Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
"""Manipulations of Models.
"""
__author__ = "howard.trickey@gmail.com"
from . import geom
from . import triquad
from . import offset
import math
def PolyAreasToModel(polyareas, bevel_amount, bevel_pitch, quadrangulate):
"""Convert a PolyAreas into a Model object.
Assumes polyareas are in xy plane.
Args:
polyareas: geom.PolyAreas
bevel_amount: float - if > 0, amount of bevel
bevel_pitch: float - if > 0, angle in radians of bevel
quadrangulate: bool - should n-gons be quadrangulated?
Returns:
geom.Model
"""
m = geom.Model()
if not polyareas:
return m
polyareas.points.AddZCoord(0.0)
m.points = polyareas.points
for pa in polyareas.polyareas:
PolyAreaToModel(m, pa, bevel_amount, bevel_pitch, quadrangulate)
return m
def PolyAreaToModel(m, pa, bevel_amount, bevel_pitch, quadrangulate):
if bevel_amount > 0.0:
BevelPolyAreaInModel(m, pa, bevel_amount, bevel_pitch, quadrangulate)
elif quadrangulate:
if len(pa.poly) == 0:
return
qpa = triquad.QuadrangulateFaceWithHoles(pa.poly, pa.holes, pa.points)
m.faces.extend(qpa)
m.colors.extend([ pa.color ] * len(qpa))
else:
m.faces.append(pa.poly)
# TODO: just the first part of QuadrangulateFaceWithHoles, to join
# holes to outer poly
m.colors.append(pa.color)
def ExtrudePolyAreasInModel(mdl, polyareas, depth, cap_back):
"""Extrude the boundaries given by polyareas by -depth in z.
Assumes polyareas are in xy plane.
Arguments:
mdl: geom.Model - where to do extrusion
polyareas: geom.Polyareas
depth: float
cap_back: bool - if True, cap off the back
Side Effects:
For all edges in polys in polyareas, make quads in Model
extending those edges by depth in the negative z direction.
The color will be the color of the face that the edge is part of.
"""
for pa in polyareas.polyareas:
back_poly = _ExtrudePoly(mdl, pa.poly, depth, pa.color, True)
back_holes = []
for p in pa.holes:
back_holes.append(_ExtrudePoly(mdl, p, depth, pa.color, False))
if cap_back:
qpa = triquad.QuadrangulateFaceWithHoles(back_poly, back_holes,
polyareas.points)
# need to reverse each poly to get normals pointing down
for i, p in enumerate(qpa):
t = list(p)
t.reverse()
qpa[i] = tuple(t)
model.faces.extend(qpa)
model.colors.extend([pa.color] * len(qpa))
def _ExtrudePoly(mdl, poly, depth, color, isccw):
"""Extrude the poly by -depth in z
Arguments:
mdl: geom.Model - where to do extrusion
poly: list of vertex indices
depth: float
color: tuple of three floats
isccw: True if counter-clockwise
Side Effects
For all edges in poly, make quads in Model
extending those edges by depth in the negative z direction.
The color will be the color of the face that the edge is part of.
Returns:
list of int - vertices for extruded poly
"""
if len(poly) < 2:
return
extruded_poly = []
points = mdl.points
if isccw:
incr = 1
else:
incr = -1
for i, v in enumerate(poly):
vnext = poly[(i+incr) % len(poly)]
(x0,y0,z0) = points.pos[v]
(x1,y1,z1) = points.pos[vnext]
vextrude = points.AddPoint((x0,y0,z0-depth))
vnextextrude = points.AddPoint((x1,y1,z1-depth))
if isccw:
sideface = [v, vextrude, vnextextrude, vnext]
else:
sideface = [v, vnext, vnextextrude, vextrude]
mdl.faces.append(sideface)
mdl.colors.append(color)
extruded_poly.append(vextrude)
return extruded_poly
def BevelPolyAreaInModel(mdl, polyarea,
bevel_amount, bevel_pitch, quadrangulate):
"""Bevel the interior of polyarea in model.
