Skip to content
Snippets Groups Projects
import_svg.py 28.7 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

# <pep8 compliant>

import re
import xml.dom.minidom
from math import cos, sin, tan, atan2, pi, ceil

import bpy
from mathutils import Vector, Matrix

from . import svg_colors

#### Common utilities ####

# TODO: 'em' and 'ex' aren't actually supported
SVGUnits = {'': 1.0,
            'px': 1.0,
            'in': 90,
            'mm': 90 * 0.254,
            'cm': 90 * 2.54,
            'pt': 1.25,
            'pc': 15.0,
            'em': 1.0,
            'ex': 1.0}


def SVGCreateCurve():
    """
    Create new curve object to hold splines in
    """

    cu = bpy.data.curves.new("Curve", 'CURVE')
    obj = bpy.data.objects.new("Curve", cu)
    bpy.context.scene.objects.link(obj)

    return obj


def SVGFinishCurve():
    """
    Finish curve creation
    """

    pass


def SVGFlipHandle(x, y, x1, y1):
    """
    Flip handle around base point
    """

    x = x + (x - x1)
    y = y + (y - y1)

    return x, y


def SVGParseCoord(coord, size):
    """
    Parse coordinate component to common basis

    Needed to handle coordinates set in cm, mm, iches..
    """

    r = re.compile('([0-9\\-\\+\\.])([A-z%]*)')
    val = float(r.sub('\\1', coord))
    unit = r.sub('\\2', coord).lower()

    if unit == '%':
        return float(size) / 100.0 * val
    else:
        global SVGUnits

        return val * SVGUnits[unit]

    return val


def SVGRectFromNode(node, context):
    """
    Get display rectangle from node
    """

    w = context['rect'][0]
    h = context['rect'][1]

    if node.getAttribute('viewBox'):
        viewBox = node.getAttribute('viewBox').split()
        w = SVGParseCoord(viewBox[2], w)
        h = SVGParseCoord(viewBox[3], h)
    else:
        if node.getAttribute('width'):
            w = SVGParseCoord(node.getAttribute('width'), w)

        if node.getAttribute('height'):
            h = SVGParseCoord(node.getAttribute('height'), h)

    return (w, h)


def SVGMatrixFromNode(node, context):
    """
    Get transformation matrix from given node
    """

    rect = context['rect']

    m = Matrix()
    x = SVGParseCoord(node.getAttribute('x') or '0', rect[0])
    y = SVGParseCoord(node.getAttribute('y') or '0', rect[1])
    w = SVGParseCoord(node.getAttribute('width') or str(rect[0]), rect[0])
    h = SVGParseCoord(node.getAttribute('height') or str(rect[1]), rect[1])

    m = m.Translation(Vector((x, y, 0.0)))
    if len(context['rects']) > 1:
        m = m * m.Scale(w / rect[0], 4, Vector((1.0, 0.0, 0.0)))
        m = m * m.Scale(h / rect[1], 4, Vector((0.0, 1.0, 0.0)))

    if node.getAttribute('viewBox'):
        viewBox = node.getAttribute('viewBox').split()
        vx = SVGParseCoord(viewBox[0], w)
        vy = SVGParseCoord(viewBox[1], h)
        vw = SVGParseCoord(viewBox[2], w)
        vh = SVGParseCoord(viewBox[3], h)

        m = m * m.Translation(Vector((-vx, -vy, 0.0)))
        m = m * m.Scale(w / vw, 4, Vector((1.0, 0.0, 0.0)))
        m = m * m.Scale(h / vh, 4, Vector((0.0, 1.0, 0.0)))

    return m


def SVGParseTransform(transform):
    """
    Parse transform string and return transformation matrix
    """

    m = Matrix()
    r = re.compile('\s*([A-z]+)\s*\((.*?)\)')

    for match in r.finditer(transform):
        func = match.group(1)
        params = match.group(2)
        params = params.replace(',', ' ').split()

        proc = SVGTransforms.get(func)
        if proc is None:
            raise Exception('Unknown trasnform function: ' + func)

        m = m * proc(params)

