Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
#
# Uses volume calculation and manifold check code (GPL2+) from:
# http://www.shapeways.com/forum/index.php?t=msg&goto=3639
# Shapeways Volume Calculator by Benjamin Lauritzen (Loonsbury)
#
# #################################
"author": "Buerbaum Martin (Pontiac), TNae (Normal patch)," \
" Benjamin Lauritzen (Loonsbury; Volume code)," \
" Alessandro Sala (patch: Units in 3D View)",
"location": "View3D > Properties > Measure Panel",
"description": "Measure distances between objects",
"warning": "Script needs repairs",
"wiki_url": "http://wiki.blender.org/index.php/Extensions:2.5/Py/" \
"Scripts/3D_interaction/Panel_Measure",
"tracker_url": "https://projects.blender.org/tracker/index.php?" \
Measure panel
This script displays in OBJECT MODE:
* The distance of the 3D cursor to the origin of the
3D space (if NOTHING is selected).
* The distance of the 3D cursor to the center of an object
(if exactly ONE object is selected).
* The distance between 2 object centers
(if exactly TWO objects are selected).
* The surface area of any selected mesh object.
* The average normal of the mesh surface of any selected mesh object.
* The volume of any selected mesh object.
Display in EDIT MODE (Local and Global space supported):
* The distance of the 3D cursor to the origin
(in Local space it is the object center instead).
* The distance of the 3D cursor to a selected vertex.
* The distance between 2 selected vertices.
Usage:
This functionality can be accessed via the
"Properties" panel in 3D View ([N] key).
It's very helpful to use one or two "Empty" objects with
"Snap during transform" enabled for fast measurement.
More links:
http://gitorious.org/blender-scripts/blender-measure-panel-script
http://blenderartists.org/forum/showthread.php?t=177800
"""
import bpy
from bpy.props import *
from mathutils import Vector, Matrix
import bgl
import blf
from bpy_extras.view3d_utils import location_3d_to_region_2d
from bpy_extras.mesh_utils import ngon_tesselate
# Precicion for display of float values.
PRECISION = 4
# Name of the custom properties as stored in the scene.
COLOR_LOCAL = (1.0, 0.5, 0.0, 0.8)
COLOR_GLOBAL = (0.5, 0.0, 1.0, 0.8)
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Returns a tuple describing the current measuring system
# and formatting options.
# Returned data is meant to be passed to formatDistance().
# Original by Alessandro Sala (Feb, 12th 2012)
def getUnitsInfo():
scale = bpy.context.scene.unit_settings.scale_length
unit_system = bpy.context.scene.unit_settings.system
separate_units = bpy.context.scene.unit_settings.use_separate
if unit_system == 'METRIC':
scale_steps = ((1000, 'km'), (1, 'm'), (1 / 100, 'cm'),
(1 / 1000, 'mm'), (1 / 1000000, '\u00b5m'))
elif unit_system == 'IMPERIAL':
scale_steps = ((1760, 'mi'), (1, 'yd'), (1 / 3, '\''),
(1 / 36, '"'), (1 / 36000, 'thou'))
scale *= 1.0936133
else:
scale_steps = ((1, ' BU'),)
separate_units = False
return (scale, scale_steps, separate_units)
# Converts a distance from BU into the measuring system
# described by units_info.
# Original by Alessandro Sala (Feb, 12th 2012)
def convertDistance(val, units_info):
scale, scale_steps, separate_units = units_info
sval = val * scale
rsval = round(sval, PRECISION)
idx = 0
while idx < len(scale_steps) - 1:
if rsval >= scale_steps[idx][0]:
break
idx += 1
factor, suffix = scale_steps[idx]
sval /= factor
if not separate_units or idx == len(scale_steps) - 1:
dval = str(round(sval, PRECISION)) + suffix
else:
ival = int(sval)
dval = str(ival) + suffix
fval = sval - ival
idx += 1
while idx < len(scale_steps):
fval *= scale_steps[idx - 1][0] / scale_steps[idx][0]
if fval >= 1:
dval += ' ' \
+ str(round(fval, 1)) \
+ scale_steps[idx][1]