This does smart beveling: advancing edges are merged
rather than doing an 'overlap'. Advancing edges that
hit an opposite edge result in a split into two beveled areas.
If the polyarea is not in the xy plane, do the work in a
transformed model, and then transfer the changes back.
Arguments:
mdl: geom.Model - where to do bevel
polyarea geom.PolyArea - area to bevel into
bevel_amount: float - if > 0, amount of bevel
bevel_pitch: float - if > 0, angle in radians of bevel
quadrangulate: bool - should n-gons be quadrangulated?
Side Effects:
Faces and points are added to model to model the
bevel and the interior of the polyareas.
"""
pa_norm = polyarea.Normal()
if pa_norm == (0.0, 0.0, 1.0):
m = mdl
pa_rot = polyarea
else:
(pa_rot, inv_rot, inv_map) = _RotatedPolyAreaToXY(polyarea, pa_norm)
# don't actually have to add the original faces into model, just their points.
m = geom.Model()
m.points = pa_rot.points
vspeed = math.tan(bevel_pitch)
off = offset.Offset(pa_rot, 0.0, vspeed)
off.Build(bevel_amount)
inner_pas = AddOffsetFacesToModel(m, off, polyarea.color)
for pa in inner_pas.polyareas:
if quadrangulate:
if len(pa.poly) == 0:
continue
qpa = triquad.QuadrangulateFaceWithHoles(pa.poly, pa.holes, pa.points)
m.faces.extend(qpa)
m.colors.extend([ pa.color ] * len(qpa))
else:
m.faces.append(pa.poly)
m.colors.append(pa.color)
if m != mdl:
_AddTransformedPolysToModel(mdl, m.faces, m.points, inv_rot, inv_map)
def AddOffsetFacesToModel(mdl, off, color = (0.0, 0.0, 0.0)):
"""Add the faces due to an offset into model.
Returns the remaining interiors of the offset as a PolyAreas.
Args:
mdl: geom.Model - model to add offset faces into
off: offset.Offset
color: (float, float, float) - color to make the faces
Returns:
geom.PolyAreas
"""
mdl.points = off.polyarea.points
assert(len(mdl.points.pos) == 0 or len(mdl.points.pos[0]) == 3)
o = off
ostack = [ ]
while o:
if o.endtime != 0.0:
for face in o.facespokes:
n = len(face)
for i, spoke in enumerate(face):
nextspoke = face[(i+1) % n]
v0 = spoke.origin
v1 = nextspoke.origin
v2 = nextspoke.dest
v3 = spoke.dest
if v2 == v3:
mface = [v0, v1, v2]
else:
mface = [v0, v1, v2, v3]
mdl.faces.append(mface)
mdl.colors.append(color)
ostack.extend(o.inneroffsets)
if ostack:
o = ostack.pop()
else:
o = None
return off.InnerPolyAreas()
def BevelSelectionInModel(mdl, selected_faces,
bevel_amount, bevel_pitch, quadrangulate, as_region):
"""Bevel the selected faces in the model.
If as_region is False, each face is beveled individually,
otherwise regions of contiguous faces are merged into
PolyAreas and beveled as a whole.
TODO: something if extracted PolyAreas are not approximately
planar.
Args:
mdl: geom.Model
selected_faces: list of list of int
bevel_amount: float - amount to inset
bevel_pitch: float - angle of bevel side
quadrangulate: bool - should insides be quadrangulated?
as_region: bool - should faces be merged into regions?
Side effect:
Beveling faces will be added to the model
"""
pas = []
if as_region:
pas = RegionToPolyAreas(selected_faces, mdl.points)
else:
for face in selected_faces:
pas.append(geom.PolyArea(mdl.points, face))
for pa in pas:
BevelPolyAreaInModel(mdl, pa,
bevel_amount, bevel_pitch, quadrangulate)
def RegionToPolyAreas(faces, points):
"""Find polygonal outlines induced by union of faces.
