Newer
Older
# SPDX-License-Identifier: GPL-2.0-or-later
import bpy, math, cmath
from mathutils import Vector, Matrix
from collections import namedtuple
units = [
('-', 'None', '1.0', 0),
('px', 'Pixel', '1.0', 1),
('m', 'Meter', '1.0', 2),
('dm', 'Decimeter', '0.1', 3),
('cm', 'Centimeter', '0.01', 4),
('mm', 'Millimeter', '0.001', 5),
('yd', 'Yard', '0.9144', 6),
('ft', 'Foot', '0.3048', 7),
('in', 'Inch', '0.0254', 8)
]
AABB = namedtuple('AxisAlignedBoundingBox', 'center dimensions')
Plane = namedtuple('Plane', 'normal distance')
Circle = namedtuple('Circle', 'orientation center radius')
def circleOfTriangle(a, b, c):
# https://en.wikipedia.org/wiki/Circumscribed_circle#Cartesian_coordinates_from_cross-_and_dot-products
dirBA = a-b
dirCB = b-c
dirAC = c-a
normal = dirBA.cross(dirCB)
lengthBA = dirBA.length
lengthCB = dirCB.length
lengthAC = dirAC.length
lengthN = normal.length
if lengthN == 0:
return None
factor = -1/(2*lengthN*lengthN)
alpha = (dirBA@dirAC)*(lengthCB*lengthCB*factor)
beta = (dirBA@dirCB)*(lengthAC*lengthAC*factor)
gamma = (dirAC@dirCB)*(lengthBA*lengthBA*factor)
center = a*alpha+b*beta+c*gamma
radius = (lengthBA*lengthCB*lengthAC)/(2*lengthN)
tangent = (a-center).normalized()
orientation = Matrix.Identity(3)
orientation.col[2] = normal/lengthN
orientation.col[1] = (a-center).normalized()
orientation.col[0] = orientation.col[1].xyz.cross(orientation.col[2].xyz)
return Circle(orientation=orientation, center=center, radius=radius)
def circleOfBezier(points, tolerance=0.000001, samples=16):
circle = circleOfTriangle(points[0], bezierPointAt(points, 0.5), points[3])
if circle == None:
return None
variance = 0
for t in range(0, samples):
variance += ((circle.center-bezierPointAt(points, (t+1)/(samples-1))).length/circle.radius-1) ** 2
variance /= samples
return None if variance > tolerance else circle
def areaOfPolygon(vertices):
area = 0
for index, current in enumerate(vertices):
prev = vertices[index-1]
area += (current[0]+prev[0])*(current[1]-prev[1])
return area*0.5
def linePointDistance(begin, dir, point):
return (point-begin).cross(dir.normalized()).length
def linePlaneIntersection(origin, dir, plane):
det = dir@plane.normal
return float('nan') if det == 0 else (plane.distance-origin@plane.normal)/det
def nearestPointOfLines(originA, dirA, originB, dirB, tolerance=0.0):
# https://en.wikipedia.org/wiki/Skew_lines#Nearest_Points
normal = dirA.cross(dirB)
normalA = dirA.cross(normal)
normalB = dirB.cross(normal)
divisorA = dirA@normalB
divisorB = dirB@normalA
if abs(divisorA) <= tolerance or abs(divisorB) <= tolerance:
return (float('nan'), float('nan'), None, None)
else:
paramA = (originB-originA)@normalB/divisorA
paramB = (originA-originB)@normalA/divisorB
return (paramA, paramB, originA+dirA*paramA, originB+dirB*paramB)
def lineSegmentLineSegmentIntersection(beginA, endA, beginB, endB, tolerance=0.001):
dirA = endA-beginA
dirB = endB-beginB
paramA, paramB, pointA, pointB = nearestPointOfLines(beginA, dirA, beginB, dirB)
if math.isnan(paramA) or (pointA-pointB).length > tolerance or \
paramA < 0 or paramA > 1 or paramB < 0 or paramB > 1:
return (paramA, paramB, pointA, pointB)
def aabbOfPoints(points):
min = Vector(points[0])
max = Vector(points[0])
for point in points:
for i in range(0, 3):
if min[i] > point[i]:
min[i] = point[i]
if max[i] < point[i]:
max[i] = point[i]
return AABB(center=(max+min)*0.5, dimensions=(max-min)*0.5)
def aabbIntersectionTest(a, b, tolerance=0.0):
if abs(a.center[i]-b.center[i]) > a.dimensions[i]+b.dimensions[i]+tolerance:
return False
return True
def isPointInAABB(point, aabb, tolerance=0.0, ignore_axis=None):
if i != ignore_axis and (point[i] < aabb.center[i]-aabb.dimensions[i]-tolerance or point[i] > aabb.center[i]+aabb.dimensions[i]+tolerance):
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
return False
return True
def lineAABBIntersection(lineBegin, lineEnd, aabb):
intersections = []
for i in range(0, 3):
normal = [0, 0, 0]
normal = Vector(normal[0:i] + [1] + normal[i+1:])
for j in range(-1, 2, 2):
plane = Plane(normal=normal, distance=aabb.center[i]+j*aabb.dimensions[i])
param = linePlaneIntersection(lineBegin, lineEnd-lineBegin, plane)
if param < 0 or param > 1 or math.isnan(param):
continue
point = lineBegin+param*(lineEnd-lineBegin)
if isPointInAABB(point, aabb, 0.0, i):
intersections.append((param, point))
return intersections
def bezierPointAt(points, t):
s = 1-t
return s*s*s*points[0] + 3*s*s*t*points[1] + 3*s*t*t*points[2] + t*t*t*points[3]
def bezierTangentAt(points, t):
s = 1-t
return s*s*(points[1]-points[0])+2*s*t*(points[2]-points[1])+t*t*(points[3]-points[2])
# return s*s*points[0] + (s*s-2*s*t)*points[1] + (2*s*t-t*t)*points[2] + t*t*points[3]
def bezierLength(points, beginT=0, endT=1, samples=1024):