break
idx += 1
return dval
# Returns a single selected object.
# Returns None if more than one (or nothing) is selected.
# Note: Ignores the active object.
def getSingleObject(context):
if len(context.selected_objects) == 1:
return context.selected_objects[0]
return None
# Returns a list with 2 3D points (Vector) and a color (RGBA)
# depending on the current view mode and the selection.
def getMeasurePoints(context):
sce = context.scene
# Get a single selected object (or nothing).
obj = getSingleObject(context)
if context.mode == 'EDIT_MESH':
obj = context.active_object
if obj and obj.type == 'MESH' and obj.data:
# Get mesh data from Object.
mesh = obj.data
# Get the selected vertices.
# @todo: Better (more efficient) way to do this?
verts_selected = [v for v in mesh.vertices if v.select == 1]
if len(verts_selected) == 0:
# Nothing selected.
# We measure the distance from...
# local ... the object center to the 3D cursor.
# global ... the origin to the 3D cursor.
cur_loc = sce.cursor_location
obj_loc = obj.matrix_world.to_translation()
# Convert to local space, if needed.
if measureLocal(sce):
p1 = cur_loc
p2 = obj_loc
return (p1, p2, COLOR_GLOBAL)
else:
p1 = Vector((0.0, 0.0, 0.0))
p2 = cur_loc
return (p1, p2, COLOR_GLOBAL)
elif len(verts_selected) == 1:
# One vertex selected.
# We measure the distance from the
# selected vertex object to the 3D cursor.
cur_loc = sce.cursor_location
vert_loc = verts_selected[0].co.copy()
# Convert to local or global space.
if measureLocal(sce):
p2 = cur_loc
return (p1, p2, COLOR_LOCAL)
else:
p1 = obj.matrix_world * vert_loc
p2 = cur_loc
return (p1, p2, COLOR_GLOBAL)
elif len(verts_selected) == 2:
# Two vertices selected.
# We measure the distance between the
# two selected vertices.
obj_loc = obj.matrix_world.to_translation()
vert1_loc = verts_selected[0].co.copy()
vert2_loc = verts_selected[1].co.copy()
# Convert to local or global space.
if measureLocal(sce):
return (p1, p2, COLOR_LOCAL)
else:
p1 = obj.matrix_world * vert1_loc
p2 = obj.matrix_world * vert2_loc
return (p1, p2, COLOR_GLOBAL)
else:
return None
elif context.mode == 'OBJECT':
if len(context.selected_objects) > 2:
return None
elif len(context.selected_objects) == 2:
# 2 objects selected.
# We measure the distance between the 2 selected objects.
obj1, obj2 = context.selected_objects
obj1_loc = obj1.matrix_world.to_translation()
obj2_loc = obj2.matrix_world.to_translation()
return (obj1_loc, obj2_loc, COLOR_GLOBAL)
# One object selected.
# We measure the distance from the object to the 3D cursor.
cur_loc = sce.cursor_location
obj_loc = obj.matrix_world.to_translation()
return (obj_loc, cur_loc, COLOR_GLOBAL)
elif not context.selected_objects:
# Nothing selected.
# We measure the distance from the origin to the 3D cursor.
p1 = Vector((0.0, 0.0, 0.0))
p2 = sce.cursor_location
return (p1, p2, COLOR_GLOBAL)
else:
return None
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# Return the length of an edge (in global space if "obj" is set).
# Respects the scaling (via the "obj.matrix_world" parameter).
def edgeLengthGlobal(edge, obj, globalSpace):
v1, v2 = edge.vertices
# Get vertex data
v1 = obj.data.vertices[v1]
v2 = obj.data.vertices[v2]
if globalSpace:
mat = obj.matrix_world
# Apply transform matrix to vertex coordinates.
v1 = mat * v1.co
v2 = mat * v2.co
else:
v1 = v1.co
v2 = v2.co
return (v1 - v2).length
# Calculate the edge length of a mesh object.
# *) Set selectedOnly=1 if you only want to count selected edges.
# *) Set globalSpace=1 if you want to calculate
# the global edge length (object mode).
# Note: Be sure you have updated the mesh data before
# running this with selectedOnly=1!
# @todo Support other object types (surfaces, etc...)?
def objectEdgeLength(obj, selectedOnly, globalSpace):
if obj and obj.type == 'MESH' and obj.data:
edgeTotal = 0
mesh = obj.data
# Count the length of all edges.
for ed in mesh.edges:
if not selectedOnly or ed.select:
edgeTotal += edgeLengthGlobal(ed, obj, globalSpace)
return edgeTotal
# We can not calculate a length for this object.
return -1
# Return the area of a face (in global space).
# @note Copies the functionality of the following functions,
# but also respects the scaling (via the "obj.matrix_world" parameter):
# @sa: rna_mesh.c:rna_MeshFace_area_get
# @sa: math_geom.c:area_quad_v3
# @sa: math_geom.c:area_tri_v3
# @sa: math_geom.c:area_poly_v3
# @todo Fix calculation of "n" for n-gons?
def polyAreaGlobal(poly, obj):
mesh = obj.data
mat = obj.matrix_world.copy()
if len(poly.vertices) > 3:
# Tesselate the polygon into multiple tris
tris = ngon_tesselate(mesh, poly.vertices)
for tri in tris:
# Get vertex data
v1, v2, v3 = tri
# Get indices from original poly
v1 = poly.vertices[v1]
v2 = poly.vertices[v2]
v3 = poly.vertices[v3]
# Get vertex information from indices
v1 = mesh.vertices[v1]
v2 = mesh.vertices[v2]
v3 = mesh.vertices[v3]
# Apply transform matrix to vertex coordinates.
v1 = mat * v1.co
v2 = mat * v2.co
v3 = mat * v3.co
# Calculate area for the new tri
vec1 = v3 - v2
vec2 = v1 - v2
# Triangle
# Get vertex indices
# Get vertex data
v1 = mesh.vertices[v1]
v2 = mesh.vertices[v2]
v3 = mesh.vertices[v3]
# Apply transform matrix to vertex coordinates.
v1 = mat * v1.co
v2 = mat * v2.co
v3 = mat * v3.co
vec1 = v3 - v2
vec2 = v1 - v2
n = vec1.cross(vec2)
area = n.length / 2.0
# Apply world matrix to normal as well.
norm = mat * norm
return area, norm
# Calculate the surface area of a mesh object.
# *) Set selectedOnly=1 if you only want to count selected faces.
# *) Set globalSpace=1 if you want to calculate
# the global surface area (object mode).
# Note: Be sure you have updated the mesh data before
# running this with selectedOnly=1!
# @todo Support other object types (surfaces, etc...)?
def objectSurfaceArea(obj, selectedOnly, globalSpace):
if obj and obj.type == 'MESH' and obj.data:
areaTotal = 0
mesh = obj.data
# Count the area of all the faces.
for poly in mesh.polygons:
if not selectedOnly or poly.select:
if globalSpace:
else:
areaTotal += poly.area
normTotal += poly.normal
# We can not calculate an area for this object.
# Calculate the volume of a mesh object.
# Copyright Loonsbury (loonsbury@yahoo.com)
def objectVolume(obj, globalSpace):
if obj and obj.type == 'MESH' and obj.data:
# Check if mesh is non-manifold
if not checkManifold(obj):
return -1
# Check if mesh has n-gons
if checkNgon(obj):
return -2
mesh = obj.data
volTot = 0
for poly in mesh.polygons:
fzn = poly.normal.z
if len(poly.vertices) == 4:
v1, v2, v3, v4 = poly.vertices
v1 = mesh.vertices[v1]
v2 = mesh.vertices[v2]
v3 = mesh.vertices[v3]
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# Scaled vert coordinates with object XYZ offsets for