    return m


def SVGGetMaterial(color, context):
    """
    Get material for specified color
    """

    materials = context['materials']

    if color in materials:
        return materials[color]

    diff = None
    if color.startswith('#'):
        color = color[1:]

        if len(color) == 3:
            color = color[0] * 2 + color[1] * 2 + color[2] * 2

        diff = (int(color[0:2], 16), int(color[2:4], 16), int(color[4:6], 16))
    elif color in svg_colors.SVGColors:
        diff = svg_colors.SVGColors[color]
    else:
        return None

    mat = bpy.data.materials.new(name='SVGMat')
    mat.diffuse_color = diff

    materials[color] = mat

    return mat


def SVGTransformTranslate(params):
    """
    translate SVG transform command
    """

    tx = float(params[0])
    ty = float(params[1])
    return Matrix.Translation(Vector((tx, ty, 0.0)))


def SVGTransformMatrix(params):
    """
    matrix SVG transform command
    """

    a = float(params[0])
    b = float(params[1])
    c = float(params[2])
    d = float(params[3])
    e = float(params[4])
    f = float(params[5])

    return Matrix(((a, c, 0.0, 0.0),
                   (b, d, 0.0, 0.0),
                   (0, 0, 1.0, 0.0),
                   (e, f, 0.0, 1.0)))


def SVGTransformScale(params):
    """
    scale SVG transform command
    """

    sx = sy = float(params[0])
    if len(params) > 1:
        sy = float(params[1])

    m = Matrix()

    m = m * m.Scale(sx, 4, Vector((1.0, 0.0, 0.0)))
    m = m * m.Scale(sy, 4, Vector((0.0, 1.0, 0.0)))

    return m


def SVGTransformSkewX(params):
    """
    skewX SVG transform command
    """

    ang = float(params[0]) * pi / 180.0

    return Matrix(((1.0, 0.0, 0.0),
                  (tan(ang), 1.0, 0.0),
                  (0.0, 0.0, 1.0))).to_4x4()


def SVGTransformSkewY(params):
    """
    skewX SVG transform command
    """

    ang = float(params[0]) * pi / 180.0

    return Matrix(((1.0, tan(ang), 0.0),
                  (0.0, 1.0, 0.0),
                  (0.0, 0.0, 1.0))).to_4x4()


def SVGTransformRotate(params):
    """
    skewX SVG transform command
    """

    ang = float(params[0]) * pi / 180.0
    cx = cy = 0.0
    if len(params) >= 3:
        cx = float(params[1])
        cy = float(params[2])

    tm = Matrix.Translation(Vector((cx, cy, 0.0)))
    rm = Matrix.Rotation(ang, 4, Vector((0.0, 0.0, 1.0)))

    return tm * rm * tm.inverted()

SVGTransforms = {'translate': SVGTransformTranslate,
                 'scale': SVGTransformScale,
                 'skewX': SVGTransformSkewX,
                 'skewY': SVGTransformSkewY,
                 'matrix': SVGTransformMatrix,
                 'rotate': SVGTransformRotate}

#### SVG path helpers ####


class SVGPathData:
    """
    SVG Path data token supplier
    """

    __slots__ = ('_data',  # List of tokens
                 '_index',  # Index of current token in tokens list
                 '_len')  # Lenght og tokens list

    def __init__(self, d):
        """
        Initialize new path data supplier

        d - the definition of the outline of a shape
        """

        # Convert to easy-to-parse format
        d = d.replace(',', ' ')
        d = re.sub('([A-z])', ' \\1 ', d)

        self._data = d.split()
        self._index = 0
        self._len = len(self._data)

    def eof(self):
        """
        Check if end of data reached
        """

        return self._index >= self._len

    def cur(self):
        """
        Return current token
        """

        if self.eof():
            return None

        return self._data[self._index]

    def next(self):
        """
        Return current token and go to next one
        """

        if self.eof():
            return None

        token = self._data[self._index]
        self._index += 1

        return token

    def nextCoord(self):
        """
        Return coordinate created from current token and move to next token
        """

        token = self.next()

        if token is None:
            return None

        return float(token)


class SVGPathParser:
    """
    Parser of SVG path data
    """

