Skip to content
Snippets Groups Projects
io_export_paper_model.py 121 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    # -*- coding: utf-8 -*-
    # ##### BEGIN GPL LICENSE BLOCK #####
    #
    #  This program is free software: you can redistribute it and/or modify
    #  it under the terms of the GNU General Public License as published by
    #  the Free Software Foundation, either version 2 of the License, or
    #  (at your option) any later version.
    #
    #  This program is distributed in the hope that it will be useful,
    #  but without any warranty; without even the implied warranty of
    #  merchantability or fitness for a particular purpose.  See the
    #  GNU General Public License for more details.
    #
    #  You should have received a copy of the GNU General Public License
    #  along with this program.  If not, see <http://www.gnu.org/licenses/>.
    #
    # ##### END GPL LICENSE BLOCK #####
    
    bl_info = {
        "name": "Export Paper Model",
        "author": "Addam Dominec",
        "version": (0, 9),
        "blender": (2, 70, 0),
        "location": "File > Export > Paper Model",
        "warning": "",
        "description": "Export printable net of the active mesh",
        "category": "Import-Export",
        "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"
                    "Scripts/Import-Export/Paper_Model",
        "tracker_url": "https://developer.blender.org/T38441"
    }
    
    #### TODO:
    # sanitize the constructors so that they don't edit their parent object
    # rename verts -> vertices, edge.vect -> edge.vector
    # SVG object doesn't need a 'pure_net' argument in constructor
    # remember selected objects before baking, except selected to active
    # islands with default names should be excluded while matching
    # add 'estimated number of pages' to the export UI
    # profile QuickSweepline vs. BruteSweepline with/without blist: for which nets is it faster?
    # rotate islands to minimize area -- and change that only if necessary to fill the page size
    # Sticker.vertices should be of type Vector
    
    # check conflicts in island naming and either:
    #  * append a number to the conflicting names or
    #  * enumerate faces uniquely within all islands of the same name (requires a check that both label and abbr. equals)
    
    
    """
    
    Additional links:
        e-mail: adominec {at} gmail {dot} com
    
    """
    import bpy
    import bl_operators
    import bgl
    import mathutils as M
    from re import compile as re_compile
    from itertools import chain, repeat
    from math import pi, ceil
    
    try:
        import os.path as os_path
    except ImportError:
        os_path = None
    
    try:
        from blist import blist
    except ImportError:
        blist = list
    
    default_priority_effect = {
        'CONVEX': 0.5,
        'CONCAVE': 1,
        'LENGTH': -0.05
    }
    
    
    def first_letters(text):
        """Iterator over the first letter of each word"""
        for match in first_letters.pattern.finditer(text):
            yield text[match.start()]
    first_letters.pattern = re_compile("((?<!\w)\w)|\d")
    
    
    def is_upsidedown_wrong(name):
        """Tell if the string would get a different meaning if written upside down"""
        chars = set(name)
        mistakable = set("69NZMWpbqd")
        rotatable = set("80oOxXIl").union(mistakable)
        return chars.issubset(rotatable) and not chars.isdisjoint(mistakable)
    
    
    def pairs(sequence):
        """Generate consecutive pairs throughout the given sequence; at last, it gives elements last, first."""
        i = iter(sequence)
        previous = first = next(i)
        for this in i:
            yield previous, this
            previous = this
        yield this, first
    
    
    def argmax_pair(array, key):
        """Find an (unordered) pair of indices that maximize the given function"""
        l = len(array)
        mi, mj, m = None, None, None
        for i in range(l):
            for j in range(i+1, l):
                k = key(array[i], array[j])
                if not m or k > m:
                    mi, mj, m = i, j, k
        return mi, mj
    
    
    def fitting_matrix(v1, v2):
        """Get a matrix that rotates v1 to the same direction as v2"""
        return (1 / v1.length_squared) * M.Matrix((
            (v1.x*v2.x + v1.y*v2.y, v1.y*v2.x - v1.x*v2.y),
            (v1.x*v2.y - v1.y*v2.x, v1.x*v2.x + v1.y*v2.y)))
    
    
    def z_up_matrix(n):
        """Get a rotation matrix that aligns given vector upwards."""
        b = n.xy.length
        l = n.length
        if b > 0:
            return M.Matrix((
                (n.x*n.z/(b*l), n.y*n.z/(b*l), -b/l),
                (-n.y/b, n.x/b, 0),
                (0, 0, 0)
            ))
        else:
            # no need for rotation
            return M.Matrix((
                (1, 0, 0),
                (0, (-1 if n.z < 0 else 1), 0),
                (0, 0, 0)
            ))
    
    
    def create_blank_image(image_name, dimensions, alpha=1):
        """Create a new image and assign white color to all its pixels"""
        image_name = image_name[:64]
        width, height = int(dimensions.x), int(dimensions.y)
        image = bpy.data.images.new(image_name, width, height, alpha=True)
        if image.users > 0:
            raise UnfoldError("There is something wrong with the material of the model. "
                "Please report this on the BlenderArtists forum. Export failed.")
        image.pixels = [1, 1, 1, alpha] * (width * height)
        image.file_format = 'PNG'
        return image
    