# selection extremes/sizing.
if globalSpace:
x1 = v1.co[0] * obj.scale[0] + obj.location[0]
y1 = v1.co[1] * obj.scale[1] + obj.location[1]
z1 = v1.co[2] * obj.scale[2] + obj.location[2]
x2 = v2.co[0] * obj.scale[0] + obj.location[0]
y2 = v2.co[1] * obj.scale[1] + obj.location[1]
z2 = v2.co[2] * obj.scale[2] + obj.location[2]
x3 = v3.co[0] * obj.scale[0] + obj.location[0]
y3 = v3.co[1] * obj.scale[1] + obj.location[1]
z3 = v3.co[2] * obj.scale[2] + obj.location[2]
else:
x1, y1, z1 = v1.co
x2, y2, z2 = v2.co
x3, y3, z3 = v3.co
pa = 0.5 * abs(
(x1 * (y3 - y2))
+ (x2 * (y1 - y3))
+ (x3 * (y2 - y1)))
volume = ((z1 + z2 + z3) / 3.0) * pa
# Allowing for quads
v4 = mesh.vertices[v4]
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
if globalSpace:
x4 = v4.co[0] * obj.scale[0] + obj.location[0]
y4 = v4.co[1] * obj.scale[1] + obj.location[1]
z4 = v4.co[2] * obj.scale[2] + obj.location[2]
else:
x4, y4, z4 = v4.co
pa = 0.5 * abs(
(x1 * (y4 - y3))
+ (x3 * (y1 - y4))
+ (x4 * (y3 - y1)))
volume += ((z1 + z3 + z4) / 3.0) * pa
if fzn < 0:
fzn = -1
elif fzn > 0:
fzn = 1
else:
fzn = 0
volTot += fzn * volume
return volTot
# else:
# print obj.name, ': Object must be a mesh!' # TODO
# Manifold Checks
# Copyright Loonsbury (loonsbury@yahoo.com)
def checkManifold(obj):
if obj and obj.type == 'MESH' and obj.data:
mesh = obj.data
mc = dict([(ed.key, 0) for ed in mesh.edges]) # TODO
for p in mesh.polygons:
for ek in p.edge_keys:
mc[ek] += 1
if mc[ek] > 2:
return 0
mt = [e[1] for e in mc.items()]
mt.sort()
if mt[0] < 2:
return 0
if mt[len(mt) - 1] > 2:
return 0
return 1
else:
return -1
# Check if a mesh has n-gons (polygon with more than 4 edges).
def checkNgon(obj):
if obj and obj.type == 'MESH' and obj.data:
mesh = obj.data
for p in mesh.polygons:
if len(p.vertices) > 4:
return 1
return 0
else:
return -1
# User friendly access to the "space" setting.
def measureGlobal(sce):
return (sce.measure_panel_transform == "measure_global")
# User friendly access to the "space" setting.
def measureLocal(sce):
return (sce.measure_panel_transform == "measure_local")
def draw_measurements_callback(self, context):
sce = context.scene
draw = 0
if hasattr(sce, "measure_panel_draw"):
draw = sce.measure_panel_draw
# 2D drawing code example
#bgl.glBegin(bgl.GL_LINE_STRIP)
#bgl.glVertex2i(0, 0)
#bgl.glVertex2i(80, 100)
#bgl.glEnd()
# Get measured 3D points and colors.
line = getMeasurePoints(context)
if line and draw:
p1, p2, color = line
# Get and convert the Perspective Matrix of the current view/region.
view3d = bpy.context
region = view3d.region_data
perspMatrix = region.perspective_matrix
tempMat = [perspMatrix[j][i] for i in range(4) for j in range(4)]
perspBuff = bgl.Buffer(bgl.GL_FLOAT, 16, tempMat)