    __slots__ = ('_data',  # Path data supplird
                 '_point',  # Current point coorfinate
                 '_handle',  # Last handle coordinate
                 '_splines',  # List of all splies created during parsing
                 '_spline',  # Currently handling spline
                 '_commands')  # Hash of all supported path commands

    def __init__(self, d):
        """
        Initialize path parser

        d - the definition of the outline of a shape
        """

        self._data = SVGPathData(d)
        self._point = None   # Current point
        self._handle = None  # Last handle
        self._splines = []   # List of splines in path
        self._spline = None  # Current spline

        self._commands = {'M': self._pathMoveTo,
                          'L': self._pathLineTo,
                          'H': self._pathLineTo,
                          'V': self._pathLineTo,
                          'C': self._pathCurveToCS,
                          'S': self._pathCurveToCS,
                          'Q': self._pathCurveToQT,
                          'T': self._pathCurveToQT,
                          'A': self._pathCurveToA,
                          'Z': self._pathClose,

                          'm': self._pathMoveTo,
                          'l': self._pathLineTo,
                          'h': self._pathLineTo,
                          'v': self._pathLineTo,
                          'c': self._pathCurveToCS,
                          's': self._pathCurveToCS,
                          'q': self._pathCurveToQT,
                          't': self._pathCurveToQT,
                          'a': self._pathCurveToA,
                          'z': self._pathClose}

    def _getCoordPair(self, relative, point):
        """
        Get next coordinate pair
        """

        x = self._data.nextCoord()
        y = self._data.nextCoord()

        if relative and point is not None:
            x += point[0]
            y += point[1]

        return x, y

    def _appendPoint(self, x, y, handle_left=None, handle_left_type='VECTOR',
                    handle_right=None, handle_right_type='VECTOR'):
        """
        Append point to spline

        If there's no active spline, create one and set it's first point
        to current point coordinate
        """

        if self._spline is None:
            self._spline = {'points': [],
                            'closed': False}

            self._splines.append(self._spline)

        point = {'x': x,
                 'y': y,

                 'handle_left': handle_left,
                 'handle_left_type': handle_left_type,

                 'handle_right': handle_right,
                 'handle_right_type': handle_right_type}

        self._spline['points'].append(point)

    def _updateHandle(self, handle=None, handle_type=None):
        """
        Update right handle of previous point when adding new point to spline
        """

        point = self._spline['points'][-1]

        if handle_type is not None:
            point['handle_right_type'] = handle_type

        if handle is not None:
            point['handle_right'] = handle

    def _pathMoveTo(self, code):
        """
        MoveTo path command
        """

        relative = code.islower()
        x, y = self._getCoordPair(relative, self._point)

        self._spline = None  # Flag to start new spline
        self._point = (x, y)

        cur = self._data.cur()
        while  cur is not None and not cur.isalpha():
            x, y = self._getCoordPair(relative, self._point)

            if self._spline is None:
                self._appendPoint(self._point[0], self._point[1])

            self._appendPoint(x, y)

            self._point = (x, y)
            cur = self._data.cur()

        self._handle = None

    def _pathLineTo(self, code):
        """
        LineTo path command
        """

        c = code.lower()

        cur = self._data.cur()
        while cur is not None and not cur.isalpha():
            if c == 'l':
                x, y = self._getCoordPair(code == 'l', self._point)
            elif c == 'h':
                x = self._data.nextCoord()
                y = self._point[1]
            else:
                x = self._point[0]
                y = self._data.nextCoord()

            if code == 'h':
                x += self._point[0]
            elif code == 'v':
                y += self._point[1]

            if self._spline is None:
                self._appendPoint(self._point[0], self._point[1])

            self._appendPoint(x, y)

            self._point = (x, y)
            cur = self._data.cur()

        self._handle = None

    def _pathCurveToCS(self, code):
        """
        Cubic BEZIER CurveTo  path command
        """