# https://en.wikipedia.org/wiki/Arc_length#Finding_arc_lengths_by_integrating
vec = [points[1]-points[0], points[2]-points[1], points[3]-points[2]]
dot = [vec[0]@vec[0], vec[0]@vec[1], vec[0]@vec[2], vec[1]@vec[1], vec[1]@vec[2], vec[2]@vec[2]]
factors = [
dot[0],
4*(dot[1]-dot[0]),
6*dot[0]+4*dot[3]+2*dot[2]-12*dot[1],
12*dot[1]+4*(dot[4]-dot[0]-dot[2])-8*dot[3],
dot[0]+dot[5]+2*dot[2]+4*(dot[3]-dot[1]-dot[4])
]
# https://en.wikipedia.org/wiki/Trapezoidal_rule
length = 0
prev_value = math.sqrt(factors[4]+factors[3]+factors[2]+factors[1]+factors[0])
for index in range(0, samples+1):
t = beginT+(endT-beginT)*index/samples
# value = math.sqrt(factors[4]*(t**4)+factors[3]*(t**3)+factors[2]*(t**2)+factors[1]*t+factors[0])
value = math.sqrt((((factors[4]*t+factors[3])*t+factors[2])*t+factors[1])*t+factors[0])
length += (prev_value+value)*0.5
prev_value = value
return length*3/samples
# https://en.wikipedia.org/wiki/Root_of_unity
# cubic_roots_of_unity = [cmath.rect(1, i/3*2*math.pi) for i in range(0, 3)]
cubic_roots_of_unity = [complex(1, 0), complex(-1, math.sqrt(3))*0.5, complex(-1, -math.sqrt(3))*0.5]
def bezierRoots(dists, tolerance=0.0001):
# https://en.wikipedia.org/wiki/Cubic_function
# y(t) = a*t^3 +b*t^2 +c*t^1 +d*t^0
a = 3*(dists[1]-dists[2])+dists[3]-dists[0]
b = 3*(dists[0]-2*dists[1]+dists[2])
c = 3*(dists[1]-dists[0])
d = dists[0]
E2 = a*c
E3 = a*a*d
A = (2*b*b-9*E2)*b+27*E3
B = b*b-3*E2
C = ((A+cmath.sqrt(A*A-4*B*B*B))*0.5) ** (1/3)
roots = []
for root in cubic_roots_of_unity:
root *= C
root = -1/(3*a)*(b+root+B/root)
if abs(root.imag) < tolerance and root.real > -param_tolerance and root.real < 1.0+param_tolerance:
roots.append(max(0.0, min(root.real, 1.0)))
# Remove doubles
roots.sort()
for index in range(len(roots)-1, 0, -1):
if abs(roots[index-1]-roots[index]) < param_tolerance:
roots.pop(index)
return roots
elif abs(b) > tolerance: # Quadratic
disc = c*c-4*b*d
if disc < 0:
return []
disc = math.sqrt(disc)
return [(-c-disc)/(2*b), (-c+disc)/(2*b)]
root = -d/c
return [root] if root >= 0.0 and root <= 1.0 else []
else: # Constant / Parallel
return [] if abs(d) > tolerance else float('inf')
def xRaySplineIntersectionTest(spline, origin):
spline_points = spline.bezier_points if spline.type == 'BEZIER' else spline.points
cyclic_parallel_fix_flag = False
intersections = []
def areIntersectionsAdjacent(index):
if len(intersections) < 2:
return
prev = intersections[index-1]
current = intersections[index]
if prev[1] == current[0] and \
prev[2] > 1.0-param_tolerance and current[2] < param_tolerance and \
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
((prev[3] < 0 and current[3] < 0) or (prev[3] > 0 and current[3] > 0)):
intersections.pop(index)
def appendIntersection(index, root, tangentY, intersectionX):
beginPoint = spline_points[index-1]
endPoint = spline_points[index]
if root == float('inf'): # Segment is parallel to ray
if index == 0 and spline.use_cyclic_u:
cyclic_parallel_fix_flag = True
if len(intersections) > 0 and intersections[-1][1] == beginPoint:
intersections[-1][1] = endPoint # Skip in adjacency test
elif intersectionX >= origin[0]:
intersections.append([beginPoint, endPoint, root, tangentY, intersectionX])
areIntersectionsAdjacent(len(intersections)-1)
if spline.type == 'BEZIER':
for index, endPoint in enumerate(spline.bezier_points):
if index == 0 and not spline.use_cyclic_u:
continue
beginPoint = spline_points[index-1]
points = (beginPoint.co, beginPoint.handle_right, endPoint.handle_left, endPoint.co)
roots = bezierRoots((points[0][1]-origin[1], points[1][1]-origin[1], points[2][1]-origin[1], points[3][1]-origin[1]))
if roots == float('inf'): # Intersection
appendIntersection(index, float('inf'), None, None)
else:
for root in roots:
appendIntersection(index, root, bezierTangentAt(points, root)[1], bezierPointAt(points, root)[0])
elif spline.type == 'POLY':
for index, endPoint in enumerate(spline.points):
if index == 0 and not spline.use_cyclic_u:
continue
beginPoint = spline_points[index-1]
points = (beginPoint.co, endPoint.co)
if (points[0][0] < origin[0] and points[1][0] < origin[0]) or \
(points[0][1] < origin[1] and points[1][1] < origin[1]) or \
(points[0][1] > origin[1] and points[1][1] > origin[1]):
continue
diff = points[1]-points[0]
height = origin[1]-points[0][1]
if diff[1] == 0: # Parallel
if height == 0: # Intersection
appendIntersection(index, float('inf'), None, None)
else: # Not parallel
root = height/diff[1]
appendIntersection(index, root, diff[1], points[0][0]+diff[0]*root)
if cyclic_parallel_fix_flag:
appendIntersection(0, float('inf'), None, None)
areIntersectionsAdjacent(0)
return intersections
def isPointInSpline(point, spline):
return spline.use_cyclic_u and len(xRaySplineIntersectionTest(spline, point))%2 == 1
def isSegmentLinear(points, tolerance=0.0001):