Finds the polygons formed by boundary edges (those not
sharing an edge with another face in region_faces), and
turns those into PolyAreas.
In the general case, there will be holes inside.
Args:
faces: list of list of int - each sublist is a face (indices into points)
points: geom.Points - gives coordinates for vertices
Returns:
list of geom.PolyArea
"""
ans = []
(edges, vtoe) = _GetEdgeData(faces)
(face_adj, is_interior_edge) = _GetFaceGraph(faces, edges, vtoe, points)
(components, ftoc) = _FindFaceGraphComponents(faces, face_adj)
for c in range(len(components)):
boundary_edges = set()
vstobe = dict()
for e, ((vs, ve), f) in enumerate(edges):
if ftoc[f] != c or is_interior_edge[e]:
continue
boundary_edges.add(e)
vstobe[vs] = e
polys = []
while boundary_edges:
e = boundary_edges.pop()
((vstart, ve), _) = edges[e]
poly = [ vstart, ve ]
while ve != vstart:
if ve not in vstobe:
print("whoops, couldn't close boundary")
break
nexte = vstobe[ve]
((_, ve), _) = edges[nexte]
boundary_edges.remove(nexte)
if ve != vstart:
poly.append(ve)
polys.append(poly)
if len(polys) == 0:
# can happen if an entire closed polytope is given
# at least until we do an edge check
return []
elif len(polys) == 1:
ans.append(geom.PolyArea(points, polys[0]))
else:
outerf = _FindOuterPoly(polys, points)
pa = geom.PolyArea(points, polys[outerf])
pa.holes = [ polys[i] for i in range(len(polys)) if i != outerf ]
ans.append(pa)
return ans
def _GetEdgeData(faces):
"""Find edges from faces, and some lookup dictionaries.
Args:
faces: list of list of int - each a closed CCW polygon of vertex indices
Returns:
(list of ((int, int), int), dict{ int->list of int}) -
list elements are ((startv, endv), face index)
dict maps vertices to edge indices
"""
edges = []
vtoe = dict()
for findex, f in enumerate(faces):
nf = len(f)
for i, v in enumerate(f):
endv = f[(i+1) % nf]
edges.append(((v, endv), findex))
eindex = len(edges)-1
if v in vtoe:
vtoe[v].append(eindex)
else:
vtoe[v] = [ eindex ]
return (edges, vtoe)
def _GetFaceGraph(faces, edges, vtoe, points):
"""Find the face adjacency graph.
Faces are adjacent if they share an edge,
and the shared edge goes in the reverse direction,
and if the angle between them isn't too large.
Args:
faces: list of list of int
edges: list of ((int, int), int) - see _GetEdgeData
vtoe: dict{ int->list of int } - see _GetEdgeData
points: geom.Points
Returns:
(list of list of int, list of bool) -
first list: each sublist is adjacent face indices for each face
second list: maps edge index to True if it separates adjacent faces
"""
face_adj = [ [] for i in range(len(faces)) ]
is_interior_edge = [ False ] * len(edges)
for e, ((vs, ve), f) in enumerate(edges):
for othere in vtoe[ve]:
((_, we), g) = edges[othere]
if we == vs:
# face g is adjacent to face f
# TODO: angle check
if g not in face_adj[f]:
face_adj[f].append(g)
is_interior_edge[e] = True
# Don't bother with mirror relations, will catch later
return (face_adj, is_interior_edge)
def _FindFaceGraphComponents(faces, face_adj):
"""Partition faces into connected components.
Args:
faces: list of list of int
face_adj: list of list of int - see _GetFaceGraph
Returns:
(list of list of int, list of int) -
first list partitions face indices into separate lists, each a component
second list maps face indices into their component index
"""
if not faces:
return ([], [])
components = []
ftoc = [ -1 ] * len(faces)
for i in range(len(faces)):
if ftoc[i] == -1:
compi = len(components)
comp = []
_FFGCSearch(i, faces, face_adj, ftoc, compi, comp)
components.append(comp)
return (components, ftoc)
def _FFGCSearch(findex, faces, face_adj, ftoc, compi, comp):
"""Depth first search helper function for _FindFaceGraphComponents
Searches recursively through all faces connected to findex, adding
each face found to comp and setting ftoc for that face to compi.