        c = code.lower()
        cur = self._data.cur()
        while cur is not None and not cur.isalpha():
            if c == 'c':
                x1, y1 = self._getCoordPair(code.islower(), self._point)
                x2, y2 = self._getCoordPair(code.islower(), self._point)
            else:
                if self._handle is not None:
                    x1, y1 = SVGFlipHandle(self._point[0], self._point[1],
                                        self._handle[0], self._handle[1])
                else:
                    x1, y1 = self._point

                x2, y2 = self._getCoordPair(code.islower(), self._point)

            x, y = self._getCoordPair(code.islower(), self._point)

            if self._spline is None:
                self._appendPoint(self._point[0], self._point[1],
                    handle_left_type='FREE', handle_left=self._point,
                    handle_right_type='FREE', handle_right=(x1, y1))
            else:
                self._updateHandle(handle=(x1, y1), handle_type='FREE')

            self._appendPoint(x, y,
                handle_left_type='FREE', handle_left=(x2, y2),
                handle_right_type='FREE', handle_right=(x, y))

            self._point = (x, y)
            self._handle = (x2, y2)
            cur = self._data.cur()

    def _pathCurveToQT(self, code):
        """
        Qyadracic BEZIER CurveTo  path command
        """

        c = code.lower()
        cur = self._data.cur()

        while cur is not None and not cur.isalpha():
            if c == 'q':
                x1, y1 = self._getCoordPair(code.islower(), self._point)
            else:
                if self._handle is not None:
                    x1, y1 = SVGFlipHandle(self._point[0], self._point[1],
                                        self._handle[0], self._handle[1])
                else:
                    x1, y1 = self._point

            x, y = self._getCoordPair(code.islower(), self._point)

            if self._spline is None:
                self._appendPoint(self._point[0], self._point[1],
                    handle_left_type='FREE', handle_left=self._point,
                    handle_right_type='FREE', handle_right=self._point)

            self._appendPoint(x, y,
                handle_left_type='FREE', handle_left=(x1, y1),
                handle_right_type='FREE', handle_right=(x, y))

            self._point = (x, y)
            self._handle = (x1, y1)
            cur = self._data.cur()

    def _calcArc(self, rx, ry,  ang, fa, fs, x, y):
        """
        Calc arc paths

        Copied and adoptedfrom paths_svg2obj.py scring for Blender 2.49
        which is Copyright (c) jm soler juillet/novembre 2004-april 2009,
        """

        cpx = self._point[0]
        cpy = self._point[1]
        rx = abs(rx)
        ry = abs(ry)
        px = abs((cos(ang) * (cpx - x) + sin(ang) * (cpy - y)) * 0.5) ** 2.0
        py = abs((cos(ang) * (cpy - y) - sin(ang) * (cpx - x)) * 0.5) ** 2.0
        rpx = rpy = 0.0

        if abs(rx) > 0.0:
            px = px / (rx ** 2.0)

        if abs(ry) > 0.0:
            rpy = py / (ry ** 2.0)

        pl = rpx + rpy
        if pl > 1.0:
            pl = pl ** 0.5
            rx *= pl
            ry *= pl

        carx = sarx = cary = sary = 0.0

        if abs(rx) > 0.0:
            carx = cos(ang) / rx
            sarx = sin(ang) / rx

        if abs(ry) > 0.0:
            cary = cos(ang) / ry
            sary = sin(ang) / ry

        x0 = carx * cpx + sarx * cpy
        y0 = -sary * cpx + cary * cpy
        x1 = carx * x + sarx * y
        y1 = -sary * x + cary * y
        d = (x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0)

        if abs(d) > 0.0:
            sq = 1.0 / d - 0.25
        else:
            sq = -0.25

        if sq < 0.0:
            sq = 0.0

        sf = sq ** 0.5
        if fs == fa:
            sf = -sf

        xc = 0.5 * (x0 + x1) - sf * (y1 - y0)
        yc = 0.5 * (y0 + y1) + sf * (x1 - x0)
        ang_0 = atan2(y0 - yc, x0 - xc)
        ang_1 = atan2(y1 - yc, x1 - xc)
        ang_arc = ang_1 - ang_0

