loop:
loops = curve_vertex_loops(bm_mod, start_vert, vert_edges,
edge_faces)
for loop, circular in loops:
selected = [v for v in loop if bm_mod.verts[v].select]
if len(selected) == len(loop):
continue
else:
perp_loops.append([loop, circular, loop.index(start_vert)])
CoDEmanX
committed
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
# trim loops to same lengths
shortest = [[len(loop[0]), i] for i, loop in enumerate(perp_loops)\
if not loop[1]]
if not shortest:
# all loops are circular, not trimming
return([[loop[0], loop[1]] for loop in perp_loops])
else:
shortest = min(shortest)
shortest_start = perp_loops[shortest[1]][2]
before_start = shortest_start
after_start = shortest[0] - shortest_start - 1
bigger_before = before_start > after_start
trimmed_loops = []
for loop in perp_loops:
# have the loop face the same direction as the shortest one
if bigger_before:
if loop[2] < len(loop[0]) / 2:
loop[0].reverse()
loop[2] = len(loop[0]) - loop[2] - 1
else:
if loop[2] > len(loop[0]) / 2:
loop[0].reverse()
loop[2] = len(loop[0]) - loop[2] - 1
# circular loops can shift, to prevent wrong trimming
if loop[1]:
shift = shortest_start - loop[2]
if loop[2] + shift > 0 and loop[2] + shift < len(loop[0]):
loop[0] = loop[0][-shift:] + loop[0][:-shift]
loop[2] += shift
if loop[2] < 0:
loop[2] += len(loop[0])
elif loop[2] > len(loop[0]) -1:
loop[2] -= len(loop[0])
# trim
start = max(0, loop[2] - before_start)
end = min(len(loop[0]), loop[2] + after_start + 1)
trimmed_loops.append([loop[0][start:end], False])
CoDEmanX
committed
return(trimmed_loops)
# project knots on non-selected geometry
def curve_project_knots(bm_mod, verts_selected, knots, points, circular):
# function to project vertex on edge
def project(v1, v2, v3):
# v1 and v2 are part of a line
# v3 is projected onto it
v2 -= v1
v3 -= v1
p = v3.project(v2)
return(p + v1)
CoDEmanX
committed
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
if circular: # project all knots
start = 0
end = len(knots)
pknots = []
else: # first and last knot shouldn't be projected
start = 1
end = -1
pknots = [mathutils.Vector(bm_mod.verts[knots[0]].co[:])]
for knot in knots[start:end]:
if knot in verts_selected:
knot_left = knot_right = False
for i in range(points.index(knot)-1, -1*len(points), -1):
if points[i] not in knots:
knot_left = points[i]
break
for i in range(points.index(knot)+1, 2*len(points)):
if i > len(points) - 1:
i -= len(points)
if points[i] not in knots:
knot_right = points[i]
break
if knot_left and knot_right and knot_left != knot_right:
knot_left = mathutils.Vector(\
bm_mod.verts[knot_left].co[:])
knot_right = mathutils.Vector(\
bm_mod.verts[knot_right].co[:])
knot = mathutils.Vector(bm_mod.verts[knot].co[:])
pknots.append(project(knot_left, knot_right, knot))
else:
pknots.append(mathutils.Vector(bm_mod.verts[knot].co[:]))
else: # knot isn't selected, so shouldn't be changed
pknots.append(mathutils.Vector(bm_mod.verts[knot].co[:]))
if not circular:
pknots.append(mathutils.Vector(bm_mod.verts[knots[-1]].co[:]))
CoDEmanX
committed
return(pknots)
# find all loops through a given vertex
def curve_vertex_loops(bm_mod, start_vert, vert_edges, edge_faces):
edges_used = []
loops = []
CoDEmanX
committed
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
for edge in vert_edges[start_vert]:
if edge in edges_used:
continue
loop = []
circular = False
for vert in edge:
active_faces = edge_faces[edge]
new_vert = vert
growing = True
while growing:
growing = False
new_edges = vert_edges[new_vert]
loop.append(new_vert)
if len(loop) > 1:
edges_used.append(tuple(sorted([loop[-1], loop[-2]])))
if len(new_edges) < 3 or len(new_edges) > 4:
# pole
break
else:
# find next edge
for new_edge in new_edges:
if new_edge in edges_used:
continue
eliminate = False
for new_face in edge_faces[new_edge]:
if new_face in active_faces:
eliminate = True