# ---
# Store previous OpenGL settings.
# Store MatrixMode
MatrixMode_prev = bgl.Buffer(bgl.GL_INT, [1])
bgl.glGetIntegerv(bgl.GL_MATRIX_MODE, MatrixMode_prev)
MatrixMode_prev = MatrixMode_prev[0]
# Store projection matrix
ProjMatrix_prev = bgl.Buffer(bgl.GL_DOUBLE, [16])
bgl.glGetFloatv(bgl.GL_PROJECTION_MATRIX, ProjMatrix_prev)
# Store Line width
lineWidth_prev = bgl.Buffer(bgl.GL_FLOAT, [1])
bgl.glGetFloatv(bgl.GL_LINE_WIDTH, lineWidth_prev)
lineWidth_prev = lineWidth_prev[0]
# Store GL_BLEND
blend_prev = bgl.Buffer(bgl.GL_BYTE, [1])
bgl.glGetFloatv(bgl.GL_BLEND, blend_prev)
blend_prev = blend_prev[0]
line_stipple_prev = bgl.Buffer(bgl.GL_BYTE, [1])
bgl.glGetFloatv(bgl.GL_LINE_STIPPLE, line_stipple_prev)
line_stipple_prev = line_stipple_prev[0]
# Store glColor4f
color_prev = bgl.Buffer(bgl.GL_FLOAT, [4])
bgl.glGetFloatv(bgl.GL_COLOR, color_prev)
# ---
# Prepare for 3D drawing
bgl.glLoadIdentity()
bgl.glMatrixMode(bgl.GL_PROJECTION)
bgl.glLoadMatrixf(perspBuff)
bgl.glEnable(bgl.GL_BLEND)
bgl.glEnable(bgl.GL_LINE_STIPPLE)
# ---
# Draw 3D stuff.
width = 1
bgl.glLineWidth(width)
# X
bgl.glColor4f(1, 0, 0, 0.8)
bgl.glBegin(bgl.GL_LINE_STRIP)
bgl.glVertex3f(p1[0], p1[1], p1[2])
bgl.glVertex3f(p2[0], p1[1], p1[2])
bgl.glEnd()
# Y
bgl.glColor4f(0, 1, 0, 0.8)
bgl.glBegin(bgl.GL_LINE_STRIP)
bgl.glVertex3f(p1[0], p1[1], p1[2])
bgl.glVertex3f(p1[0], p2[1], p1[2])
bgl.glEnd()
# Z
bgl.glColor4f(0, 0, 1, 0.8)
bgl.glBegin(bgl.GL_LINE_STRIP)
bgl.glVertex3f(p1[0], p1[1], p1[2])
bgl.glVertex3f(p1[0], p1[1], p2[2])
bgl.glEnd()
# Dist
width = 2
bgl.glLineWidth(width)
bgl.glColor4f(color[0], color[1], color[2], color[3])
bgl.glBegin(bgl.GL_LINE_STRIP)
bgl.glVertex3f(p1[0], p1[1], p1[2])
bgl.glVertex3f(p2[0], p2[1], p2[2])
bgl.glEnd()
# ---
# Restore previous OpenGL settings
bgl.glLoadIdentity()
bgl.glMatrixMode(MatrixMode_prev)
bgl.glLoadMatrixf(ProjMatrix_prev)
bgl.glLineWidth(lineWidth_prev)
if not blend_prev:
bgl.glDisable(bgl.GL_BLEND)
if not line_stipple_prev:
bgl.glDisable(bgl.GL_LINE_STIPPLE)
bgl.glColor4f(color_prev[0],
color_prev[1],
color_prev[2],
color_prev[3])
# ---
# Draw (2D) text
# We do this after drawing the lines so
# we can draw it OVER the line.
coord_2d = location_3d_to_region_2d(context.region,
context.space_data.region_3d,
p1.lerp(p2, 0.5),
)
OFFSET_LINE = 10 # Offset the text a bit to the right.
OFFSET_Y = 15 # Offset of the lines.
OFFSET_VALUE = 30 # Offset of value(s) from the text.
dist = (p1 - p2).length
# Write distance value into the scene property,
# so we can display it in the panel & refresh the panel.
if hasattr(sce, "measure_panel_dist"):
sce.measure_panel_dist = dist
context.area.tag_redraw()
texts = [("Dist:", dist),
("X:", abs(p1[0] - p2[0])),
("Y:", abs(p1[1] - p2[1])),
("Z:", abs(p1[2] - p2[2]))]
# Draw all texts
# @todo Get user pref for text color in 3D View
bgl.glColor4f(1.0, 1.0, 1.0, 1.0)
Jonathan Smith
committed
blf.size(0, 12, 72) # Prevent font size to randomly change.