        if ang_arc < 0.0 and fs == 1:
            ang_arc += 2.0 * pi
        elif ang_arc > 0.0 and fs == 0:
            ang_arc -= 2.0 * pi

        n_segs = int(ceil(abs(ang_arc * 2.0 / (pi * 0.5 + 0.001))))

        if self._spline is None:
            self._appendPoint(cpx, cpy,
                handle_left_type='FREE', handle_left=(cpx, cpy),
                handle_right_type='FREE', handle_right=(cpx, cpy))

        for i in range(n_segs):
            ang0 = ang_0 + i * ang_arc / n_segs
            ang1 = ang_0 + (i + 1) * ang_arc / n_segs
            ang_demi = 0.25 * (ang1 - ang0)
            t = 2.66666 * sin(ang_demi) * sin(ang_demi) / sin(ang_demi * 2.0)
            x1 = xc + cos(ang0) - t * sin(ang0)
            y1 = yc + sin(ang0) + t * cos(ang0)
            x2 = xc + cos(ang1)
            y2 = yc + sin(ang1)
            x3 = x2 + t * sin(ang1)
            y3 = y2 - t * cos(ang1)

            coord1 = ((cos(ang) * rx) * x1 + (-sin(ang) * ry) * y1,
                      (sin(ang) * rx) * x1 + (cos(ang) * ry) * y1)
            coord2 = ((cos(ang) * rx) * x3 + (-sin(ang) * ry) * y3,
                      (sin(ang) * rx) * x3 + (cos(ang) * ry) * y3)
            coord3 = ((cos(ang) * rx) * x2 + (-sin(ang) * ry) * y2,
                      (sin(ang) * rx) * x2 + (cos(ang) * ry) * y2)

            self._updateHandle(handle=coord1, handle_type='FREE')

            self._appendPoint(coord3[0], coord3[1],
                handle_left_type='FREE', handle_left=coord2,
                handle_right_type='FREE', handle_right=coord3)

    def _pathCurveToA(self, code):
        """
        Elliptical arc CurveTo path command
        """

        c = code.lower()
        cur = self._data.cur()

        while cur is not None and not cur.isalpha():
            rx = float(self._data.next())
            ry = float(self._data.next())
            ang = float(self._data.next()) / 180 * pi
            fa = float(self._data.next())
            fs = float(self._data.next())
            x, y = self._getCoordPair(code.islower(), self._point)

            self._calcArc(rx, ry,  ang, fa, fs, x, y)

            self._point = (x, y)
            self._handle = None
            cur = self._data.cur()

    def _pathClose(self, code):
        """
        Close path command
        """

        if self._spline:
            self._spline['closed'] = True

    def parse(self):
        """
        Execute parser
        """

        while not self._data.eof():
            code = self._data.next()
            cmd = self._commands.get(code)

            if cmd is None:
                raise Exception('Unknown path command: {0}' . format(code))

            cmd(code)

    def getSplines(self):
        """
        Get splines definitions
        """

        return self._splines


class SVGGeometry:
    """
    Abstract SVG geometry
    """

    __slots__ = ('_node',  # XML node for geometry
                 '_context',  # Global SVG context (holds matrices stack, i.e.)
                 '_creating')  # Flag if geometry is already creating for this node
                               # need to detect cycles for USE node

    def __init__(self, node, context):
        """
        Initialize SVG geometry
        """

        self._node = node
        self._context = context
        self._creating = False

        if hasattr(node, 'getAttribute'):
            defs = context['defines']

            id = node.getAttribute('id')
            if id and defs.get('#' + id) is None:
                defs['#' + id] = self

            className = node.getAttribute('class')
            if className and defs.get(className) is None:
                defs[className] = self

    def _pushRect(self, rect):
        """
        Push display rectangle
        """

        self._context['rects'].append(rect)
        self._context['rect'] = rect

    def _popRect(self):
        """
        Pop display rectangle
        """

        self._context['rects'].pop
        self._context['rect'] = self._context['rects'][-1]

    def _pushMatrix(self, matrix):
        """
        Push transformation matrix
        """

