Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
"""Geometry classes and operations.
Also, vector file representation (Art).
"""
__author__ = "howard.trickey@gmail.com"
import math
# distances less than about DISTTOL will be considered
# essentially zero
DISTTOL = 1e-3
INVDISTTOL = 1e3
class Points(object):
"""Container of points without duplication, each mapped to an int.
Points are either have dimension at least 2, maybe more.
Implementation:
In order to efficiently find duplicates, we quantize the points
to triples of ints and map from quantized triples to vertex
index.
Attributes:
pos: list of tuple of float - coordinates indexed by
vertex number
invmap: dict of (int, int, int) to int - quantized coordinates
to vertex number map
"""
def __init__(self, initlist = []):
self.pos = []
self.invmap = dict()
for p in initlist:
self.AddPoint(p)
@staticmethod
def Quantize(p):
"""Quantize the float tuple into an int tuple.
Args:
p: tuple of float
Returns:
tuple of int - scaled by INVDISTTOL and rounded p
"""
return tuple([int(round(v*INVDISTTOL)) for v in p])
def AddPoint(self, p):
"""Add point p to the Points set and return vertex number.
If there is an existing point which quantizes the same,,
don't add a new one but instead return existing index.
Args:
p: tuple of float - coordinates (2-tuple or 3-tuple)
Returns:
int - the vertex number of added (or existing) point
"""
qp = Points.Quantize(p)
if qp in self.invmap:
return self.invmap[qp]
else:
self.invmap[qp] = len(self.pos)
self.pos.append(p)
return len(self.pos)-1
def AddPoints(self, points):
"""Add another set of points to this set.
We need to return a mapping from indices
in the argument points space into indices
in this point space.
Args:
points: Points - to union into this set
Returns:
list of int: maps added indices to new ones
"""
vmap = [ 0 ] * len(points.pos)
for i in range(len(points.pos)):
vmap[i] = self.AddPoint(points.pos[i])
return vmap
def AddZCoord(self, z):
"""Change this in place to have a z coordinate, with value z.
Assumes the coordinates are currently 2d.
Args:
z: the value of the z coordinate to add
Side Effect:
self now has a z-coordinate added
"""
assert(len(self.pos) == 0 or len(self.pos[0]) == 2)
newinvmap = dict()
for i, (x,y) in enumerate(self.pos):
newp = (x, y, z)
self.pos[i] = newp
newinvmap[self.Quantize(newp)] = i
self.invmap = newinvmap
def AddToZCoord(self, i, delta):
"""Change the z-coordinate of point with index i to add delta.
Assumes the coordinates are currently 3d.
Args:
i: int - index of a point
delta: float - value to add to z-coord
"""
(x, y, z) = self.pos[i]
self.pos[i] = (x, y, z + delta)
class PolyArea(object):
"""Contains a Polygonal Area (polygon with possible holes).
A polygon is a list of vertex ids, each an index given by
a Points object. The list represents a CCW-oriented
outer boundary (implicitly closed).
If there are holes, they are lists of CW-oriented vertices
that should be contained in the outer boundary.
(So the left face of both the poly and the holes is
the filled part.)
Attributes:
points: Points
poly: list of vertex ids
holes: list of lists of vertex ids (each a hole in poly)
color: (float, float, float)- rgb color used to fill
"""
def __init__(self, points = None, poly = None, holes = None):
self.points = points if points else Points()
self.poly = poly if poly else []
self.holes = holes if holes else []
self.color = (0.0, 0.0, 0.0)
def AddHole(self, holepa):
"""Add a PolyArea's poly as a hole of self.
Need to reverse the contour and
adjust the the point indexes and self.points.
Args:
holepa: PolyArea
"""
vmap = self.points.AddPoints(holepa.points)
holepoly = [ vmap[i] for i in holepa.poly ]
holepoly.reverse()
self.holes.append(holepoly)
def ContainsPoly(self, poly, points):
"""Tests if poly is contained within self.poly.
Args:
poly: list of int - indices into points
points: Points - maps to coords
Returns:
bool - True if poly is fully contained within self.poly
"""
for v in poly:
if PointInside(points.pos[v], self.poly, self.points) == -1:
return False
return True
def Normal(self):
"""Returns the normal of the polyarea's main poly."""
pos = self.points.pos
poly = self.poly
if len(pos) == 0 or len(pos[0]) == 2 or len(poly) == 0:
print("whoops, not enough info to calculate normal")
return (0.0, 0.0, 1.0)
return Newell(poly, self.points)
class PolyAreas(object):
"""Contains a list of PolyAreas and a shared Points.
