Skip to content
Snippets Groups Projects
model.py 15.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    # ##### BEGIN GPL LICENSE BLOCK #####
    #
    #  This program is free software; you can redistribute it and/or
    #  modify it under the terms of the GNU General Public License
    #  as published by the Free Software Foundation; either version 2
    #  of the License, or (at your option) any later version.
    #
    #  This program is distributed in the hope that it will be useful,
    #  but WITHOUT ANY WARRANTY; without even the implied warranty of
    #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    #  GNU General Public License for more details.
    #
    #  You should have received a copy of the GNU General Public License
    #  along with this program; if not, write to the Free Software Foundation,
    #  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    #
    # ##### END GPL LICENSE BLOCK #####
    
    """Manipulations of Models.
    """
    
    __author__ = "howard.trickey@gmail.com"
    
    from . import geom
    from . import triquad
    from . import offset
    import math
    
    
    def PolyAreasToModel(polyareas, bevel_amount, bevel_pitch, quadrangulate):
      """Convert a PolyAreas into a Model object.
    
      Assumes polyareas are in xy plane.
    
      Args:
        polyareas: geom.PolyAreas
        bevel_amount: float - if > 0, amount of bevel
        bevel_pitch: float - if > 0, angle in radians of bevel
        quadrangulate: bool - should n-gons be quadrangulated?
      Returns:
        geom.Model
      """
    
      m = geom.Model()
      if not polyareas:
        return m
      polyareas.points.AddZCoord(0.0)
      m.points = polyareas.points
      for pa in polyareas.polyareas:
        PolyAreaToModel(m, pa, bevel_amount, bevel_pitch, quadrangulate)
      return m
    
    
    def PolyAreaToModel(m, pa, bevel_amount, bevel_pitch, quadrangulate):
      if bevel_amount > 0.0:
        BevelPolyAreaInModel(m, pa, bevel_amount, bevel_pitch, quadrangulate)
      elif quadrangulate:
        if len(pa.poly) == 0:
          return
        qpa = triquad.QuadrangulateFaceWithHoles(pa.poly, pa.holes, pa.points)
        m.faces.extend(qpa)
        m.colors.extend([ pa.color ] * len(qpa))
      else:
        m.faces.append(pa.poly)
        # TODO: just the first part of QuadrangulateFaceWithHoles, to join
        # holes to outer poly
        m.colors.append(pa.color)
    
    
    def ExtrudePolyAreasInModel(mdl, polyareas, depth, cap_back):
      """Extrude the boundaries given by polyareas by -depth in z.
    
      Assumes polyareas are in xy plane.
    
      Arguments:
        mdl: geom.Model - where to do extrusion
        polyareas: geom.Polyareas
        depth: float
        cap_back: bool - if True, cap off the back
      Side Effects:
        For all edges in polys in polyareas, make quads in Model
        extending those edges by depth in the negative z direction.
        The color will be the color of the face that the edge is part of.
      """
    
      for pa in polyareas.polyareas:
        back_poly = _ExtrudePoly(mdl, pa.poly, depth, pa.color, True)
        back_holes = []
        for p in pa.holes:
          back_holes.append(_ExtrudePoly(mdl, p, depth, pa.color, False))
        if cap_back:
          qpa = triquad.QuadrangulateFaceWithHoles(back_poly, back_holes,
            polyareas.points)
          # need to reverse each poly to get normals pointing down
          for i, p in enumerate(qpa):
            t = list(p)
            t.reverse()
            qpa[i] = tuple(t)
          model.faces.extend(qpa)
          model.colors.extend([pa.color] * len(qpa))
    
    
    def _ExtrudePoly(mdl, poly, depth, color, isccw):
      """Extrude the poly by -depth in z
    
      Arguments:
        mdl: geom.Model - where to do extrusion
        poly: list of vertex indices
        depth: float
        color: tuple of three floats
        isccw: True if counter-clockwise
      Side Effects
        For all edges in poly, make quads in Model
        extending those edges by depth in the negative z direction.
        The color will be the color of the face that the edge is part of.
      Returns:
        list of int - vertices for extruded poly
      """
    
      if len(poly) < 2:
        return
      extruded_poly = []
      points = mdl.points
      if isccw:
        incr = 1
      else:
        incr = -1
      for i, v in enumerate(poly):
        vnext = poly[(i+incr) % len(poly)]
        (x0,y0,z0) = points.pos[v]
        (x1,y1,z1) = points.pos[vnext]
        vextrude = points.AddPoint((x0,y0,z0-depth))
        vnextextrude = points.AddPoint((x1,y1,z1-depth))
        if isccw:
          sideface = [v, vextrude, vnextextrude, vnext]
        else:
          sideface = [v, vnext, vnextextrude, vextrude]
        mdl.faces.append(sideface)
        mdl.colors.append(color)
        extruded_poly.append(vextrude)
      return extruded_poly
    
    
    def BevelPolyAreaInModel(mdl, polyarea,
        bevel_amount, bevel_pitch, quadrangulate):
      """Bevel the interior of polyarea in model.
    