return 1.0-(points[1]-points[0]).normalized()@(points[3]-points[2]).normalized() < tolerance
def bezierSegmentPoints(begin, end):
return [begin.co, begin.handle_right, end.handle_left, end.co]
def grab_cursor(context, event):
if event.mouse_region_x < 0:
context.window.cursor_warp(context.region.x+context.region.width, event.mouse_y)
elif event.mouse_region_x > context.region.width:
context.window.cursor_warp(context.region.x, event.mouse_y)
elif event.mouse_region_y < 0:
context.window.cursor_warp(event.mouse_x, context.region.y+context.region.height)
elif event.mouse_region_y > context.region.height:
context.window.cursor_warp(event.mouse_x, context.region.y)
def deleteFromArray(item, array):
for index, current in enumerate(array):
if current is item:
array.pop(index)
break
def copyAttributes(dst, src):
for attribute in dir(src):
try:
setattr(dst, attribute, getattr(src, attribute))
except:
pass
def bezierSliceFromTo(points, minParam, maxParam):
fromP = bezierPointAt(points, minParam)
fromT = bezierTangentAt(points, minParam)
toP = bezierPointAt(points, maxParam)
toT = bezierTangentAt(points, maxParam)
paramDiff = maxParam-minParam
return [fromP, fromP+fromT*paramDiff, toP-toT*paramDiff, toP]
def bezierIntersectionBroadPhase(solutions, pointsA, pointsB, aMin=0.0, aMax=1.0, bMin=0.0, bMax=1.0, depth=8, tolerance=0.001):
if aabbIntersectionTest(aabbOfPoints(bezierSliceFromTo(pointsA, aMin, aMax)), aabbOfPoints(bezierSliceFromTo(pointsB, bMin, bMax)), tolerance) == False:
return
if depth == 0:
solutions.append([aMin, aMax, bMin, bMax])
return
depth -= 1
aMid = (aMin+aMax)*0.5
bMid = (bMin+bMax)*0.5
bezierIntersectionBroadPhase(solutions, pointsA, pointsB, aMin, aMid, bMin, bMid, depth, tolerance)
bezierIntersectionBroadPhase(solutions, pointsA, pointsB, aMin, aMid, bMid, bMax, depth, tolerance)
bezierIntersectionBroadPhase(solutions, pointsA, pointsB, aMid, aMax, bMin, bMid, depth, tolerance)
bezierIntersectionBroadPhase(solutions, pointsA, pointsB, aMid, aMax, bMid, bMax, depth, tolerance)
def bezierIntersectionNarrowPhase(broadPhase, pointsA, pointsB, tolerance=0.000001):
aMin = broadPhase[0]
aMax = broadPhase[1]
bMin = broadPhase[2]
bMax = broadPhase[3]
while (aMax-aMin > tolerance) or (bMax-bMin > tolerance):
aMid = (aMin+aMax)*0.5
bMid = (bMin+bMax)*0.5
a1 = bezierPointAt(pointsA, (aMin+aMid)*0.5)
a2 = bezierPointAt(pointsA, (aMid+aMax)*0.5)
b1 = bezierPointAt(pointsB, (bMin+bMid)*0.5)
b2 = bezierPointAt(pointsB, (bMid+bMax)*0.5)
a1b1Dist = (a1-b1).length
a2b1Dist = (a2-b1).length
a1b2Dist = (a1-b2).length
a2b2Dist = (a2-b2).length
minDist = min(a1b1Dist, a2b1Dist, a1b2Dist, a2b2Dist)
if a1b1Dist == minDist:
aMax = aMid
bMax = bMid
elif a2b1Dist == minDist:
aMin = aMid
bMax = bMid
elif a1b2Dist == minDist:
aMax = aMid
bMin = bMid
else:
aMin = aMid
bMin = bMid
return [aMin, bMin, minDist]
def segmentIntersection(segmentA, segmentB, tolerance=0.001):
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
pointsA = bezierSegmentPoints(segmentA['beginPoint'], segmentA['endPoint'])
pointsB = bezierSegmentPoints(segmentB['beginPoint'], segmentB['endPoint'])
result = []
def addCut(paramA, paramB):
cutA = {'param': paramA, 'segment': segmentA}
cutB = {'param': paramB, 'segment': segmentB}
cutA['otherCut'] = cutB
cutB['otherCut'] = cutA
segmentA['cuts'].append(cutA)
segmentB['cuts'].append(cutB)
result.append([cutA, cutB])
if isSegmentLinear(pointsA) and isSegmentLinear(pointsB):
intersection = lineSegmentLineSegmentIntersection(pointsA[0], pointsA[3], pointsB[0], pointsB[3])
if intersection != None:
addCut(intersection[0], intersection[1])
return result
solutions = []
bezierIntersectionBroadPhase(solutions, pointsA, pointsB)
for index in range(0, len(solutions)):
solutions[index] = bezierIntersectionNarrowPhase(solutions[index], pointsA, pointsB)
for index in range(0, len(solutions)):
for otherIndex in range(0, len(solutions)):
if solutions[index][2] == float('inf'):
break
if index == otherIndex or solutions[otherIndex][2] == float('inf'):
continue
diffA = solutions[index][0]-solutions[otherIndex][0]
diffB = solutions[index][1]-solutions[otherIndex][1]
if diffA*diffA+diffB*diffB < 0.01:
if solutions[index][2] < solutions[otherIndex][2]:
solutions[otherIndex][2] = float('inf')
else:
solutions[index][2] = float('inf')
def areIntersectionsAdjacent(segmentA, segmentB, paramA, paramB):
return segmentA['endIndex'] == segmentB['beginIndex'] and paramA > 1-param_tolerance and paramB < param_tolerance
for solution in solutions:
(segmentA['spline'] == segmentB['spline'] and \
(areIntersectionsAdjacent(segmentA, segmentB, solution[0], solution[1]) or \
areIntersectionsAdjacent(segmentB, segmentA, solution[1], solution[0]))):
continue
addCut(solution[0], solution[1])
return result