    
    def bake(face_indices, uvmap, image):
        import bpy
        is_cycles = (bpy.context.scene.render.engine == 'CYCLES')
        if is_cycles:
            # please excuse the following mess. Cycles baking API does not seem to allow better.
            ob = bpy.context.active_object
            me = ob.data
            mat = bpy.data.materials.new("unfolder dummy")
            mat.use_nodes = True
            img = mat.node_tree.nodes.new('ShaderNodeTexImage')
            img.image = image
            mat.node_tree.nodes.active = img
            uv = mat.node_tree.nodes.new('ShaderNodeUVMap')
            uv.uv_map = uvmap.name
            mat.node_tree.links.new(uv.outputs['UV'], img.inputs['Vector'])
            uvmap.active = True
            recall_object_slots, recall_mesh_slots = [slot.material for slot in ob.material_slots], me.materials[:]
            for i, slot in enumerate(ob.material_slots):
                slot.material = me.materials[i] = mat
            me.materials.append(mat)
            loop = me.uv_layers[me.uv_layers.active_index].data
            face_indices = set(face_indices)
            ignored_uvs = [face.loop_start + i for face in me.polygons if face.index not in face_indices for i, v in enumerate(face.vertices)]
            for vid in ignored_uvs:
                loop[vid].uv[0] *= -1
                loop[vid].uv[1] *= -1
            bake_type = bpy.context.scene.cycles.bake_type
            sta = bpy.context.scene.render.bake.use_selected_to_active
            try:
                bpy.ops.object.bake(type=bake_type, margin=0, use_selected_to_active=sta, cage_extrusion=100, use_clear=False)
            except RuntimeError as e:
                raise UnfoldError(*e.args)
            finally:
                me.materials.pop()
                for slot, recall in zip(ob.material_slots, recall_object_slots):
                    slot.material = recall
                for i, recall in enumerate(recall_mesh_slots):
                    me.materials[i] = recall
                bpy.data.materials.remove(mat)
            for vid in ignored_uvs:
                loop[vid].uv[0] *= -1
                loop[vid].uv[1] *= -1
        else:
            texfaces = uvmap.data
            for fid in face_indices:
                texfaces[fid].image = image
            bpy.ops.object.bake_image()
            for fid in face_indices:
                texfaces[fid].image = None
    
    
    class UnfoldError(ValueError):
        pass
    
    
    class Unfolder:
        def __init__(self, ob):
            self.ob = ob
            self.mesh = Mesh(ob.data, ob.matrix_world)
            self.mesh.check_correct()
            self.tex = None
    
        def prepare(self, cage_size=None, create_uvmap=False, mark_seams=False, priority_effect=default_priority_effect, scale=1):
            """Create the islands of the net"""
            self.mesh.generate_cuts(cage_size / scale if cage_size else None, priority_effect)
            is_landscape = cage_size and cage_size.x > cage_size.y
            self.mesh.finalize_islands(is_landscape)
            self.mesh.enumerate_islands()
            if create_uvmap:
                self.tex = self.mesh.save_uv()
            if mark_seams:
                self.mesh.mark_cuts()
    
        def copy_island_names(self, island_list):
            """Copy island label and abbreviation from the best matching island in the list"""
            orig_islands = [{face.id for face in item.faces} for item in island_list]
            matching = list()
            for i, island in enumerate(self.mesh.islands):
                islfaces = {uvface.face.index for uvface in island.faces}
                matching.extend((len(islfaces.intersection(item)), i, j) for j, item in enumerate(orig_islands))
            matching.sort(reverse=True)
            available_new = [True for island in self.mesh.islands]
            available_orig = [True for item in island_list]
            for face_count, i, j in matching:
                if available_new[i] and available_orig[j]:
                    available_new[i] = available_orig[j] = False
                    self.mesh.islands[i].label = island_list[j].label
                    self.mesh.islands[i].abbreviation = island_list[j].abbreviation
    
        def save(self, properties):
            """Export the document"""
            # Note about scale: input is direcly in blender length
            # Mesh.scale_islands multiplies everything by a user-defined ratio
            # exporters (SVG or PDF) multiply everything by 1000 (output in millimeters)
            Exporter = SVG if properties.file_format == 'SVG' else PDF
            filepath = properties.filepath
            extension = properties.file_format.lower()
            filepath = bpy.path.ensure_ext(filepath, "." + extension)
            # page size in meters
            page_size = M.Vector((properties.output_size_x, properties.output_size_y))
            # printable area size in meters
            printable_size = page_size - 2 * properties.output_margin * M.Vector((1, 1))
            unit_scale = bpy.context.scene.unit_settings.scale_length
            ppm = properties.output_dpi * 100 / 2.54  # pixels per meter
    
            # after this call, all dimensions will be in meters
            self.mesh.scale_islands(unit_scale/properties.scale)
            if properties.do_create_stickers:
                self.mesh.generate_stickers(properties.sticker_width, properties.do_create_numbers)
            elif properties.do_create_numbers:
                self.mesh.generate_numbers_alone(properties.sticker_width)
    
            text_height = properties.sticker_width if (properties.do_create_numbers and len(self.mesh.islands) > 1) else 0
            aspect_ratio = printable_size.x / printable_size.y
            # title height must be somewhat larger that text size, glyphs go below the baseline
            self.mesh.finalize_islands(is_landscape=(printable_size.x > printable_size.y), title_height=text_height * 1.2)
            self.mesh.fit_islands(cage_size=printable_size)
    
            if properties.output_type != 'NONE':
                # bake an image and save it as a PNG to disk or into memory
                image_packing = properties.image_packing if properties.file_format == 'SVG' else 'ISLAND_EMBED'
                use_separate_images = image_packing in ('ISLAND_LINK', 'ISLAND_EMBED')
                tex = self.mesh.save_uv(cage_size=printable_size, separate_image=use_separate_images, tex=self.tex)
                if not tex:
                    raise UnfoldError("The mesh has no UV Map slots left. Either delete a UV Map or export the net without textures.")
    