loc_x = coord_2d[0] + OFFSET_LINE
loc_y = coord_2d[1]
for t in texts:
text = t[0]
value = convertDistance(t[1], uinfo)
blf.position(0, loc_x, loc_y, 0)
blf.draw(0, text)
blf.position(0, loc_x + OFFSET_VALUE, loc_y, 0)
blf.draw(0, value)
loc_y -= OFFSET_Y
if sce.measure_panel_calc_edge_length:
if context.mode == 'EDIT_MESH':
obj = context.active_object
length_total = objectEdgeLength(obj, True, measureGlobal(sce))
sce.measure_panel_edge_length = length_total
elif context.mode == 'OBJECT':
length_total = -1
for o in context.selected_objects:
if o.type == 'MESH':
length = objectEdgeLength(o, False, measureGlobal(sce))
if length >= 0:
if length_total < 0:
length_total = 0
length_total += length
sce.measure_panel_edge_length = length_total
# Handle mesh surface area calulations
if sce.measure_panel_calc_area:
# Get a single selected object (or nothing).
obj = getSingleObject(context)
if context.mode == 'EDIT_MESH':
if obj and obj.type == 'MESH' and obj.data:
# "Note: a Mesh will return the selection state of the mesh
# when EditMode was last exited. A Python script operating
# in EditMode must exit EditMode before getting the current
# selection state of the mesh."
# http://www.blender.org/documentation/249PythonDoc/
# /Mesh.MVert-class.html#sel
# We can only provide this by existing & re-entering EditMode.
# @todo: Better way to do this?
# Get mesh data from Object.
mesh = obj.data
# Get transformation matrix from object.
ob_mat = obj.matrix_world
# Also make an inversed copy! of the matrix.
ob_mat_inv = ob_mat.copy()
Matrix.invert(ob_mat_inv)
# Get the selected vertices.
# @todo: Better (more efficient) way to do this?
verts_selected = [v for v in mesh.vertices if v.select == 1]
if len(verts_selected) >= 3:
# Get selected faces
# @todo: Better (more efficient) way to do this?
polys_selected = [f for f in mesh.polygons
area, normal = objectSurfaceArea(obj, True,
if area >= 0.0:
elif context.mode == 'OBJECT':
# We are working in object mode.
if len(context.selected_objects) > 2:
return
# @todo Make this work again.
# # We have more that 2 objects selected...
#
# mesh_objects = [o for o in context.selected_objects
# if o.type == 'MESH']
# if len(mesh_objects) > 0:
# # ... and at least one of them is a mesh.
#
# for o in mesh_objects:
# area = objectSurfaceArea(o, False,
# measureGlobal(sce))
# if area >= 0:
# #row.label(text=o.name, icon='OBJECT_DATA')
# #row.label(text=str(round(area, PRECISION))
# # + " BU^2")
elif len(context.selected_objects) == 2:
# 2 objects selected.
obj1, obj2 = context.selected_objects
# Calculate surface area of the objects.
area1, normal1 = objectSurfaceArea(obj1, False,
measureGlobal(sce))
area2, normal2 = objectSurfaceArea(obj2, False,
measureGlobal(sce))
sce.measure_panel_area1 = area1
sce.measure_panel_area2 = area2
sce.measure_panel_normal1 = normal1
sce.measure_panel_normal2 = normal2
# One object selected.
# Calculate surface area of the object.
area, normal = objectSurfaceArea(obj, False,
measureGlobal(sce))
sce.measure_panel_area1 = area
sce.measure_panel_normal1 = normal
if sce.measure_panel_calc_volume:
if context.mode == 'OBJECT':
# We are working in object mode.
#if len(context.selected_objects) > 2: # TODO
#el
if len(context.selected_objects) == 2:
# 2 objects selected.
obj1, obj2 = context.selected_objects
# Calculate surface area of the objects.
volume1 = objectVolume(obj1, measureGlobal(sce))
volume2 = objectVolume(obj2, measureGlobal(sce))