break
if eliminate:
continue
# found correct new edge
active_faces = edge_faces[new_edge]
v1, v2 = new_edge
if v1 != new_vert:
new_vert = v1
else:
new_vert = v2
if new_vert == loop[0]:
circular = True
else:
growing = True
break
if circular:
break
loop.reverse()
loops.append([loop, circular])
CoDEmanX
committed
return(loops)
##########################################
####### Flatten functions ################
##########################################
# sort input into loops
def flatten_get_input(bm):
vert_verts = dict_vert_verts([edgekey(edge) for edge in bm.edges \
if edge.select and not edge.hide])
verts = [v.index for v in bm.verts if v.select and not v.hide]
CoDEmanX
committed
# no connected verts, consider all selected verts as a single input
if not vert_verts:
return([[verts, False]])
CoDEmanX
committed
loops = []
while len(verts) > 0:
# start of loop
loop = [verts[0]]
verts.pop(0)
if loop[-1] in vert_verts:
to_grow = vert_verts[loop[-1]]
else:
to_grow = []
# grow loop
while len(to_grow) > 0:
new_vert = to_grow[0]
to_grow.pop(0)
if new_vert in loop:
continue
loop.append(new_vert)
verts.remove(new_vert)
to_grow += vert_verts[new_vert]
# add loop to loops
loops.append([loop, False])
CoDEmanX
committed
return(loops)
# calculate position of vertex projections on plane
def flatten_project(bm, loop, com, normal):
verts = [bm.verts[v] for v in loop[0]]
verts_projected = [[v.index, mathutils.Vector(v.co[:]) - \
(mathutils.Vector(v.co[:])-com).dot(normal)*normal] for v in verts]
CoDEmanX
committed
return(verts_projected)
##########################################
####### Gstretch functions ###############
##########################################
# fake stroke class, used to create custom strokes if no GP data is found
class gstretch_fake_stroke():
def __init__(self, points):
self.points = [gstretch_fake_stroke_point(p) for p in points]
# fake stroke point class, used in fake strokes
class gstretch_fake_stroke_point():
def __init__(self, loc):
self.co = loc
# flips loops, if necessary, to obtain maximum alignment to stroke
CoDEmanX
committed
def gstretch_align_pairs(ls_pairs, object, bm_mod, method):
# returns total distance between all verts in loop and corresponding stroke
def distance_loop_stroke(loop, stroke, object, bm_mod, method):
stroke_lengths_cache = False
loop_length = len(loop[0])
total_distance = 0
CoDEmanX
committed
if method != 'regular':
relative_lengths = gstretch_relative_lengths(loop, bm_mod)
CoDEmanX
committed
for i, v_index in enumerate(loop[0]):
if method == 'regular':
relative_distance = i / (loop_length - 1)
else:
relative_distance = relative_lengths[i]
CoDEmanX
committed
loc1 = object.matrix_world * bm_mod.verts[v_index].co
loc2, stroke_lengths_cache = gstretch_eval_stroke(stroke,
relative_distance, stroke_lengths_cache)
total_distance += (loc2 - loc1).length
CoDEmanX
committed
CoDEmanX
committed
if ls_pairs:
for (loop, stroke) in ls_pairs:
total_dist = distance_loop_stroke(loop, stroke, object, bm_mod,
method)
loop[0].reverse()
total_dist_rev = distance_loop_stroke(loop, stroke, object, bm_mod,
method)
if total_dist_rev > total_dist:
loop[0].reverse()
CoDEmanX
committed
return(ls_pairs)
# calculate vertex positions on stroke
def gstretch_calculate_verts(loop, stroke, object, bm_mod, method):
move = []
stroke_lengths_cache = False
loop_length = len(loop[0])
matrix_inverse = object.matrix_world.inverted()
CoDEmanX
committed
# return intersection of line with stroke, or None
def intersect_line_stroke(vec1, vec2, stroke):
for i, p in enumerate(stroke.points[1:]):
intersections = mathutils.geometry.intersect_line_line(vec1, vec2,
p.co, stroke.points[i].co)
if intersections and \
(intersections[0] - intersections[1]).length < 1e-2:
x, dist = mathutils.geometry.intersect_point_line(
intersections[0], p.co, stroke.points[i].co)
if -1 < dist < 1:
return(intersections[0])
return(None)
CoDEmanX
committed
if method == 'project':
projection_vectors = []
vert_edges = dict_vert_edges(bm_mod)
CoDEmanX
committed
for ek in vert_edges[v_index]:
v1, v2 = ek
v1 = bm_mod.verts[v1]
v2 = bm_mod.verts[v2]
if v1.select + v2.select == 1 and not v1.hide and not v2.hide:
vec1 = object.matrix_world * v1.co
vec2 = object.matrix_world * v2.co
intersection = intersect_line_stroke(vec1, vec2, stroke)
if intersection:
break
if not intersection:
v = bm_mod.verts[v_index]
intersection = intersect_line_stroke(v.co, v.co + v.normal,
stroke)
if intersection:
move.append([v_index, matrix_inverse * intersection])
CoDEmanX
committed
else:
if method == 'irregular':
relative_lengths = gstretch_relative_lengths(loop, bm_mod)
CoDEmanX
committed
for i, v_index in enumerate(loop[0]):
if method == 'regular':
relative_distance = i / (loop_length - 1)
else: # method == 'irregular'
relative_distance = relative_lengths[i]
loc, stroke_lengths_cache = gstretch_eval_stroke(stroke,
relative_distance, stroke_lengths_cache)
loc = matrix_inverse * loc
move.append([v_index, loc])
CoDEmanX
committed
# create new vertices, based on GP strokes
def gstretch_create_verts(object, bm_mod, strokes, method, conversion,
conversion_distance, conversion_max, conversion_min, conversion_vertices):
move = []
stroke_verts = []
mat_world = object.matrix_world.inverted()
singles = gstretch_match_single_verts(bm_mod, strokes, mat_world)
CoDEmanX
committed
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
for stroke in strokes:
stroke_verts.append([stroke, []])
min_end_point = 0
if conversion == 'vertices':
min_end_point = conversion_vertices
end_point = conversion_vertices
elif conversion == 'limit_vertices':
min_end_point = conversion_min
end_point = conversion_max
else:
end_point = len(stroke.points)
# creation of new vertices at fixed user-defined distances
if conversion == 'distance':
method = 'project'
prev_point = stroke.points[0]
stroke_verts[-1][1].append(bm_mod.verts.new(mat_world * \
prev_point.co))
distance = 0
limit = conversion_distance
for point in stroke.points:
new_distance = distance + (point.co - prev_point.co).length
iteration = 0
while new_distance > limit:
to_cover = limit - distance + (limit * iteration)
new_loc = prev_point.co + to_cover * \
(point.co - prev_point.co).normalized()
stroke_verts[-1][1].append(bm_mod.verts.new(mat_world * \
new_loc))
new_distance -= limit
iteration += 1
distance = new_distance
prev_point = point
# creation of new vertices for other methods
else:
# add vertices at stroke points
for point in stroke.points[:end_point]:
stroke_verts[-1][1].append(bm_mod.verts.new(\
mat_world * point.co))
# add more vertices, beyond the points that are available
if min_end_point > min(len(stroke.points), end_point):
for i in range(min_end_point -
(min(len(stroke.points), end_point))):
stroke_verts[-1][1].append(bm_mod.verts.new(\
mat_world * point.co))
# force even spreading of points, so they are placed on stroke
method = 'regular'
beta-tester
committed
bm_mod.verts.ensure_lookup_table() ### 2.73
bm_mod.verts.index_update()
for stroke, verts_seq in stroke_verts:
if len(verts_seq) < 2:
continue
# spread vertices evenly over the stroke
if method == 'regular':
loop = [[vert.index for vert in verts_seq], False]
move += gstretch_calculate_verts(loop, stroke, object, bm_mod,
method)
# create edges
for i, vert in enumerate(verts_seq):
if i > 0:
bm_mod.edges.new((verts_seq[i-1], verts_seq[i]))
vert.select = True
# connect single vertices to the closest stroke
if singles:
for vert, m_stroke, point in singles:
if m_stroke != stroke:
continue
bm_mod.edges.new((vert, verts_seq[point]))
beta-tester
committed
bm_mod.edges.ensure_lookup_table() ### 2.73
bmesh.update_edit_mesh(object.data)
return(move)
# erases the grease pencil stroke
def gstretch_erase_stroke(stroke, context):