                sce = bpy.context.scene
                rd = sce.render
                bk = rd.bake
                if rd.engine == 'CYCLES':
                    recall = sce.cycles.bake_type, bk.use_selected_to_active, bk.margin, bk.cage_extrusion, bk.use_cage, bk.use_clear
                    lookup = {'TEXTURE': 'DIFFUSE_COLOR', 'AMBIENT_OCCLUSION': 'AO', 'RENDER': 'COMBINED', 'SELECTED_TO_ACTIVE': 'COMBINED'}
                    sce.cycles.bake_type = lookup[properties.output_type]
                    bk.use_selected_to_active = (properties.output_type == 'SELECTED_TO_ACTIVE')
                    bk.margin, bk.cage_extrusion, bk.use_cage, bk.use_clear = 0, 10, False, False
                else:
                    recall = rd.engine, rd.bake_type, rd.use_bake_to_vertex_color, rd.use_bake_selected_to_active, rd.bake_distance, rd.bake_bias, rd.bake_margin, rd.use_bake_clear
                    rd.engine = 'BLENDER_RENDER'
                    lookup = {'TEXTURE': 'TEXTURE', 'AMBIENT_OCCLUSION': 'AO', 'RENDER': 'FULL', 'SELECTED_TO_ACTIVE': 'FULL'}
                    rd.bake_type = lookup[properties.output_type]
                    rd.use_bake_selected_to_active = (properties.output_type == 'SELECTED_TO_ACTIVE')
                    rd.bake_margin, rd.bake_distance, rd.bake_bias, rd.use_bake_to_vertex_color, rd.use_bake_clear = 0, 0, 0.001, False, False
    
                if image_packing == 'PAGE_LINK':
                    self.mesh.save_image(tex, printable_size * ppm, filepath)
                elif image_packing == 'ISLAND_LINK':
                    self.mesh.save_separate_images(tex, ppm, filepath)
                elif image_packing == 'ISLAND_EMBED':
                    self.mesh.save_separate_images(tex, ppm, filepath, embed=Exporter.encode_image)
    
                # revoke settings
                if rd.engine == 'CYCLES':
                    sce.cycles.bake_type, bk.use_selected_to_active, bk.margin, bk.cage_extrusion, bk.use_cage, bk.use_clear = recall
                else:
                    rd.engine, rd.bake_type, rd.use_bake_to_vertex_color, rd.use_bake_selected_to_active, rd.bake_distance, rd.bake_bias, rd.bake_margin, rd.use_bake_clear = recall
                if not properties.do_create_uvmap:
                    tex.active = True
                    bpy.ops.mesh.uv_texture_remove()
    
            exporter = Exporter(page_size, properties.style, properties.output_margin, (properties.output_type == 'NONE'), properties.angle_epsilon)
            exporter.do_create_stickers = properties.do_create_stickers
            exporter.text_size = properties.sticker_width
            exporter.write(self.mesh, filepath)
    
    
    class Mesh:
        """Wrapper for Bpy Mesh"""
    
        def __init__(self, mesh, matrix):
            self.verts = dict()
            self.edges = dict()
            self.edges_by_verts_indices = dict()
            self.faces = dict()
            self.islands = list()
            self.data = mesh
            self.pages = list()
            for bpy_vertex in mesh.vertices:
                self.verts[bpy_vertex.index] = Vertex(bpy_vertex, matrix)
            for bpy_edge in mesh.edges:
                edge = Edge(bpy_edge, self, matrix)
                self.edges[bpy_edge.index] = edge
                self.edges_by_verts_indices[(edge.va.index, edge.vb.index)] = edge
                self.edges_by_verts_indices[(edge.vb.index, edge.va.index)] = edge
            for bpy_face in mesh.polygons:
                face = Face(bpy_face, self)
                self.faces[bpy_face.index] = face
            for edge in self.edges.values():
                edge.choose_main_faces()
                if edge.main_faces:
                    edge.calculate_angle()
    
        def check_correct(self, epsilon=1e-6):
            """Check for invalid geometry"""
            null_edges = {i for i, e in self.edges.items() if e.length < epsilon and e.faces}
            null_faces = {i for i, f in self.faces.items() if f.normal.length_squared < epsilon}
            twisted_faces = {i for i, f in self.faces.items() if f.is_twisted()}
            if not (null_edges or null_faces or twisted_faces):
                return
            bpy.context.tool_settings.mesh_select_mode = False, bool(null_edges), bool(null_faces or twisted_faces)
            for vertex in self.data.vertices:
                vertex.select = False
            for edge in self.data.edges:
                edge.select = (edge.index in null_edges)
            for face in self.data.polygons:
                face.select = (face.index in null_faces or face.index in twisted_faces)
            cure = "Remove Doubles and Triangulate" if (null_edges or null_faces) and twisted_faces else "Triangulate" if twisted_faces else "Remove Doubles"
            raise UnfoldError("The model contains:\n" +
                (" {} zero-length edge(s)\n".format(len(null_edges)) if null_edges else "") +
                (" {} zero-area face(s)\n".format(len(null_faces)) if null_faces else "") +
                (" {} twisted polygon(s)\n".format(len(twisted_faces)) if twisted_faces else "") +
                "The offenders are selected and you can use {} to fix them. Export failed.".format(cure))
    
        def generate_cuts(self, page_size, priority_effect):
            """Cut the mesh so that it can be unfolded to a flat net."""
            # warning: this constructor modifies its parameter (face)
            islands = {Island(face) for face in self.faces.values()}
            # check for edges that are cut permanently
            edges = [edge for edge in self.edges.values() if not edge.force_cut and len(edge.faces) > 1]
    