      This does smart beveling: advancing edges are merged
      rather than doing an 'overlap'.  Advancing edges that
      hit an opposite edge result in a split into two beveled areas.
    
      If the polyarea is not in the xy plane, do the work in a
      transformed model, and then transfer the changes back.
    
      Arguments:
        mdl: geom.Model - where to do bevel
        polyarea geom.PolyArea - area to bevel into
        bevel_amount: float - if > 0, amount of bevel
        bevel_pitch: float - if > 0, angle in radians of bevel
        quadrangulate: bool - should n-gons be quadrangulated?
      Side Effects:
        Faces and points are added to model to model the
        bevel and the interior of the polyareas.
      """
    
      pa_norm = polyarea.Normal()
      if pa_norm == (0.0, 0.0, 1.0):
        m = mdl
        pa_rot = polyarea
      else:
        (pa_rot, inv_rot, inv_map) = _RotatedPolyAreaToXY(polyarea, pa_norm)
        # don't actually have to add the original faces into model, just their points.
        m = geom.Model()
        m.points = pa_rot.points
      vspeed = math.tan(bevel_pitch)
      off = offset.Offset(pa_rot, 0.0, vspeed)
      off.Build(bevel_amount)
      inner_pas = AddOffsetFacesToModel(m, off, polyarea.color)
      for pa in inner_pas.polyareas:
        if quadrangulate:
          if len(pa.poly) == 0:
            continue
          qpa = triquad.QuadrangulateFaceWithHoles(pa.poly, pa.holes, pa.points)
          m.faces.extend(qpa)
          m.colors.extend([ pa.color ] * len(qpa))
        else:
          m.faces.append(pa.poly)
          m.colors.append(pa.color)
      if m != mdl:
        _AddTransformedPolysToModel(mdl, m.faces, m.points, inv_rot, inv_map)
    
    
    def AddOffsetFacesToModel(mdl, off, color = (0.0, 0.0, 0.0)):
      """Add the faces due to an offset into model.
    
      Returns the remaining interiors of the offset as a PolyAreas.
    
      Args:
        mdl: geom.Model - model to add offset faces into
        off: offset.Offset
        color: (float, float, float) - color to make the faces
      Returns:
        geom.PolyAreas
      """
    
      mdl.points = off.polyarea.points
      assert(len(mdl.points.pos) == 0 or len(mdl.points.pos[0]) == 3)
      o = off
      ostack = [ ]
      while o:
        if o.endtime != 0.0:
          for face in o.facespokes:
            n = len(face)
            for i, spoke in enumerate(face):
              nextspoke = face[(i+1) % n]
              v0 = spoke.origin
              v1 = nextspoke.origin
              v2 = nextspoke.dest
              v3 = spoke.dest
              if v2 == v3:
                mface = [v0, v1, v2]
              else:
                mface = [v0, v1, v2, v3]
              mdl.faces.append(mface)
              mdl.colors.append(color)
        ostack.extend(o.inneroffsets)
        if ostack:
          o = ostack.pop()
        else:
          o = None
      return off.InnerPolyAreas()
    
    
    def BevelSelectionInModel(mdl, selected_faces,
        bevel_amount, bevel_pitch, quadrangulate, as_region):
      """Bevel the selected faces in the model.
    
      If as_region is False, each face is beveled individually,
      otherwise regions of contiguous faces are merged into
      PolyAreas and beveled as a whole.
    
      TODO: something if extracted PolyAreas are not approximately
      planar.
    
      Args:
        mdl: geom.Model
        selected_faces: list of list of int
        bevel_amount: float - amount to inset
        bevel_pitch: float - angle of bevel side
        quadrangulate: bool - should insides be quadrangulated?
        as_region: bool - should faces be merged into regions?
      Side effect:
        Beveling faces will be added to the model
      """
    
      pas = []
      if as_region:
        pas = RegionToPolyAreas(selected_faces, mdl.points)
      else:
        for face in selected_faces:
          pas.append(geom.PolyArea(mdl.points, face))
      for pa in pas:
        BevelPolyAreaInModel(mdl, pa,
            bevel_amount, bevel_pitch, quadrangulate)
    
    
    def RegionToPolyAreas(faces, points):
      """Find polygonal outlines induced by union of faces.
    