def bezierMultiIntersection(segments):
for index in range(0, len(segments)):
for otherIndex in range(index+1, len(segments)):
segmentIntersection(segments[index], segments[otherIndex])
prepareSegmentIntersections(segments)
subdivideBezierSegments(segments)
def bezierProjectHandles(segments):
insertions = []
index_offset = 0
for segment in segments:
if len(insertions) > 0 and insertions[-1][0] != segment['spline']:
index_offset = 0
points = bezierSegmentPoints(segment['beginPoint'], segment['endPoint'])
paramA, paramB, pointA, pointB = nearestPointOfLines(points[0], points[1]-points[0], points[3], points[2]-points[3])
if pointA and pointB:
segment['cuts'].append({'param': 0.5})
insertions.append((segment['spline'], segment['beginIndex']+1+index_offset, (pointA+pointB)*0.5))
index_offset += 1
subdivideBezierSegments(segments)
for insertion in insertions:
bezier_point = insertion[0].bezier_points[insertion[1]]
bezier_point.co = insertion[2]
bezier_point.handle_left_type = 'VECTOR'
bezier_point.handle_right_type = 'VECTOR'
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
def bezierSubivideAt(points, params):
if len(params) == 0:
return []
newPoints = []
newPoints.append(points[0]+(points[1]-points[0])*params[0])
for index, param in enumerate(params):
paramLeft = param
if index > 0:
paramLeft -= params[index-1]
paramRight = -param
if index == len(params)-1:
paramRight += 1.0
else:
paramRight += params[index+1]
point = bezierPointAt(points, param)
tangent = bezierTangentAt(points, param)
newPoints.append(point-tangent*paramLeft)
newPoints.append(point)
newPoints.append(point+tangent*paramRight)
newPoints.append(points[3]-(points[3]-points[2])*(1.0-params[-1]))
return newPoints
def subdivideBezierSegment(segment):
# Blender only allows uniform subdivision. Use this method to subdivide at arbitrary params.
# NOTE: segment['cuts'] must be sorted by param
if len(segment['cuts']) == 0:
return
segment['beginPoint'] = segment['spline'].bezier_points[segment['beginIndex']]
segment['endPoint'] = segment['spline'].bezier_points[segment['endIndex']]
params = [cut['param'] for cut in segment['cuts']]
newPoints = bezierSubivideAt(bezierSegmentPoints(segment['beginPoint'], segment['endPoint']), params)
bpy.ops.curve.select_all(action='DESELECT')
segment['beginPoint'] = segment['spline'].bezier_points[segment['beginIndex']]
segment['beginPoint'].select_right_handle = True
segment['beginPoint'].handle_left_type = 'FREE'
segment['beginPoint'].handle_right_type = 'FREE'
segment['endPoint'] = segment['spline'].bezier_points[segment['endIndex']]
segment['endPoint'].select_left_handle = True
segment['endPoint'].handle_left_type = 'FREE'
segment['endPoint'].handle_right_type = 'FREE'
bpy.ops.curve.subdivide(number_cuts=len(params))
if segment['endIndex'] > 0:
segment['endIndex'] += len(params)
segment['beginPoint'] = segment['spline'].bezier_points[segment['beginIndex']]
segment['endPoint'] = segment['spline'].bezier_points[segment['endIndex']]
segment['beginPoint'].select_right_handle = False
segment['beginPoint'].handle_right = newPoints[0]
segment['endPoint'].select_left_handle = False
segment['endPoint'].handle_left = newPoints[-1]
for index, cut in enumerate(segment['cuts']):
cut['index'] = segment['beginIndex']+1+index
newPoint = segment['spline'].bezier_points[cut['index']]
newPoint.handle_left_type = 'FREE'
newPoint.handle_right_type = 'FREE'
newPoint.select_left_handle = False
newPoint.select_control_point = False
newPoint.select_right_handle = False
newPoint.handle_left = newPoints[index*3+1]
newPoint.co = newPoints[index*3+2]
newPoint.handle_right = newPoints[index*3+3]
def prepareSegmentIntersections(segments):
def areCutsAdjacent(cutA, cutB):
return cutA['segment']['beginIndex'] == cutB['segment']['endIndex'] and \
cutA['param'] < param_tolerance and cutB['param'] > 1.0-param_tolerance
for segment in segments:
segment['cuts'].sort(key=(lambda cut: cut['param']))
for index in range(len(segment['cuts'])-1, 0, -1):
prev = segment['cuts'][index-1]
current = segment['cuts'][index]
if abs(prev['param']-current['param']) < param_tolerance and \
prev['otherCut']['segment']['spline'] == current['otherCut']['segment']['spline'] and \
(areCutsAdjacent(prev['otherCut'], current['otherCut']) or \
areCutsAdjacent(current['otherCut'], prev['otherCut'])):
deleteFromArray(prev['otherCut'], prev['otherCut']['segment']['cuts'])
deleteFromArray(current['otherCut'], current['otherCut']['segment']['cuts'])
segment['cuts'].pop(index-1 if current['otherCut']['param'] < param_tolerance else index)
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
current = segment['cuts'][index-1]['otherCut']
current['segment']['extraCut'] = current
def subdivideBezierSegmentsOfSameSpline(segments):