            if edges:
                average_length = sum(edge.length for edge in edges) / len(edges)
                for edge in edges:
                    edge.generate_priority(priority_effect, average_length)
                edges.sort(reverse=False, key=lambda edge: edge.priority)
                for edge in edges:
                    if edge.length == 0:
                        continue
                    face_a, face_b = edge.main_faces
                    island_a, island_b = face_a.uvface.island, face_b.uvface.island
                    if island_a is not island_b:
                        if len(island_b.faces) > len(island_a.faces):
                            island_a, island_b = island_b, island_a
                        if island_a.join(island_b, edge, size_limit=page_size):
                            islands.remove(island_b)
    
            self.islands = sorted(islands, reverse=True, key=lambda island: len(island.faces))
    
            for edge in self.edges.values():
                # some edges did not know until now whether their angle is convex or concave
                if edge.main_faces and (edge.main_faces[0].uvface.flipped or edge.main_faces[1].uvface.flipped):
                    edge.calculate_angle()
                # ensure that the order of faces corresponds to the order of uvedges
                if edge.main_faces:
                    reordered = [None, None]
                    for uvedge in edge.uvedges:
                        try:
                            index = edge.main_faces.index(uvedge.uvface.face)
                            reordered[index] = uvedge
                        except ValueError:
                            reordered.append(uvedge)
                    edge.uvedges = reordered
    
            for island in self.islands:
                # if the normals are ambiguous, flip them so that there are more convex edges than concave ones
                if any(uvface.flipped for uvface in island.faces):
                    island_edges = {uvedge.edge for uvedge in island.edges if not uvedge.edge.is_cut(uvedge.uvface.face)}
                    balance = sum((+1 if edge.angle > 0 else -1) for edge in island_edges)
                    if balance < 0:
                        island.is_inside_out = True
    
                # construct a linked list from each island's boundary
                # uvedge.neighbor_right is clockwise = forward = via uvedge.vb if not uvface.flipped
                neighbor_lookup, conflicts = dict(), dict()
                for uvedge in island.boundary:
                    uvvertex = uvedge.va if uvedge.uvface.flipped else uvedge.vb
                    if uvvertex not in neighbor_lookup:
                        neighbor_lookup[uvvertex] = uvedge
                    else:
                        if uvvertex not in conflicts:
                            conflicts[uvvertex] = [neighbor_lookup[uvvertex], uvedge]
                        else:
                            conflicts[uvvertex].append(uvedge)
    
                for uvedge in island.boundary:
                    uvvertex = uvedge.vb if uvedge.uvface.flipped else uvedge.va
                    if uvvertex not in conflicts:
                        # using the 'get' method so as to handle single-connected vertices properly
                        uvedge.neighbor_right = neighbor_lookup.get(uvvertex, uvedge)
                        uvedge.neighbor_right.neighbor_left = uvedge
                    else:
                        conflicts[uvvertex].append(uvedge)
    
                # resolve merged vertices with more boundaries crossing
                def direction_to_float(vector):
                    return (1 - vector.x/vector.length) if vector.y > 0 else (vector.x/vector.length - 1)
                for uvvertex, uvedges in conflicts.items():
                    def is_inwards(uvedge):
                        return uvedge.uvface.flipped == (uvedge.va is uvvertex)
    
                    def uvedge_sortkey(uvedge):
                        if is_inwards(uvedge):
                            return direction_to_float(uvedge.va.co - uvedge.vb.co)
                        else:
                            return direction_to_float(uvedge.vb.co - uvedge.va.co)
    
                    uvedges.sort(key=uvedge_sortkey)
                    for right, left in zip(uvedges[:-1:2], uvedges[1::2]) if is_inwards(uvedges[0]) else zip([uvedges[-1]] + uvedges[1::2], uvedges[:-1:2]):
                        left.neighbor_right = right
                        right.neighbor_left = left
            return True
    
        def mark_cuts(self):
            """Mark cut edges in the original mesh so that the user can see"""
            for bpy_edge in self.data.edges:
                edge = self.edges[bpy_edge.index]
                bpy_edge.use_seam = len(edge.uvedges) > 1 and edge.is_main_cut
    
        def generate_stickers(self, default_width, do_create_numbers=True):
            """Add sticker faces where they are needed."""
            def uvedge_priority(uvedge):
                """Retuns whether it is a good idea to stick something on this edge's face"""
                # TODO: it should take into account overlaps with faces and with other stickers
                return uvedge.uvface.face.area / sum((vb.co - va.co).length for (va, vb) in pairs(uvedge.uvface.verts))
    
            def add_sticker(uvedge, index, target_island):
                uvedge.sticker = Sticker(uvedge, default_width, index, target_island)
                uvedge.island.add_marker(uvedge.sticker)
    