Attributes:
polyareas: list of PolyArea
points: Points
"""
def __init__(self):
self.polyareas = []
self.points = Points()
def scale_and_center(self, scaled_side_target):
"""Adjust the coordinates of the polyareas so that
it is centered at the origin and has its longest
dimension scaled to be scaled_side_target."""
if len(self.points.pos) == 0:
return
(minv, maxv) = self.bounds()
maxside = max([ maxv[i]-minv[i] for i in range(2) ])
if maxside > 0.0:
scale = scaled_side_target / maxside
else:
scale = 1.0
translate = [ -0.5*(maxv[i]+minv[i]) for i in range(2) ]
dim = len(self.points.pos[0])
if dim == 3:
translate.append([0.0])
for v in range(len(self.points.pos)):
self.points.pos[v] = tuple([ scale*(self.points.pos[v][i] + translate[i]) for i in range(dim) ])
def bounds(self):
"""Find bounding box of polyareas in xy.
Returns:
([minx,miny],[maxx,maxy]) - all floats
"""
huge = 1e100
minv = [huge, huge]
maxv = [-huge, -huge]
for pa in self.polyareas:
for face in [ pa.poly ] + pa.holes:
for v in face:
vcoords = self.points.pos[v]
for i in range(2):
if vcoords[i] < minv[i]:
minv[i] = vcoords[i]
if vcoords[i] > maxv[i]:
maxv[i] = vcoords[i]
if minv[0] == huge:
minv = [0.0, 0.0]
if maxv[0] == huge:
maxv = [0.0, 0.0]
return (minv, maxv)
class Model(object):
"""Contains a generic 3d model.
A generic 3d model has vertices with 3d coordinates.
Each vertex gets a 'vertex id', which is an index that
can be used to refer to the vertex and can be used
to retrieve the 3d coordinates of the point.
The actual visible part of the geometry are the faces,
which are n-gons (n>2), specified by a vector of the
n corner vertices.
Faces may also have colors.
Attributes:
points: geom.Points - the 3d vertices
faces: list of list of indices (each a CCW traversal of a face)
colors: list of (float, float, float) - if present, is parallel to
faces list and gives rgb colors of faces
"""
def __init__(self):
self.points = Points()
self.faces = []
self.colors = []
class Art(object):
"""Contains a vector art diagram.
Attributes:
paths: list of Path objects
"""
def __init__(self):
self.paths = []
class Paint(object):
"""A color or pattern to fill or stroke with.
For now, just do colors, but could later do
patterns or images too.
Attributes:
color: (r,g,b) triple of floats, 0.0=no color, 1.0=max color
"""
def __init__(self, r=0.0, g=0.0, b=0.0):
self.color = (r, g, b)
@staticmethod
def CMYK(c, m, y, k):
"""Return Paint specified in CMYK model.
Uses formula from 6.2.4 of PDF Reference.
Args:
c, m, y, k: float - in range [0, 1]
Returns:
Paint - with components in rgb form now
"""
return Paint(1.0 - min(1.0, c+k),
1.0 - min(1.0, m+k), 1.0 - min(1.0, y+k))
black_paint = Paint()
white_paint = Paint(1.0, 1.0, 1.0)
ColorDict = {
'aqua' : Paint(0.0, 1.0, 1.0),
'black' : Paint(0.0, 0.0, 0.0),
'blue' : Paint(0.0, 0.0, 1.0),
'fuchsia' : Paint(1.0, 0.0, 1.0),
'gray' : Paint(0.5, 0.5, 0.5),
'green' : Paint(0.0, 0.5, 0.0),
'lime' : Paint(0.0, 1.0, 0.0),
'maroon' : Paint(0.5, 0.0, 0.0),
'navy' : Paint(0.0, 0.0, 0.5),
'olive' : Paint(0.5, 0.5, 0.0),
'purple' : Paint(0.5, 0.0, 0.5),
'red' : Paint(1.0, 0.0, 0.0),
'silver' : Paint(0.75, 0.75, 0.75),
'teal' : Paint(0.0, 0.5, 0.5),
'white' : Paint(1.0, 1.0,1.0),
'yellow' : Paint(1.0, 1.0, 0.0)
}
class Path(object):
"""Represents a path in the PDF sense, with painting instructions.