# change 3d coordinate into a stroke-point
def sp(loc, context):
lib = {'name': "",
'pen_flip': False,
'is_start': False,
'location': (0, 0, 0),
'mouse': (view3d_utils.location_3d_to_region_2d(\
context.region, context.space_data.region_3d, loc)),
'pressure': 1,
if type(stroke) != bpy.types.GPencilStroke:
# fake stroke, there is nothing to delete
return
erase_stroke = [sp(p.co, context) for p in stroke.points]
if erase_stroke:
erase_stroke[0]['is_start'] = True
bpy.ops.gpencil.draw(mode='ERASER', stroke=erase_stroke)
# get point on stroke, given by relative distance (0.0 - 1.0)
def gstretch_eval_stroke(stroke, distance, stroke_lengths_cache=False):
# use cache if available
if not stroke_lengths_cache:
lengths = [0]
for i, p in enumerate(stroke.points[1:]):
lengths.append((p.co - stroke.points[i].co).length + \
lengths[-1])
total_length = max(lengths[-1], 1e-7)
stroke_lengths_cache = [length / total_length for length in
lengths]
stroke_lengths = stroke_lengths_cache[:]
CoDEmanX
committed
if distance in stroke_lengths:
loc = stroke.points[stroke_lengths.index(distance)].co
elif distance > stroke_lengths[-1]:
# should be impossible, but better safe than sorry
loc = stroke.points[-1].co
else:
stroke_lengths.append(distance)
stroke_lengths.sort()
stroke_index = stroke_lengths.index(distance)
interval_length = stroke_lengths[stroke_index+1] - \
stroke_lengths[stroke_index-1]
distance_relative = (distance - stroke_lengths[stroke_index-1]) / \
interval_length
interval_vector = stroke.points[stroke_index].co - \
stroke.points[stroke_index-1].co
loc = stroke.points[stroke_index-1].co + \
distance_relative * interval_vector
CoDEmanX
committed
# create fake grease pencil strokes for the active object
def gstretch_get_fake_strokes(object, bm_mod, loops):
strokes = []
for loop in loops:
p1 = object.matrix_world * bm_mod.verts[loop[0][0]].co
p2 = object.matrix_world * bm_mod.verts[loop[0][-1]].co
strokes.append(gstretch_fake_stroke([p1, p2]))
return(strokes)
beta-tester
committed
def gstretch_get_strokes(object, context):
gp = get_grease_pencil(object, context)
if not gp:
return(None)
layer = gp.layers.active
if not layer:
return(None)
frame = layer.active_frame
if not frame:
return(None)
strokes = frame.strokes
if len(strokes) < 1:
return(None)
CoDEmanX
committed
return(strokes)
# returns a list with loop-stroke pairs
def gstretch_match_loops_strokes(loops, strokes, object, bm_mod):
if not loops or not strokes:
return(None)
CoDEmanX
committed
# calculate loop centers
loop_centers = []
for loop in loops:
center = mathutils.Vector()
for v_index in loop[0]:
center += bm_mod.verts[v_index].co
center /= len(loop[0])
center = object.matrix_world * center
loop_centers.append([center, loop])
CoDEmanX
committed
# calculate stroke centers
stroke_centers = []
for stroke in strokes:
center = mathutils.Vector()
for p in stroke.points:
center += p.co
center /= len(stroke.points)
stroke_centers.append([center, stroke, 0])
CoDEmanX
committed
# match, first by stroke use count, then by distance
ls_pairs = []
for lc in loop_centers:
distances = []
for i, sc in enumerate(stroke_centers):
distances.append([sc[2], (lc[0] - sc[0]).length, i])
distances.sort()
best_stroke = distances[0][2]
ls_pairs.append([lc[1], stroke_centers[best_stroke][1]])
stroke_centers[best_stroke][2] += 1 # increase stroke use count
CoDEmanX
committed
# match single selected vertices to the closest stroke endpoint
# returns a list of tuples, constructed as: (vertex, stroke, stroke point index)
def gstretch_match_single_verts(bm_mod, strokes, mat_world):
# calculate stroke endpoints in object space
endpoints = []
for stroke in strokes:
endpoints.append((mat_world * stroke.points[0].co, stroke, 0))
endpoints.append((mat_world * stroke.points[-1].co, stroke, -1))
CoDEmanX
committed
distances = []