            for edge in self.edges.values():
                if edge.is_main_cut and len(edge.uvedges) >= 2 and edge.vect.length_squared > 0:
                    uvedge_a, uvedge_b = edge.uvedges[:2]
                    if uvedge_priority(uvedge_a) < uvedge_priority(uvedge_b):
                        uvedge_a, uvedge_b = uvedge_b, uvedge_a
                    target_island = uvedge_a.island
                    left_edge, right_edge = uvedge_a.neighbor_left.edge, uvedge_a.neighbor_right.edge
                    if do_create_numbers:
                        for uvedge in [uvedge_b] + edge.uvedges[2:]:
                            if ((uvedge.neighbor_left.edge is not right_edge or uvedge.neighbor_right.edge is not left_edge) and
                                    uvedge not in (uvedge_a.neighbor_left, uvedge_a.neighbor_right)):
                                # it will not be clear to see that these uvedges should be sticked together
                                # So, create an arrow and put the index on all stickers
                                target_island.sticker_numbering += 1
                                index = str(target_island.sticker_numbering)
                                if is_upsidedown_wrong(index):
                                    index += "."
                                target_island.add_marker(Arrow(uvedge_a, default_width, index))
                                break
                        else:
                            # if all uvedges to be sticked are easy to see, create no numbers
                            index = None
                    else:
                        index = None
                    add_sticker(uvedge_b, index, target_island)
                elif len(edge.uvedges) > 2:
                    index = None
                    target_island = edge.uvedges[0].island
                if len(edge.uvedges) > 2:
                    for uvedge in edge.uvedges[2:]:
                        add_sticker(uvedge, index, target_island)
    
        def generate_numbers_alone(self, size):
            global_numbering = 0
            for edge in self.edges.values():
                if edge.is_main_cut and len(edge.uvedges) >= 2:
                    global_numbering += 1
                    index = str(global_numbering)
                    if is_upsidedown_wrong(index):
                        index += "."
                    for uvedge in edge.uvedges:
                        uvedge.island.add_marker(NumberAlone(uvedge, index, size))
    
        def enumerate_islands(self):
            for num, island in enumerate(self.islands, 1):
                island.number = num
                island.generate_label()
    
        def scale_islands(self, scale):
            for island in self.islands:
                for point in chain((vertex.co for vertex in island.verts), island.fake_verts):
                    point *= scale
    
        def finalize_islands(self, is_landscape=False, title_height=0):
            for island in self.islands:
                if title_height:
                    island.title = "[{}] {}".format(island.abbreviation, island.label)
                points = list(vertex.co for vertex in island.verts) + island.fake_verts
                angle = M.geometry.box_fit_2d(points)
                rot = M.Matrix.Rotation(angle, 2)
                # ensure that the island matches page orientation (portrait/landscape)
                dimensions = M.Vector(max(r * v for v in points) - min(r * v for v in points) for r in rot)
                if dimensions.x > dimensions.y != is_landscape:
                    rot = M.Matrix.Rotation(angle + pi / 2, 2)
                for point in points:
                    # note: we need an in-place operation, and Vector.rotate() seems to work for 3d vectors only
                    point[:] = rot * point
                for marker in island.markers:
                    marker.rot = rot * marker.rot
                bottom_left = M.Vector((min(v.x for v in points), min(v.y for v in points) - title_height))
                for point in points:
                    point -= bottom_left
                island.bounding_box = M.Vector((max(v.x for v in points), max(v.y for v in points)))
    
        def largest_island_ratio(self, page_size):
            return max(i / p for island in self.islands for (i, p) in zip(island.bounding_box, page_size))
    
        def fit_islands(self, cage_size):
            """Move islands so that they fit onto pages, based on their bounding boxes"""
    
            def try_emplace(island, page_islands, cage_size, stops_x, stops_y, occupied_cache):
                """Tries to put island to each pair from stops_x, stops_y
                and checks if it overlaps with any islands present on the page.
                Returns True and positions the given island on success."""
                bbox_x, bbox_y = island.bounding_box.xy
                for x in stops_x:
                    if x + bbox_x > cage_size.x:
                        continue
                    for y in stops_y:
                        if y + bbox_y > cage_size.y or (x, y) in occupied_cache:
                            continue
                        for i, obstacle in enumerate(page_islands):
                            # if this obstacle overlaps with the island, try another stop
                            if (x + bbox_x > obstacle.pos.x and
                                    obstacle.pos.x + obstacle.bounding_box.x > x and
                                    y + bbox_y > obstacle.pos.y and
                                    obstacle.pos.y + obstacle.bounding_box.y > y):
                                if x >= obstacle.pos.x and y >= obstacle.pos.y:
                                    occupied_cache.add((x, y))
                                # just a stupid heuristic to make subsequent searches faster
                                if i > 0:
                                    page_islands[1:i+1] = page_islands[:i]
                                    page_islands[0] = obstacle
                                break
                        else:
                            # if no obstacle called break, this position is okay
                            island.pos.xy = x, y
                            page_islands.append(island)
                            stops_x.append(x + bbox_x)
                            stops_y.append(y + bbox_y)
                            return True
                return False
    
            def drop_portion(stops, border, divisor):
                stops.sort()
                # distance from left neighbor to the right one, excluding the first stop
                distances = [right - left for left, right in zip(stops, chain(stops[2:], [border]))]
                quantile = sorted(distances)[len(distances) // divisor]
                return [stop for stop, distance in zip(stops, chain([quantile], distances)) if distance >= quantile]
    
            if any(island.bounding_box.x > cage_size.x or island.bounding_box.y > cage_size.y for island in self.islands):
                raise UnfoldError("An island is too big to fit onto page of the given size. "
                    "Either downscale the model or find and split that island manually.\n"
                    "Export failed, sorry.")
            # sort islands by their diagonal... just a guess
            remaining_islands = sorted(self.islands, reverse=True, key=lambda island: island.bounding_box.length_squared)
            page_num = 1
    