# NOTE: segment['cuts'] must be sorted by param
indexOffset = 0
for segment in segments:
segment['beginIndex'] += indexOffset
if segment['endIndex'] > 0:
segment['endIndex'] += indexOffset
subdivideBezierSegment(segment)
indexOffset += len(segment['cuts'])
for segment in segments:
segment['beginPoint'] = segment['spline'].bezier_points[segment['beginIndex']]
segment['endPoint'] = segment['spline'].bezier_points[segment['endIndex']]
def subdivideBezierSegments(segments):
# NOTE: segment['cuts'] must be sorted by param
groups = {}
for segment in segments:
spline = segment['spline']
if (spline in groups) == False:
groups[spline] = []
group = groups[spline]
group.append(segment)
for spline in groups:
subdivideBezierSegmentsOfSameSpline(groups[spline])
def curveObject():
obj = bpy.context.object
return obj if obj != None and obj.type == 'CURVE' and obj.mode == 'EDIT' else None
def bezierSegments(splines, selection_only):
segments = []
for spline in splines:
if spline.type != 'BEZIER':
continue
for index, current in enumerate(spline.bezier_points):
next = spline.bezier_points[(index+1) % len(spline.bezier_points)]
if next == spline.bezier_points[0] and not spline.use_cyclic_u:
continue
if not selection_only or (current.select_right_handle and next.select_left_handle):
segments.append({
'spline': spline,
'beginIndex': index,
'endIndex': index+1 if index < len(spline.bezier_points)-1 else 0,
'beginPoint': current,
'endPoint': next,
'cuts': []
})
return segments
def getSelectedSplines(include_bezier, include_polygon, allow_partial_selection=False):
result = []
for spline in bpy.context.object.data.splines:
selected = not allow_partial_selection
if spline.type == 'BEZIER':
if not include_bezier:
continue
for index, point in enumerate(spline.bezier_points):
if point.select_left_handle == allow_partial_selection or \
point.select_control_point == allow_partial_selection or \
point.select_right_handle == allow_partial_selection:
selected = allow_partial_selection
break
elif spline.type == 'POLY':
if not include_polygon:
continue
for index, point in enumerate(spline.points):
if point.select == allow_partial_selection:
selected = allow_partial_selection
break
else:
continue
if selected:
result.append(spline)
return result
def addObject(type, name):
if type == 'CURVE':
data = bpy.data.curves.new(name=name, type='CURVE')
data.dimensions = '3D'
elif type == 'MESH':
data = bpy.data.meshes.new(name=name, type='MESH')
obj = bpy.data.objects.new(name, data)
obj.location = bpy.context.scene.cursor.location
bpy.context.scene.collection.objects.link(obj)
obj.select_set(True)
bpy.context.view_layer.objects.active = obj
return obj
def addPolygonSpline(obj, cyclic, vertices, weights=None, select=False):
spline = obj.data.splines.new(type='POLY')
spline.use_cyclic_u = cyclic
spline.points.add(len(vertices)-1)
for index, point in enumerate(spline.points):
point.co.xyz = vertices[index]
point.select = select
if weights:
point.weight_softbody = weights[index]
return spline
def addBezierSpline(obj, cyclic, vertices, weights=None, select=False):
spline = obj.data.splines.new(type='BEZIER')
spline.use_cyclic_u = cyclic
spline.bezier_points.add(len(vertices)-1)
for index, point in enumerate(spline.bezier_points):
point.handle_left = vertices[index][0]
point.co = vertices[index][1]
point.handle_right = vertices[index][2]
if weights:
point.weight_softbody = weights[index]
point.select_left_handle = select
point.select_control_point = select
point.select_right_handle = select
if isSegmentLinear([vertices[index-1][1], vertices[index-1][2], vertices[index][0], vertices[index][1]]):
spline.bezier_points[index-1].handle_right_type = 'VECTOR'
point.handle_left_type = 'VECTOR'
return spline
def mergeEnds(splines, points, is_last_point):
bpy.ops.curve.select_all(action='DESELECT')
points[0].handle_left_type = points[0].handle_right_type = 'FREE'
new_co = (points[0].co+points[1].co)*0.5
handle = (points[1].handle_left if is_last_point[1] else points[1].handle_right)+new_co-points[1].co
points[0].select_left_handle = points[0].select_right_handle = True
if is_last_point[0]:
points[0].handle_left += new_co-points[0].co
points[0].handle_right = handle
else:
points[0].handle_right += new_co-points[0].co
points[0].handle_left = handle
points[0].co = new_co
points[0].select_control_point = points[1].select_control_point = True
bpy.ops.curve.make_segment()
spline = splines[0] if splines[0] in bpy.context.object.data.splines.values() else splines[1]
point = next(point for point in spline.bezier_points if point.select_left_handle)
point.select_left_handle = point.select_right_handle = point.select_control_point = False
bpy.ops.curve.delete()
return spline
def polygonArcAt(center, radius, begin_angle, angle, step_angle, include_ends):
vertices = []