# find single vertices (not connected to other selected verts)
for vert in bm_mod.verts:
if not vert.select:
continue
single = True
for edge in vert.link_edges:
if edge.other_vert(vert).select:
single = False
break
if not single:
continue
# calculate distances from vertex to endpoints
distance = [((vert.co - loc).length, vert, stroke, stroke_point,
CoDEmanX
committed
endpoint_index) for endpoint_index, (loc, stroke, stroke_point) in
enumerate(endpoints)]
distance.sort()
distances.append(distance[0])
CoDEmanX
committed
# create matches, based on shortest distance first
singles = []
while distances:
distances.sort()
singles.append((distances[0][1], distances[0][2], distances[0][3]))
endpoints.pop(distances[0][4])
distances.pop(0)
distances_new = []
for (i, vert, j, k, l) in distances:
distance_new = [((vert.co - loc).length, vert, stroke, stroke_point,
endpoint_index) for endpoint_index, (loc, stroke,
stroke_point) in enumerate(endpoints)]
distance_new.sort()
distances_new.append(distance_new[0])
distances = distances_new
CoDEmanX
committed
return(singles)
# returns list with a relative distance (0.0 - 1.0) of each vertex on the loop
def gstretch_relative_lengths(loop, bm_mod):
lengths = [0]
for i, v_index in enumerate(loop[0][1:]):
lengths.append((bm_mod.verts[v_index].co - \
bm_mod.verts[loop[0][i]].co).length + lengths[-1])
total_length = max(lengths[-1], 1e-7)
relative_lengths = [length / total_length for length in
lengths]
CoDEmanX
committed
# convert cache-stored strokes into usable (fake) GP strokes
def gstretch_safe_to_true_strokes(safe_strokes):
strokes = []
for safe_stroke in safe_strokes:
strokes.append(gstretch_fake_stroke(safe_stroke))
CoDEmanX
committed
return(strokes)
# convert a GP stroke into a list of points which can be stored in cache
def gstretch_true_to_safe_strokes(strokes):
safe_strokes = []
for stroke in strokes:
safe_strokes.append([p.co.copy() for p in stroke.points])
CoDEmanX
committed
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
return(safe_strokes)
# force consistency in GUI, max value can never be lower than min value
def gstretch_update_max(self, context):
# called from operator settings (after execution)
if 'conversion_min' in self.keys():
if self.conversion_min > self.conversion_max:
self.conversion_max = self.conversion_min
# called from toolbar
else:
lt = context.window_manager.looptools
if lt.gstretch_conversion_min > lt.gstretch_conversion_max:
lt.gstretch_conversion_max = lt.gstretch_conversion_min
# force consistency in GUI, min value can never be higher than max value
def gstretch_update_min(self, context):
# called from operator settings (after execution)
if 'conversion_max' in self.keys():
if self.conversion_max < self.conversion_min:
self.conversion_min = self.conversion_max
# called from toolbar
else:
lt = context.window_manager.looptools
if lt.gstretch_conversion_max < lt.gstretch_conversion_min:
lt.gstretch_conversion_min = lt.gstretch_conversion_max
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
##########################################
####### Relax functions ##################
##########################################
# create lists with knots and points, all correctly sorted
def relax_calculate_knots(loops):
all_knots = []
all_points = []
for loop, circular in loops:
knots = [[], []]
points = [[], []]
if circular:
if len(loop)%2 == 1: # odd
extend = [False, True, 0, 1, 0, 1]
else: # even
extend = [True, False, 0, 1, 1, 2]
else:
if len(loop)%2 == 1: # odd
extend = [False, False, 0, 1, 1, 2]
else: # even
extend = [False, False, 0, 1, 1, 2]
for j in range(2):
if extend[j]:
loop = [loop[-1]] + loop + [loop[0]]
for i in range(extend[2+2*j], len(loop), 2):
knots[j].append(loop[i])
for i in range(extend[3+2*j], len(loop), 2):
if loop[i] == loop[-1] and not circular:
continue
if len(points[j]) == 0:
points[j].append(loop[i])