            while remaining_islands:
                # create a new page and try to fit as many islands onto it as possible
                page = Page(page_num)
                page_num += 1
                occupied_cache = set()
                stops_x, stops_y = [0], [0]
                for island in remaining_islands:
                    try_emplace(island, page.islands, cage_size, stops_x, stops_y, occupied_cache)
                    # if overwhelmed with stops, drop a quarter of them
                    if len(stops_x)**2 > 4 * len(self.islands) + 100:
                        stops_x = drop_portion(stops_x, cage_size.x, 4)
                        stops_y = drop_portion(stops_y, cage_size.y, 4)
                remaining_islands = [island for island in remaining_islands if island not in page.islands]
                self.pages.append(page)
    
        def save_uv(self, cage_size=M.Vector((1, 1)), separate_image=False, tex=None):
            # TODO: mode switching should be handled by higher-level code
            bpy.ops.object.mode_set()
            # note: assuming that the active object's data is self.mesh
            if not tex:
                tex = self.data.uv_textures.new()
                if not tex:
                    return None
            tex.name = "Unfolded"
            tex.active = True
            # TODO: this is somewhat dirty, but I do not see a nicer way in the API
            loop = self.data.uv_layers[self.data.uv_layers.active_index]
            if separate_image:
                for island in self.islands:
                    island.save_uv_separate(loop)
            else:
                for island in self.islands:
                    island.save_uv(loop, cage_size)
            return tex
    
        def save_image(self, tex, page_size_pixels: M.Vector, filename):
            for page in self.pages:
                image = create_blank_image("{} {} Unfolded".format(self.data.name[:14], page.name), page_size_pixels, alpha=1)
                image.filepath_raw = page.image_path = "{}_{}.png".format(filename, page.name)
                faces = [uvface.face.index for island in page.islands for uvface in island.faces]
                bake(faces, tex, image)
                image.save()
                image.user_clear()
                bpy.data.images.remove(image)
    
        def save_separate_images(self, tex, scale, filepath, embed=None):
            for i, island in enumerate(self.islands, 1):
                image_name = "{} isl{}".format(self.data.name[:15], i)
                image = create_blank_image(image_name, island.bounding_box * scale, alpha=0)
                bake([uvface.face.index for uvface in island.faces], tex, image)
                if embed:
                    island.embedded_image = embed(image)
                else:
                    from os import makedirs
                    image_dir = filepath
                    makedirs(image_dir, exist_ok=True)
                    image_path = os_path.join(image_dir, "island{}.png".format(i))
                    image.filepath_raw = image_path
                    image.save()
                    island.image_path = image.path
                image.user_clear()
                bpy.data.images.remove(image)
    
    
    class Vertex:
        """BPy Vertex wrapper"""
        __slots__ = ('index', 'co', 'edges', 'uvs')
    
        def __init__(self, bpy_vertex, matrix):
            self.index = bpy_vertex.index
            self.co = matrix * bpy_vertex.co
            self.edges = list()
            self.uvs = list()
    
        def __hash__(self):
            return hash(self.index)
    
        def __eq__(self, other):
            return self.index == other.index
    
    
    class Edge:
        """Wrapper for BPy Edge"""
        __slots__ = ('va', 'vb', 'faces', 'main_faces', 'uvedges',
            'vect', 'length', 'angle',
            'is_main_cut', 'force_cut', 'priority', 'freestyle')
    
        def __init__(self, edge, mesh, matrix=1):
            self.va = mesh.verts[edge.vertices[0]]
            self.vb = mesh.verts[edge.vertices[1]]
            self.vect = self.vb.co - self.va.co
            self.length = self.vect.length
            self.faces = list()
            # if self.main_faces is set, then self.uvedges[:2] must correspond to self.main_faces, in their order
            # this constraint is assured at the time of finishing mesh.generate_cuts
            self.uvedges = list()
    
            self.force_cut = edge.use_seam  # such edges will always be cut
            self.main_faces = None  # two faces that may be connected in the island
            # is_main_cut defines whether the two main faces are connected
            # all the others will be assumed to be cut
            self.is_main_cut = True
            self.priority = None
            self.angle = None
            self.freestyle = getattr(edge, "use_freestyle_mark", False) # freestyle edges will be highlighted
            self.va.edges.append(self)  #FIXME: editing foreign attribute
            self.vb.edges.append(self)  #FIXME: editing foreign attribute
    
        def choose_main_faces(self):
            """Choose two main faces that might get connected in an island"""
            if len(self.faces) == 2:
                self.main_faces = self.faces
            elif len(self.faces) > 2:
                # find (with brute force) the pair of indices whose faces have the most similar normals
                i, j = argmax_pair(self.faces, key=lambda a, b: abs(a.normal.dot(b.normal)))
                self.main_faces = [self.faces[i], self.faces[j]]
    
        def calculate_angle(self):
            """Calculate the angle between the main faces"""
            face_a, face_b = self.main_faces
            if face_a.normal.length_squared == 0 or face_b.normal.length_squared == 0:
                self.angle = -3 # just a very sharp angle
                return
            # correction if normals are flipped
            a_is_clockwise = ((face_a.verts.index(self.va) - face_a.verts.index(self.vb)) % len(face_a.verts) == 1)
            b_is_clockwise = ((face_b.verts.index(self.va) - face_b.verts.index(self.vb)) % len(face_b.verts) == 1)
            is_equal_flip = True
            if face_a.uvface and face_b.uvface:
                a_is_clockwise ^= face_a.uvface.flipped
                b_is_clockwise ^= face_b.uvface.flipped
                is_equal_flip = (face_a.uvface.flipped == face_b.uvface.flipped)
                # TODO: maybe this need not be true in _really_ ugly cases: assert(a_is_clockwise != b_is_clockwise)
            if a_is_clockwise != b_is_clockwise:
                if (a_is_clockwise == (face_b.normal.cross(face_a.normal).dot(self.vect) > 0)) == is_equal_flip:
                    # the angle is convex
                    self.angle = face_a.normal.angle(face_b.normal)
                else:
                    # the angle is concave
                    self.angle = -face_a.normal.angle(face_b.normal)
            else:
                # normals are flipped, so we know nothing
                # so let us assume the angle be convex
                self.angle = face_a.normal.angle(-face_b.normal)
    