circle_samples = math.ceil(abs(angle)/step_angle)
for t in (range(0, circle_samples+1) if include_ends else range(1, circle_samples)):
t = begin_angle+angle*t/circle_samples
normal = Vector((math.cos(t), math.sin(t), 0))
vertices.append(center+normal*radius)
return vertices
def bezierArcAt(tangent, normal, center, radius, angle, tolerance=0.99999):
transform = Matrix.Identity(4)
transform.col[0].xyz = tangent.cross(normal)*radius
transform.col[1].xyz = tangent*radius
transform.col[2].xyz = normal*radius
transform.col[3].xyz = center
segments = []
segment_count = math.ceil(abs(angle)/(math.pi*0.5)*tolerance)
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
angle /= segment_count
x0 = math.cos(angle*0.5)
y0 = math.sin(angle*0.5)
x1 = (4.0-x0)/3.0
y1 = (1.0-x0)*(3.0-x0)/(3.0*y0)
points = [
Vector((x0, -y0, 0)),
Vector((x1, -y1, 0)),
Vector((x1, y1, 0)),
Vector((x0, y0, 0))
]
for i in range(0, segment_count):
rotation = Matrix.Rotation((i+0.5)*angle, 4, 'Z')
segments.append(list(map(lambda v: transform@(rotation@v), points)))
return segments
def iterateSpline(spline, callback):
spline_points = spline.bezier_points if spline.type == 'BEZIER' else spline.points
for index, spline_point in enumerate(spline_points):
prev = spline_points[index-1]
current = spline_points[index]
next = spline_points[(index+1)%len(spline_points)]
if spline.type == 'BEZIER':
selected = current.select_control_point
prev_segment_points = bezierSegmentPoints(prev, current)
next_segment_points = bezierSegmentPoints(current, next)
prev_tangent = (prev_segment_points[3]-prev_segment_points[2]).normalized()
current_tangent = (next_segment_points[1]-next_segment_points[0]).normalized()
next_tangent = (next_segment_points[3]-next_segment_points[2]).normalized()
else:
selected = current.select
prev_segment_points = [prev.co.xyz, None, None, current.co.xyz]
next_segment_points = [current.co.xyz, None, None, next.co.xyz]
prev_tangent = (prev_segment_points[3]-prev_segment_points[0]).normalized()
current_tangent = next_tangent = (next_segment_points[3]-next_segment_points[0]).normalized()
normal = prev_tangent.cross(current_tangent).normalized()
angle = prev_tangent@current_tangent
angle = 0 if abs(angle-1.0) < 0.0001 else math.acos(angle)
is_first = (index == 0) and not spline.use_cyclic_u
is_last = (index == len(spline_points)-1) and not spline.use_cyclic_u
callback(prev_segment_points, next_segment_points, selected, prev_tangent, current_tangent, next_tangent, normal, angle, is_first, is_last)
return spline_points
def offsetPolygonOfSpline(spline, offset, step_angle, round_line_join, bezier_samples=128, tolerance=0.000001):
def offsetVertex(position, tangent):
normal = Vector((-tangent[1], tangent[0], 0))
return position+normal*offset
vertices = []
def handlePoint(prev_segment_points, next_segment_points, selected, prev_tangent, current_tangent, next_tangent, normal, angle, is_first, is_last):
sign = math.copysign(1, normal[2])
angle *= sign
if is_last:
return
is_protruding = (abs(angle) > tolerance and abs(offset) > tolerance)
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
if is_protruding and not is_first and sign != math.copysign(1, offset): # Convex Corner
if round_line_join:
begin_angle = math.atan2(prev_tangent[1], prev_tangent[0])+math.pi*0.5
vertices.extend(polygonArcAt(next_segment_points[0], offset, begin_angle, angle, step_angle, False))
else:
distance = offset*math.tan(angle*0.5)
vertices.append(offsetVertex(next_segment_points[0], current_tangent)+current_tangent*distance)
if is_protruding or is_first:
vertices.append(offsetVertex(next_segment_points[0], current_tangent))
if spline.type == 'POLY' or isSegmentLinear(next_segment_points):
vertices.append(offsetVertex(next_segment_points[3], next_tangent))
else: # Trace Bezier Segment
prev_tangent = bezierTangentAt(next_segment_points, 0).normalized()
for t in range(1, bezier_samples+1):
t /= bezier_samples
tangent = bezierTangentAt(next_segment_points, t).normalized()
if t == 1 or math.acos(min(max(-1, prev_tangent@tangent), 1)) >= step_angle:
vertices.append(offsetVertex(bezierPointAt(next_segment_points, t), tangent))
prev_tangent = tangent
spline_points = iterateSpline(spline, handlePoint)
# Solve Self Intersections
original_area = areaOfPolygon([point.co for point in spline_points])
sign = -1 if offset < 0 else 1
i = (0 if spline.use_cyclic_u else 1)
while i < len(vertices):
j = i+2
while j < len(vertices) - (0 if i > 0 else 1):
intersection = lineSegmentLineSegmentIntersection(vertices[i-1], vertices[i], vertices[j-1], vertices[j])
if intersection == None:
j += 1
continue
intersection = (intersection[2]+intersection[3])*0.5
areaInner = sign*areaOfPolygon([intersection, vertices[i], vertices[j-1]])
areaOuter = sign*areaOfPolygon([intersection, vertices[j], vertices[i-1]])