      Finds the polygons formed by boundary edges (those not
      sharing an edge with another face in region_faces), and
      turns those into PolyAreas.
      In the general case, there will be holes inside.
    
      Args:
        faces: list of list of int - each sublist is a face (indices into points)
        points: geom.Points - gives coordinates for vertices
      Returns:
        list of geom.PolyArea
      """
    
      ans = []
      (edges, vtoe) = _GetEdgeData(faces)
      (face_adj, is_interior_edge) = _GetFaceGraph(faces, edges, vtoe, points)
      (components, ftoc) = _FindFaceGraphComponents(faces, face_adj)
      for c in range(len(components)):
        boundary_edges = set()
        vstobe = dict()
        for e, ((vs, ve), f) in enumerate(edges):
          if ftoc[f] != c or is_interior_edge[e]:
            continue
          boundary_edges.add(e)
          vstobe[vs] = e
        polys = []
        while boundary_edges:
          e = boundary_edges.pop()
          ((vstart, ve), _) = edges[e]
          poly = [ vstart, ve ]
          while ve != vstart:
            if ve not in vstobe:
              print("whoops, couldn't close boundary")
              break
            nexte = vstobe[ve]
            ((_, ve), _) = edges[nexte]
            boundary_edges.remove(nexte)
            if ve != vstart:
              poly.append(ve)
          polys.append(poly)
        if len(polys) == 0:
          # can happen if an entire closed polytope is given
          # at least until we do an edge check
          return []
        elif len(polys) == 1:
          ans.append(geom.PolyArea(points, polys[0]))
        else:
          outerf = _FindOuterPoly(polys, points)
          pa = geom.PolyArea(points, polys[outerf])
          pa.holes = [ polys[i] for i in range(len(polys)) if i != outerf ]
          ans.append(pa)
      return ans
    
    
    def _GetEdgeData(faces):
      """Find edges from faces, and some lookup dictionaries.
    
      Args:
        faces: list of list of int - each a closed CCW polygon of vertex indices
      Returns:
        (list of ((int, int), int), dict{ int->list of int}) -
          list elements are ((startv, endv), face index)
          dict maps vertices to edge indices
      """
    
      edges = []
      vtoe = dict()
      for findex, f in enumerate(faces):
        nf = len(f)
        for i, v in enumerate(f):
          endv = f[(i+1) % nf]
          edges.append(((v, endv), findex))
          eindex = len(edges)-1
          if v in vtoe:
            vtoe[v].append(eindex)
          else:
            vtoe[v] = [ eindex ]
      return (edges, vtoe)
    
    
    def _GetFaceGraph(faces, edges, vtoe, points):
      """Find the face adjacency graph.
    
      Faces are adjacent if they share an edge,
      and the shared edge goes in the reverse direction,
      and if the angle between them isn't too large.
    
      Args:
        faces: list of list of int
        edges: list of ((int, int), int) - see _GetEdgeData
        vtoe: dict{ int->list of int } - see _GetEdgeData
        points: geom.Points
      Returns:
        (list of  list of int, list of bool) -
          first list: each sublist is adjacent face indices for each face
          second list: maps edge index to True if it separates adjacent faces
      """
    
      face_adj = [ [] for i in range(len(faces)) ]
      is_interior_edge = [ False ] * len(edges)
      for e, ((vs, ve), f) in enumerate(edges):
        for othere in vtoe[ve]:
          ((_, we), g) = edges[othere]
          if we == vs:
            # face g is adjacent to face f
            # TODO: angle check
            if g not in face_adj[f]:
              face_adj[f].append(g)
              is_interior_edge[e] = True
            # Don't bother with mirror relations, will catch later
      return (face_adj, is_interior_edge)
    
    
    def _FindFaceGraphComponents(faces, face_adj):
      """Partition faces into connected components.
    