        def generate_priority(self, priority_effect, average_length):
            """Calculate the priority value for cutting"""
            angle = self.angle
            if angle > 0:
                self.priority = priority_effect['CONVEX'] * angle / pi
            else:
                self.priority = priority_effect['CONCAVE'] * (-angle) / pi
            self.priority += (self.length / average_length) * priority_effect['LENGTH']
    
        def is_cut(self, face):
            """Return False if this edge will the given face to another one in the resulting net
            (useful for edges with more than two faces connected)"""
            # Return whether there is a cut between the two main faces
            if self.main_faces and face in self.main_faces:
                return self.is_main_cut
            # All other faces (third and more) are automatically treated as cut
            else:
                return True
    
        def other_uvedge(self, this):
            """Get an uvedge of this edge that is not the given one
            causes an IndexError if case of less than two adjacent edges"""
            return self.uvedges[1] if this is self.uvedges[0] else self.uvedges[0]
    
    
    class Face:
        """Wrapper for BPy Face"""
        __slots__ = ('index', 'edges', 'verts', 'uvface',
            'loop_start', 'area', 'normal')
    
        def __init__(self, bpy_face, mesh):
            self.index = bpy_face.index
            self.edges = list()
            self.verts = [mesh.verts[i] for i in bpy_face.vertices]
            self.loop_start = bpy_face.loop_start
            self.area = bpy_face.area
            self.uvface = None
            self.normal = M.geometry.normal(v.co for v in self.verts)
            for verts_indices in bpy_face.edge_keys:
                edge = mesh.edges_by_verts_indices[verts_indices]
                self.edges.append(edge)
                edge.faces.append(self)  #FIXME: editing foreign attribute
    
        def is_twisted(self):
            if len(self.verts) > 3:
                center = sum((vertex.co for vertex in self.verts), M.Vector((0, 0, 0))) / len(self.verts)
                plane_d = center.dot(self.normal)
                diameter = max((center - vertex.co).length for vertex in self.verts)
                for vertex in self.verts:
                    # check coplanarity
                    if abs(vertex.co.dot(self.normal) - plane_d) > diameter * 0.01:
                        return True
            return False
    
        def __hash__(self):
            return hash(self.index)
    
    
    class Island:
        """Part of the net to be exported"""
        __slots__ = ('faces', 'edges', 'verts', 'fake_verts', 'uvverts_by_id', 'boundary', 'markers',
            'pos', 'bounding_box',
            'image_path', 'embedded_image',
            'number', 'label', 'abbreviation', 'title',
            'has_safe_geometry', 'is_inside_out',
            'sticker_numbering')
    
        def __init__(self, face=None):
            """Create an Island from a single Face"""
            self.faces = list()
            self.edges = set()
            self.verts = set()
            self.fake_verts = list()
            self.markers = list()
            self.label = None
            self.abbreviation = None
            self.title = None
            self.pos = M.Vector((0, 0))
            self.image_path = None
            self.embedded_image = None
            self.is_inside_out = False  # swaps concave <-> convex edges
            self.has_safe_geometry = True
            self.sticker_numbering = 0
    
            if face:
                uvface = UVFace(face, self)
                self.verts.update(uvface.verts)
                self.edges.update(uvface.edges)
                self.faces.append(uvface)
            # speedup for Island.join
            self.uvverts_by_id = {uvvertex.vertex.index: [uvvertex] for uvvertex in self.verts}
            # UVEdges on the boundary
            self.boundary = list(self.edges)
    
        def join(self, other, edge: Edge, size_limit=None, epsilon=1e-6) -> bool:
            """
            Try to join other island on given edge
            Returns False if they would overlap
            """
    
            class Intersection(Exception):
                pass
    
            class GeometryError(Exception):
                pass
    
            def is_below(self, other, correct_geometry=True):
                if self is other:
                    return False
                if self.top < other.bottom:
                    return True
                if other.top < self.bottom:
                    return False
                if self.max.tup <= other.min.tup:
                    return True
                if other.max.tup <= self.min.tup:
                    return False
                self_vector = self.max.co - self.min.co
                min_to_min = other.min.co - self.min.co
                cross_b1 = self_vector.cross(min_to_min)
                cross_b2 = self_vector.cross(other.max.co - self.min.co)
                if cross_b2 < cross_b1:
                    cross_b1, cross_b2 = cross_b2, cross_b1
                if cross_b2 > 0 and (cross_b1 > 0 or (cross_b1 == 0 and not self.is_uvface_upwards())):
                    return True
                if cross_b1 < 0 and (cross_b2 < 0 or (cross_b2 == 0 and self.is_uvface_upwards())):
                    return False
                other_vector = other.max.co - other.min.co
                cross_a1 = other_vector.cross(-min_to_min)
                cross_a2 = other_vector.cross(self.max.co - other.min.co)
                if cross_a2 < cross_a1:
                    cross_a1, cross_a2 = cross_a2, cross_a1
                if cross_a2 > 0 and (cross_a1 > 0 or (cross_a1 == 0 and not other.is_uvface_upwards())):
                    return False
                if cross_a1 < 0 and (cross_a2 < 0 or (cross_a2 == 0 and other.is_uvface_upwards())):
                    return True
                if cross_a1 == cross_b1 == cross_a2 == cross_b2 == 0:
                    if correct_geometry:
                        raise GeometryError
                    elif self.is_uvface_upwards() == other.is_uvface_upwards():
                        raise Intersection
                    return False
                if self.min.tup == other.min.tup or self.max.tup == other.max.tup:
                    return cross_a2 > cross_b2
                raise Intersection
    