if areaInner > areaOuter:
vertices = vertices[i:j]+[intersection]
i = (0 if spline.use_cyclic_u else 1)
else:
vertices = vertices[:i]+[intersection]+vertices[j:]
j = i+2
i += 1
new_area = areaOfPolygon(vertices)
return [vertices] if original_area*new_area >= 0 else []
def filletSpline(spline, radius, chamfer_mode, limit_half_way, tolerance=0.0001):
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
vertices = []
distance_limit_factor = 0.5 if limit_half_way else 1.0
def handlePoint(prev_segment_points, next_segment_points, selected, prev_tangent, current_tangent, next_tangent, normal, angle, is_first, is_last):
distance = min((prev_segment_points[0]-prev_segment_points[3]).length*distance_limit_factor, (next_segment_points[0]-next_segment_points[3]).length*distance_limit_factor)
if not selected or is_first or is_last or angle == 0 or distance == 0 or \
(spline.type == 'BEZIER' and not (isSegmentLinear(prev_segment_points) and isSegmentLinear(next_segment_points))):
prev_handle = next_segment_points[0] if is_first else prev_segment_points[2] if spline.type == 'BEZIER' else prev_segment_points[0]
next_handle = next_segment_points[0] if is_last else next_segment_points[1] if spline.type == 'BEZIER' else next_segment_points[3]
vertices.append([prev_handle, next_segment_points[0], next_handle])
return
tan_factor = math.tan(angle*0.5)
offset = min(radius, distance/tan_factor)
distance = offset*tan_factor
circle_center = next_segment_points[0]+normal.cross(prev_tangent)*offset-prev_tangent*distance
segments = bezierArcAt(prev_tangent, normal, circle_center, offset, angle)
if chamfer_mode:
vertices.append([prev_segment_points[0], segments[0][0], segments[-1][3]])
vertices.append([segments[0][0], segments[-1][3], next_segment_points[3]])
else:
for i in range(0, len(segments)+1):
vertices.append([
segments[i-1][2] if i > 0 else prev_segment_points[0],
segments[i][0] if i < len(segments) else segments[i-1][3],
segments[i][1] if i < len(segments) else next_segment_points[3]
])
iterateSpline(spline, handlePoint)
i = 0 if spline.use_cyclic_u else 1
while(i < len(vertices)):
if (vertices[i-1][1]-vertices[i][1]).length < tolerance:
vertices[i-1][2] = vertices[i][2]
del vertices[i]
else:
i = i+1
return addBezierSpline(bpy.context.object, spline.use_cyclic_u, vertices)
def dogBone(spline, radius):
vertices = []
def handlePoint(prev_segment_points, next_segment_points, selected, prev_tangent, current_tangent, next_tangent, normal, angle, is_first, is_last):
if not selected or is_first or is_last or angle == 0 or normal[2] > 0.0 or \
(spline.type == 'BEZIER' and not (isSegmentLinear(prev_segment_points) and isSegmentLinear(next_segment_points))):
prev_handle = next_segment_points[0] if is_first else prev_segment_points[2] if spline.type == 'BEZIER' else prev_segment_points[0]
next_handle = next_segment_points[0] if is_last else next_segment_points[1] if spline.type == 'BEZIER' else next_segment_points[3]
vertices.append([prev_handle, next_segment_points[0], next_handle])
return
tan_factor = math.tan(angle*0.5)
corner = next_segment_points[0]+normal.cross(prev_tangent)*radius-prev_tangent*radius*tan_factor
direction = next_segment_points[0]-corner
distance = direction.length
corner = next_segment_points[0]+direction/distance*(distance-radius)
vertices.append([prev_segment_points[0], next_segment_points[0], corner])
vertices.append([next_segment_points[0], corner, next_segment_points[0]])
vertices.append([corner, next_segment_points[0], next_segment_points[3]])
iterateSpline(spline, handlePoint)
return vertices
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
def discretizeCurve(spline, step_angle, samples):
vertices = []
def handlePoint(prev_segment_points, next_segment_points, selected, prev_tangent, current_tangent, next_tangent, normal, angle, is_first, is_last):
if is_last:
return
if isSegmentLinear(next_segment_points):
vertices.append(next_segment_points[3])
else:
prev_tangent = bezierTangentAt(next_segment_points, 0).normalized()
for t in range(1, samples+1):
t /= samples
tangent = bezierTangentAt(next_segment_points, t).normalized()
if t == 1 or math.acos(min(max(-1, prev_tangent@tangent), 1)) >= step_angle:
vertices.append(bezierPointAt(next_segment_points, t))
prev_tangent = tangent
iterateSpline(spline, handlePoint)
return vertices
def bezierBooleanGeometry(splineA, splineB, operation):
if not splineA.use_cyclic_u or not splineB.use_cyclic_u:
return False
segmentsA = bezierSegments([splineA], False)
segmentsB = bezierSegments([splineB], False)
deletionFlagA = isPointInSpline(splineA.bezier_points[0].co, splineB)
deletionFlagB = isPointInSpline(splineB.bezier_points[0].co, splineA)
if operation == 'DIFFERENCE':
deletionFlagB = not deletionFlagB
elif operation == 'INTERSECTION':