"""
comp.append(findex)
ftoc[findex] = compi
for otherf in face_adj[findex]:
if ftoc[otherf] == -1:
_FFGCSearch(otherf, faces, face_adj, ftoc, compi, comp)
def _FindOuterPoly(polys, points):
"""Assuming polys has one that contains the rest, find that one.
Args:
polys: list of list of int - list of polys given by vertex indices
points: geom.Points
Returns:
int - the index in polys of the outermost one
"""
if len(polys) < 2:
return 0
for i, poly in enumerate(polys):
otherpoly = polys[(i+1) % len(polys)]
if geom.PointInside(points.pos[otherpoly[0]], poly, points) == 1:
return i
print("whoops, couldn't find an outermost poly")
return 0
def _RotatedPolyAreaToXY(polyarea, norm):
"""Return a PolyArea rotated to xy plane.
Only the points in polyarea will be transferred.
Args:
polyarea: geom.PolyArea
norm: the normal for polyarea
Returns:
(geom.PolyArea, (float, ..., float), dict{ int -> int }) - new PolyArea,
4x3 inverse transform, dict mapping new verts to old ones
"""
# find rotation matrix that takes norm to (0,0,1)
(nx, ny, nz) = norm
if abs(nx) < abs(ny) and abs(nx) < abs(nz):
v = (vx, vy, vz) = geom.Norm3(0.0, nz, - ny)
elif abs(ny) < abs(nz):
v = (vx, vy, vz) = geom.Norm3(nz, 0.0, - nx)
else:
v = (vx, vy, vz) = geom.Norm3(ny, - nx, 0.0)
(ux, uy, uz) = geom.Cross3(v, norm)
rotmat = [ux, vx, nx, uy, vy, ny, uz, vz, nz, 0.0, 0.0, 0.0]
# rotation matrices are orthogonal, so inverse is transpose
invrotmat = [ux, uy, uz, vx, vy, vz, nx, ny, nz, 0.0, 0.0, 0.0]
pointmap = dict()
invpointmap = dict()
newpoints = geom.Points()
for poly in [polyarea.poly] + polyarea.holes:
for v in poly:
vcoords = polyarea.points.pos[v]
newvcoords = geom.MulPoint3(vcoords, rotmat)
newv = newpoints.AddPoint(newvcoords)
pointmap[v] = newv
invpointmap[newv] = v
pa = geom.PolyArea(newpoints)
pa.poly = [ pointmap[v] for v in polyarea.poly ]
pa.holes = [ [ pointmap[v] for v in hole ] for hole in polyarea.holes ]
return (pa, invrotmat, invpointmap)
def _AddTransformedPolysToModel(mdl, polys, points, transform, pointmap):
"""Add (transformed) the points and faces to a model.
Add polys to mdl. The polys have coordinates given by indices into points.pos;
those need to be transformed by multiplying by the transform matrix.
The vertices may already exist in mdl. Rather than relying on AddPoint to detect
the duplicate (transform rounding error makes that dicey), the pointmap dictionary
is used to map vertex indices in polys into those in mdl - if they exist already.
Args:
mdl: geom.Model - where to put new vertices, faces
polys: list of list of int - each sublist a poly
points: geom.Points - coords for vertices in polys
transform: (float, ..., float) - 12-tuple, a 4x3 transform matrix
pointmap: dict { int -> int } - maps new vertex indices to old ones
Side Effects:
The model gets new faces and vertices, based on those in polys.
We are allowed to modify pointmap, as it will be discarded after call.
"""
for i, coords in enumerate(points.pos):
if i not in pointmap:
p = geom.MulPoint3(coords, transform)
pointmap[i] = mdl.points.AddPoint(p)
for poly in polys:
mpoly = [ pointmap[v] for v in poly ]
mdl.faces.append(mpoly)