            class QuickSweepline:
                """Efficient sweepline based on binary search, checking neighbors only"""
                def __init__(self):
                    self.children = blist()
    
                def add(self, item, cmp=is_below):
                    low, high = 0, len(self.children)
                    while low < high:
                        mid = (low + high) // 2
                        if cmp(self.children[mid], item):
                            low = mid + 1
                        else:
                            high = mid
                    self.children.insert(low, item)
    
                def remove(self, item, cmp=is_below):
                    index = self.children.index(item)
                    self.children.pop(index)
                    if index > 0 and index < len(self.children):
                        # check for intersection
                        if cmp(self.children[index], self.children[index-1]):
                            raise GeometryError
    
            class BruteSweepline:
                """Safe sweepline which checks all its members pairwise"""
                def __init__(self):
                    self.children = set()
                    self.last_min = None, []
                    self.last_max = None, []
    
                def add(self, item, cmp=is_below):
                    for child in self.children:
                        if child.min is not item.min and child.max is not item.max:
                            cmp(item, child, False)
                    self.children.add(item)
    
                def remove(self, item):
                    self.children.remove(item)
    
            def sweep(sweepline, segments):
                """Sweep across the segments and raise an exception if necessary"""
                # careful, 'segments' may be a use-once iterator
                events_add = sorted(segments, reverse=True, key=lambda uvedge: uvedge.min.tup)
                events_remove = sorted(events_add, reverse=True, key=lambda uvedge: uvedge.max.tup)
                while events_remove:
                    while events_add and events_add[-1].min.tup <= events_remove[-1].max.tup:
                        sweepline.add(events_add.pop())
                    sweepline.remove(events_remove.pop())
    
            def root_find(value, tree):
                """Find the root of a given value in a forest-like dictionary
                also updates the dictionary using path compression"""
                parent, relink = tree.get(value), list()
                while parent is not None:
                    relink.append(value)
                    value, parent = parent, tree.get(parent)
                tree.update(dict.fromkeys(relink, value))
                return value
    
            def slope_from(position):
                def slope(uvedge):
                    vec = (uvedge.vb.co - uvedge.va.co) if uvedge.va.tup == position else (uvedge.va.co - uvedge.vb.co)
                    return (vec.y / vec.length + 1) if ((vec.x, vec.y) > (0, 0)) else (-1 - vec.y / vec.length)
                return slope
    
            # find edge in other and in self
            for uvedge in edge.uvedges:
                if uvedge.uvface.face in uvedge.edge.main_faces:
                    if uvedge.uvface.island is self and uvedge in self.boundary:
                        uvedge_a = uvedge
                    elif uvedge.uvface.island is other and uvedge in other.boundary:
                        uvedge_b = uvedge
                    else:
                        return False
    
            # check if vertices and normals are aligned correctly
            verts_flipped = uvedge_b.va.vertex is uvedge_a.va.vertex
            flipped = verts_flipped ^ uvedge_a.uvface.flipped ^ uvedge_b.uvface.flipped
            # determine rotation
            # NOTE: if the edges differ in length, the matrix will involve uniform scaling.
            # Such situation may occur in the case of twisted n-gons
            first_b, second_b = (uvedge_b.va, uvedge_b.vb) if not verts_flipped else (uvedge_b.vb, uvedge_b.va)
            if not flipped:
                rot = fitting_matrix(first_b.co - second_b.co, uvedge_a.vb.co - uvedge_a.va.co)
            else:
                flip = M.Matrix(((-1, 0), (0, 1)))
                rot = fitting_matrix(flip * (first_b.co - second_b.co), uvedge_a.vb.co - uvedge_a.va.co) * flip
            trans = uvedge_a.vb.co - rot * first_b.co
            # extract and transform island_b's boundary
            phantoms = {uvvertex: UVVertex(rot*uvvertex.co + trans, uvvertex.vertex) for uvvertex in other.verts}
    
            # check the size of the resulting island
            if size_limit:
                # first check: bounding box
                bbox_width = max(max(seg.max.co.x for seg in self.boundary), max(vertex.co.x for vertex in phantoms)) - min(min(seg.min.co.x for seg in self.boundary), min(vertex.co.x for vertex in phantoms))
                bbox_height = max(max(seg.top for seg in self.boundary), max(vertex.co.y for vertex in phantoms)) - min(min(seg.bottom for seg in self.boundary), min(vertex.co.y for vertex in phantoms))
                if min(bbox_width, bbox_height)**2 > size_limit.x**2 + size_limit.y**2:
                    return False
                if (bbox_width > size_limit.x or bbox_height > size_limit.y) and (bbox_height > size_limit.x or bbox_width > size_limit.y):
                    # further checks (TODO!)
                    # for the time being, just throw this piece away
                    return False
    
            distance_limit = edge.vect.length_squared * epsilon
            # try and merge UVVertices closer than sqrt(distance_limit)
            merged_uvedges = set()
            merged_uvedge_pairs = list()
    
            # merge all uvvertices that are close enough using a union-find structure