sce.measure_panel_volume1 = volume1
sce.measure_panel_volume2 = volume2
# One object selected.
# Calculate surface area of the object.
volume1 = objectVolume(obj, measureGlobal(sce))
sce.measure_panel_volume1 = volume1
class VIEW3D_OT_display_measurements(bpy.types.Operator):
'''Display the measurements made in the 'Measure' panel'''
bl_idname = "view3d.display_measurements"
bl_label = "Display the measurements made in the" \
bl_options = {'REGISTER'}
def modal(self, context, event):
context.area.tag_redraw()
return {'FINISHED'}
def execute(self, context):
if context.area.type == 'VIEW_3D':
mgr_ops = context.window_manager.operators.values()
if not self.bl_idname in [op.bl_idname for op in mgr_ops]:
# Add the region OpenGL drawing callback
for WINregion in context.area.regions:
if WINregion.type == 'WINDOW':
context.window_manager.modal_handler_add(self)
self._handle = WINregion.callback_add(
draw_measurements_callback,
(self, context),
'POST_PIXEL')
print("Measure panel display callback added")
return {'RUNNING_MODAL'}
return {'CANCELLED'}
else:
self.report({'WARNING'}, "View3D not found, cannot run operator")
return {'CANCELLED'}
class VIEW3D_OT_activate_measure_panel(bpy.types.Operator):
bl_label = "Activate"
bl_idname = "view3d.activate_measure_panel"
bl_description = "Activate the callback needed to draw the lines"
bl_options = {'REGISTER'}
def invoke(self, context, event):
# Execute operator (this adds the callback)
# if it wasn't done yet.
bpy.ops.view3d.display_measurements()
return {'FINISHED'}
class VIEW3D_OT_reenter_editmode(bpy.types.Operator):
bl_label = "Re-enter EditMode"
bl_idname = "view3d.reenter_editmode"
bl_description = "Update mesh data of an active mesh object " \
"(this is done by exiting and re-entering mesh edit mode)"
bl_options = {'REGISTER'}
def invoke(self, context, event):
# Get the active object.
obj = context.active_object
if obj and obj.type == 'MESH' and context.mode == 'EDIT_MESH':
# Exit and re-enter mesh EditMode.
bpy.ops.object.mode_set(mode='OBJECT')
bpy.ops.object.mode_set(mode='EDIT')
return {'FINISHED'}
return {'CANCELLED'}
class VIEW3D_PT_measure(bpy.types.Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'UI'
bl_label = "Measure"
@classmethod
def poll(cls, context):
# Only display this panel in the object and edit mode 3D view.
if (context.area.type == 'VIEW_3D' and
(context.mode == 'EDIT_MESH'
or context.mode == 'OBJECT')):
return 1
return 0
def draw_header(self, context):
layout = self.layout
sce = context.scene
Martin Buerbaum
committed
# Force a redraw.
# This prevents the lines still be drawn after
# disabling the "measure_panel_draw" checkbox.
# @todo Better solution?
context.area.tag_redraw()
Martin Buerbaum
committed
mgr_ops = context.window_manager.operators.values()
if (not "VIEW3D_OT_display_measurements"
in [op.bl_idname for op in mgr_ops]):
layout.operator("view3d.activate_measure_panel",
text="Activate")
def draw(self, context):
layout = self.layout
sce = context.scene
# Get a single selected object (or nothing).
obj = getSingleObject(context)
if context.mode == 'EDIT_MESH':
obj = context.active_object
row = layout.row()
row.operator("view3d.reenter_editmode",
text="Update selection")
# @todo
# description="The calculated values can" \
# " not be updated in mesh edit mode" \
# " automatically. Press this button" \
# " to do this manually, after you changed" \
# " the selection")
if obj and obj.type == 'MESH' and obj.data:
# "Note: a Mesh will return the selection state of the mesh
# when EditMode was last exited. A Python script operating
# in EditMode must exit EditMode before getting the current
# selection state of the mesh."
# http://www.blender.org/documentation/249PythonDoc/
# /Mesh.MVert-class.html#sel
# We can only provide this by existing & re-entering EditMode.
# @todo: Better way to do this?
# Get mesh data from Object.