deletionFlagA = not deletionFlagA
deletionFlagB = not deletionFlagB
elif operation != 'UNION':
return False
intersections = []
for segmentA in segmentsA:
for segmentB in segmentsB:
intersections.extend(segmentIntersection(segmentA, segmentB))
if len(intersections) == 0:
if deletionFlagA:
bpy.context.object.data.splines.remove(splineA)
if deletionFlagB:
bpy.context.object.data.splines.remove(splineB)
return True
prepareSegmentIntersections(segmentsA)
prepareSegmentIntersections(segmentsB)
subdivideBezierSegmentsOfSameSpline(segmentsA)
subdivideBezierSegmentsOfSameSpline(segmentsB)
def collectCuts(cuts, segments, deletionFlag):
for segmentIndex, segment in enumerate(segments):
if 'extraCut' in segment:
deletionFlag = not deletionFlag
segment['extraCut']['index'] = segment['beginIndex']
segment['extraCut']['deletionFlag'] = deletionFlag
cuts.append(segment['extraCut'])
else:
cuts.append(None)
cuts.extend(segments[segmentIndex]['cuts'])
segment['deletionFlag'] = deletionFlag
for cutIndex, cut in enumerate(segment['cuts']):
deletionFlag = not deletionFlag
cut['deletionFlag'] = deletionFlag
cutsA = []
cutsB = []
collectCuts(cutsA, segmentsA, deletionFlagA)
collectCuts(cutsB, segmentsB, deletionFlagB)
beginIndex = 0
for segment in segmentsA:
if segment['deletionFlag'] == False:
beginIndex = segment['beginIndex']
break
for cut in segment['cuts']:
if cut['deletionFlag'] == False:
beginIndex = cut['index']
break
cuts = cutsA
spline = splineA
index = beginIndex
backward = False
vertices = []
while True:
current = spline.bezier_points[index]
vertices.append([current.handle_left, current.co, current.handle_right])
if backward:
current.handle_left, current.handle_right = current.handle_right.copy(), current.handle_left.copy()
index += len(spline.bezier_points)-1 if backward else 1
index %= len(spline.bezier_points)
if spline == splineA and index == beginIndex:
break
cut = cuts[index]
if cut != None:
current = spline.bezier_points[index]
current_handle = current.handle_right if backward else current.handle_left
spline = splineA if spline == splineB else splineB
cuts = cutsA if spline == splineA else cutsB
index = cut['otherCut']['index']
backward = cut['otherCut']['deletionFlag']
next = spline.bezier_points[index]
if backward:
next.handle_right = current_handle
else:
next.handle_left = current_handle
if spline == splineA and index == beginIndex:
break
spline = addBezierSpline(bpy.context.object, True, vertices)
bpy.context.object.data.splines.remove(splineA)
bpy.context.object.data.splines.remove(splineB)
bpy.context.object.data.splines.active = spline
return True
def truncateToFitBox(transform, spline, aabb):
spline_points = spline.points
aux = {
'traces': [],
'vertices': [],
'weights': []
}
def terminateTrace(aux):
if len(aux['vertices']) > 0:
aux['traces'].append((aux['vertices'], aux['weights']))
aux['vertices'] = []
aux['weights'] = []
for index, point in enumerate(spline_points):
begin = transform@point.co.xyz
end = spline_points[(index+1)%len(spline_points)]
inside = isPointInAABB(begin, aabb)
if inside:
aux['vertices'].append(begin)
aux['weights'].append(point.weight_softbody)
if index == len(spline_points)-1 and not spline.use_cyclic_u:
break
intersections = lineAABBIntersection(begin, transform@end.co.xyz, aabb)
if len(intersections) == 2:
terminateTrace(aux)
aux['traces'].append((
[intersections[0][1], intersections[1][1]],
[end.weight_softbody, end.weight_softbody]
))
elif len(intersections) == 1:
aux['vertices'].append(intersections[0][1])
aux['weights'].append(end.weight_softbody)
if inside:
terminateTrace(aux)
elif inside and index == len(spline_points)-1 and spline.use_cyclic_u:
terminateTrace(aux)
aux['traces'][0] = (aux['traces'][-1][0]+aux['traces'][0][0], aux['traces'][-1][1]+aux['traces'][0][1])
aux['traces'].pop()
terminateTrace(aux)
return aux['traces']
def arrayModifier(splines, offset, count, connect, serpentine):
if connect:
for spline in splines:
if spline.use_cyclic_u:
spline.use_cyclic_u = False
points = spline.points if spline.type == 'POLY' else spline.bezier_points
points.add(1)
copyAttributes(points[-1], points[0])
bpy.ops.curve.select_all(action='DESELECT')
for spline in splines:
if spline.type == 'BEZIER':
for point in spline.bezier_points:
point.select_left_handle = point.select_control_point = point.select_right_handle = True
elif spline.type == 'POLY':
for point in spline.points:
point.select = True
splines_at_layer = [splines]
for i in range(1, count):
bpy.ops.curve.duplicate()
bpy.ops.transform.translate(value=offset)
splines_at_layer.append(getSelectedSplines(True, True))
if serpentine:
bpy.ops.curve.switch_direction()
if connect:
for i in range(1, count):
prev_layer = splines_at_layer[i-1]
next_layer = splines_at_layer[i]
for j in range(0, len(next_layer)):