        self._context['transform'].append(matrix)
        self._context['matrix'] = self._context['matrix'] * matrix

    def _popMatrix(self):
        """
        Pop transformation matrix
        """

        matrix = self._context['transform'].pop()
        self._context['matrix'] = self._context['matrix'] * matrix.inverted()

    def _transformCoord(self, point):
        """
        Transform SVG-file coords
        """

        v = Vector((point[0], point[1], 0.0))

        return v * self._context['matrix']

    def getNodeMatrix(self):
        """
        Get transformation matrix of node
        """

        return SVGMatrixFromNode(self._node, self._context)

    def parse(self):
        """
        Parse XML node to memory
        """

        pass

    def _doCreateGeom(self):
        """
        Internal handler to create real geometries
        """

        pass

    def _getTranformMatrix(self):
        """
        Get matrix created from "transform" attribute
        """

        if not hasattr(self._node, 'getAttribute'):
            return None

        transform = self._node.getAttribute('transform')

        if transform:
            return SVGParseTransform(transform)

        return None

    def createGeom(self):
        """
        Create real geometries
        """

        if self._creating:
            return

        self._creating = True

        matrix = self._getTranformMatrix()
        if matrix is not None:
            self._pushMatrix(matrix)

        self._doCreateGeom()

        if matrix is not None:
            self._popMatrix()

        self._creating = False


class SVGGeometryContainer(SVGGeometry):
    """
    Container of SVG geometries
    """

    __slots__ = ('_geometries')  # List of chold geometries

    def __init__(self, node, context):
        """
        Initialize SVG geometry container
        """

        super().__init__(node, context)

        self._geometries = []

    def parse(self):
        """
        Parse XML node to memory
        """

        for node in self._node.childNodes:
            if type(node) is not xml.dom.minidom.Element:
                continue

            ob = parseAbstractNode(node, self._context)
            if ob is not None:
                self._geometries.append(ob)

    def _doCreateGeom(self):
        """
        Create real geometries
        """

        for geom in self._geometries:
            geom.createGeom()

    def getGeometries(self):
        """
        Get list of parsed geometries
        """

        return self._geometries


class SVGGeometryPATH(SVGGeometry):
    """
    SVG path geometry
    """

    __slots__ = ('_splines',  # List of splines after parsing
                 '_useFill',  # Should path be filled?
                 '_fill')  # Material used for filling

    def __init__(self, node, context):
        """
        Initialize SVG path
        """

        super().__init__(node, context)

        self._splines = []
        self._fill = None
        self._useFill = False

    def parse(self):
        """
        Parse SVG path node
        """

        d = self._node.getAttribute('d')

        pathParser = SVGPathParser(d)
        pathParser.parse()

        self._splines = pathParser.getSplines()
        self._fill = None
        self._useFill = False

        fill = self._node.getAttribute('fill')
        if fill:
            self._useFill = True
            self._fill = SVGGetMaterial(fill, self._context)

    def _doCreateGeom(self):
        """
        Create real geometries
        """

        ob = SVGCreateCurve()
        cu = ob.data

        if self._useFill:
            cu.dimensions = '2D'
            cu.materials.append(self._fill)
        else:
            cu.dimensions = '3D'

        for spline in self._splines:
            act_spline = None
            for point in spline['points']:
                loc = self._transformCoord((point['x'], point['y']))

                if act_spline is None:
                    cu.splines.new('BEZIER')

                    act_spline = cu.splines[-1]
                    act_spline.use_cyclic_u = spline['closed']
                else:
                    act_spline.bezier_points.add()

                bezt = act_spline.bezier_points[-1]
                bezt.select_control_point = True
                bezt.select_left_handle = True
                bezt.select_right_handle = True
                bezt.co = loc

                bezt.handle_left_type = point['handle_left_type']
                if point['handle_left'] is not None:
                    handle = point['handle_left']
                    bezt.handle_left = self._transformCoord(handle)

                bezt.handle_right_type = point['handle_right_type']
                if point['handle_right'] is not None:
                    handle = point['handle_right']
                    bezt.handle_right = self._transformCoord(handle)

        SVGFinishCurve()