      Args:
        faces: list of list of int
        face_adj: list of list of int - see _GetFaceGraph
      Returns:
        (list of list of int, list of int) -
          first list partitions face indices into separate lists, each a component
          second list maps face indices into their component index
      """
    
      if not faces:
        return ([], [])
      components = []
      ftoc = [ -1 ] * len(faces)
      for i in range(len(faces)):
        if ftoc[i] == -1:
          compi = len(components)
          comp = []
          _FFGCSearch(i, faces, face_adj, ftoc, compi, comp)
          components.append(comp)
      return (components, ftoc)
    
    
    def _FFGCSearch(findex, faces, face_adj, ftoc, compi, comp):
      """Depth first search helper function for _FindFaceGraphComponents
    
      Searches recursively through all faces connected to findex, adding
      each face found to comp and setting ftoc for that face to compi.
      """
    
      comp.append(findex)
      ftoc[findex] = compi
      for otherf in face_adj[findex]:
        if ftoc[otherf] == -1:
          _FFGCSearch(otherf, faces, face_adj, ftoc, compi, comp)
    
    def _FindOuterPoly(polys, points):
      """Assuming polys has one that contains the rest, find that one.
    
      Args:
        polys: list of list of int - list of polys given by vertex indices
        points: geom.Points
      Returns:
        int - the index in polys of the outermost one
      """
    
      if len(polys) < 2:
        return 0
      for i, poly in enumerate(polys):
        otherpoly = polys[(i+1) % len(polys)]
        if geom.PointInside(points.pos[otherpoly[0]], poly, points) == 1:
          return i
      print("whoops, couldn't find an outermost poly")
      return 0
    
    
    def _RotatedPolyAreaToXY(polyarea, norm):
      """Return a  PolyArea rotated to xy plane.
    
      Only the points in polyarea will be transferred.
    
      Args:
        polyarea: geom.PolyArea
        norm: the normal for polyarea
      Returns:
        (geom.PolyArea, (float, ..., float), dict{ int -> int }) - new PolyArea,
            4x3 inverse transform, dict mapping new verts to old ones
      """
    
      # find rotation matrix that takes norm to (0,0,1)
      (nx, ny, nz) = norm
      if abs(nx) < abs(ny) and abs(nx) < abs(nz):
        v = (vx, vy, vz) = geom.Norm3(0.0, nz, - ny)
      elif abs(ny) < abs(nz):
        v = (vx, vy, vz) = geom.Norm3(nz, 0.0, - nx)
      else:
        v = (vx, vy, vz) = geom.Norm3(ny, - nx, 0.0)
      (ux, uy, uz) = geom.Cross3(v, norm)
      rotmat = [ux, vx, nx, uy, vy, ny, uz, vz, nz, 0.0, 0.0, 0.0]
      # rotation matrices are orthogonal, so inverse is transpose
      invrotmat = [ux, uy, uz, vx, vy, vz, nx, ny, nz, 0.0, 0.0, 0.0]
      pointmap = dict()
      invpointmap = dict()
      newpoints = geom.Points()
      for poly in [polyarea.poly] + polyarea.holes:
        for v in poly:
          vcoords = polyarea.points.pos[v]
          newvcoords = geom.MulPoint3(vcoords, rotmat)
          newv = newpoints.AddPoint(newvcoords)
          pointmap[v] = newv
          invpointmap[newv] = v
      pa = geom.PolyArea(newpoints)
      pa.poly = [ pointmap[v] for v in polyarea.poly ]
      pa.holes = [ [ pointmap[v] for v in hole ] for hole in polyarea.holes ]
      return (pa, invrotmat, invpointmap)
    
    
    def _AddTransformedPolysToModel(mdl, polys, points, transform, pointmap):
      """Add (transformed) the points and faces to a model.
    
      Add polys to mdl.  The polys have coordinates given by indices into points.pos;
      those need to be transformed by multiplying by the transform matrix.
      The vertices may already exist in mdl.  Rather than relying on AddPoint to detect
      the duplicate (transform rounding error makes that dicey), the pointmap dictionary
      is used to map vertex indices in polys into those in mdl - if they exist already.
    
      Args:
        mdl: geom.Model - where to put new vertices, faces
        polys: list of list of int - each sublist a poly
        points: geom.Points - coords for vertices in polys
        transform: (float, ..., float) - 12-tuple, a 4x3 transform matrix
        pointmap: dict { int -> int } - maps new vertex indices to old ones
      Side Effects:
        The model gets new faces and vertices, based on those in polys.
        We are allowed to modify pointmap, as it will be discarded after call.
      """
    
      for i, coords in enumerate(points.pos):
        if i not in pointmap:
          p = geom.MulPoint3(coords, transform)
          pointmap[i] = mdl.points.AddPoint(p)
      for poly in polys:
        mpoly = [ pointmap[v] for v in poly ]
        mdl.faces.append(mpoly)