Attributes:
subpaths: list of Subpath objects
filled: True if path is to be filled
fillevenodd: True if use even-odd rule to fill (else non-zero winding)
stroked: True if path is to be stroked
fillpaint: Paint to fill with
strokepaint: Paint to stroke with
"""
def __init__(self):
self.subpaths = []
self.filled = False
self.fillevenodd = False
self.stroked = False
self.fillpaint = black_paint
self.strokepaint = black_paint
def AddSubpath(self, subpath):
""""Add a subpath."""
self.subpaths.append(subpath)
def Empty(self):
"""Returns True if this Path as no subpaths."""
return not self.subpaths
class Subpath(object):
"""Represents a subpath in PDF sense, either open or closed.
We'll represent lines, bezier pieces, circular arc pieces
as tuples with letters giving segment type in first position
and coordinates (2-tuples of floats) in the other positions.
Segment types:
('L', a, b) - line from a to b
('B', a, b, c, d) - cubic bezier from a to b, with control points c,d
('Q', a, b, c) - quadratic bezier from a to b, with 1 control point c
('A', a, b, rad, xrot, large-arc, ccw) - elliptical arc from a to b,
with rad=(rx, ry) as radii, xrot is x-axis rotation in degrees,
large-arc is True if arc should be >= 180 degrees,
ccw is True if start->end follows counter-clockwise direction
(see SVG spec); note that after rad,
the rest are floats or bools, not coordinate pairs
Note that s[1] and s[2] are the start and end points for any segment s.
Attributes:
segments: list of segment tuples (see above)
closed: True if closed
"""
def __init__(self):
self.segments = []
self.closed = False
def Empty(self):
"""Returns True if this subpath as no segments."""
return not self.segments
def AddSegment(self, seg):
"""Add a segment."""
self.segments.append(seg)
@staticmethod
def SegStart(s):
"""Return start point for segment.
Args:
s: a segment tuple
Returns:
(float, float): the coordinates of the segment's start point
"""
return s[1]
@staticmethod
def SegEnd(s):
"""Return end point for segment.
Args:
s: a segment tuple
Returns:
(float, float): the coordinates of the segment's end point
"""
return s[2]
class TransformMatrix(object):
"""Transformation matrix for 2d coordinates.
The transform matrix is:
[ a b 0 ]
[ c d 0 ]
[ e f 1 ]
and coordinate tranformation is defined by:
[x' y' 1] = [x y 1] x TransformMatrix
Attributes:
a, b, c, d, e, f: floats
"""
def __init__(self, a=1.0, b=0.0, c=0.0, d=1.0, e=0.0, f=0.0):
self.a = a
self.b = b
self.c = c
self.d =d
self.e = e
self.f = f
def __str__(self):
return str([self.a, self.b, self.c, self.d, self.e, self.f])
def Copy(self):
"""Return a copy of this matrix."""
return TransformMatrix(self.a, self.b, self.c, self.d, self.e, self.f)
def ComposeTransform(self, a, b, c, d, e, f):
"""Apply the transform given the the arguments on top of this one.
This is accomplished by returning t x sel
where t is the transform matrix that would be formed from the args.
Arguments:
a, b, c, d, e, f: float - defines a composing TransformMatrix
"""
newa = a * self.a + b*self.c
newb = a*self.b + b*self.d
newc = c*self.a + d*self.c
newd = c*self.b + d*self.d
newe = e*self.a + f*self.c + self.e
newf = e*self.b + f*self.d + self.f
self.a = newa
self.b = newb
self.c = newc
self.d = newd
self.e = newe
self.f = newf
def Apply(self, pt):
"""Return the result of applying this tranform to pt = (x,y).
Arguments:
(x, y) : (float, float)
Returns:
(x', y'): 2-tuple of floats, the result of [x y 1] x self
"""
(x, y) = pt
return (self.a*x + self.c*y + self.e, self.b*x + self.d*y + self.f)
def ApproxEqualPoints(p, q):
"""Return True if p and q are approximately the same points.
Args:
p: n-tuple of float
q: n-tuple of float
Returns:
bool - True if the 1-norm <= DISTTOL
"""
for i in range(len(p)):
if abs(p[i] - q[i]) > DISTTOL:
return False
return True
def PointInside(v, a, points):
"""Return 1, 0, or -1 as v is inside, on, or outside polygon.
Cf. Eric Haines ptinpoly in Graphics Gems IV.
Args:
v : (float, float) or (float, float, float) - coordinates of a point
a : list of vertex indices defining polygon (assumed CCW)
points: Points - to get coordinates for polygon
Returns:
1, 0, -1: as v is inside, on, or outside polygon a
"""
(xv, yv) = (v[0], v[1])
vlast = points.pos[a[-1]]
(x0, y0) = (vlast[0], vlast[1])
if x0 == xv and y0 == yv:
return 0
yflag0 = y0 > yv
inside = False
n = len(a)
for i in range(0, n):
vi = points.pos[a[i]]
(x1, y1) = (vi[0], vi[1])
if x1 == xv and y1 == yv:
return 0
yflag1 = y1 > yv
if yflag0 != yflag1:
xflag0 = x0 > xv
xflag1 = x1 > xv
if xflag0 == xflag1:
if xflag0:
inside = not inside
else:
z = x1 - (y1-yv)*(x0-x1)/(y0-y1)
if z >= xv:
inside = not inside
x0 = x1
y0 = y1
yflag0 = yflag1
if inside:
return 1
else:
return -1
def SignedArea(polygon, points):
"""Return the area of the polgon, positive if CCW, negative if CW.
Args:
polygon: list of vertex indices
points: Points
Returns:
float - area of polygon, positive if it was CCW, else negative
"""
a = 0.0
n = len(polygon)
for i in range(0, n):
u = points.pos[polygon[i]]
v = points.pos[polygon[(i+1) % n]]
a += u[0]*v[1] - u[1]*v[0]
return 0.5*a
def VecAdd(a, b):
"""Return vector a-b.
Args:
a: n-tuple of floats
b: n-tuple of floats
Returns:
n-tuple of floats - pairwise addition a+b
"""
n = len(a)
assert(n == len(b))
return tuple([ a[i]+b[i] for i in range(n)])
def VecSub(a, b):
"""Return vector a-b.
Args:
a: n-tuple of floats
b: n-tuple of floats
Returns:
n-tuple of floats - pairwise subtraction a-b
"""
n = len(a)
assert(n == len(b))
return tuple([ a[i]-b[i] for i in range(n)])
def VecLen(a):
"""Return the Euclidean lenght of the argument vector.
Args:
a: n-tuple of floats
Returns:
float: the 2-norm of a
"""
s = 0.0
for v in a:
s += v*v
return math.sqrt(s)
def Newell(poly, points):
"""Use Newell method to find polygon normal.
Assume poly has length at least 3 and points are 3d.
Args:
poly: list of int - indices into points.pos
points: Points - assumed 3d
Returns:
(float, float, float) - the average normal
"""
sumx = 0.0
sumy = 0.0
sumz = 0.0
n = len(poly)
pos = points.pos
for i, ai in enumerate(poly):
bi = poly[(i+1) % n]
a = pos[ai]
b = pos[bi]
sumx += (a[1]-b[1]) * (a[2]+b[2])
sumy += (a[2]-b[2]) * (a[0]+b[0])
sumz += (a[0]-b[0]) * (a[1]+b[1])
return Norm3(sumx, sumy, sumz)
def Norm3(x, y, z):
"""Return vector (x,y,z) normalized by dividing by squared length.
Return (0.0, 0.0, 1.0) if the result is undefined."""
sqrlen = x * x + y * y + z * z
if sqrlen < 1e-100:
return (0.0, 0.0, 1.0)
else:
try:
d = math.sqrt(sqrlen)
return (x / d, y / d, z / d)
except:
return (0.0, 0.0, 1.0)
# We're using right-hand coord system, where
# forefinger=x, middle=y, thumb=z on right hand.
# Then, e.g., (1,0,0) x (0,1,0) = (0,0,1)
def Cross3(a, b):
"""Return the cross product of two vectors, a x b."""
(ax, ay, az) = a
(bx, by, bz) = b
return (ay * bz - az * by, az * bx - ax * bz, ax * by - ay * bx)
def MulPoint3(p, m):
"""Return matrix multiplication of p times m
where m is a 4x3 matrix and p is a 3d point, extended with 1."""
(x, y, z) = p
return (x * m[0] + y * m[3] + z * m[6] + m[9],
x * m[1] + y * m[4] + z * m[7] + m[10],
x * m[2] + y * m[5] + z * m[8] + m[11])