Skip to content
Snippets Groups Projects
mesh_looptools.py 179 KiB
Newer Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

bl_info = {
    "name": "LoopTools",
    "author": "Bart Crouch",
Bart Crouch's avatar
Bart Crouch committed
    "blender": (2, 71, 3),
    "location": "View3D > Toolbar and View3D > Specials (W-key)",
    "warning": "",
    "description": "Mesh modelling toolkit. Several tools to aid modelling",
    "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"
                "Scripts/Modeling/LoopTools",
    "category": "Mesh",
}


import bmesh
import bpy
import collections
import mathutils
import math
Bart Crouch's avatar
Bart Crouch committed
from bpy_extras import view3d_utils


##########################################
####### General functions ################
##########################################


# used by all tools to improve speed on reruns
looptools_cache = {}


# force a full recalculation next time
def cache_delete(tool):
    if tool in looptools_cache:
        del looptools_cache[tool]


# check cache for stored information
def cache_read(tool, object, bm, input_method, boundaries):
    # current tool not cached yet
    if tool not in looptools_cache:
        return(False, False, False, False, False)
    # check if selected object didn't change
    if object.name != looptools_cache[tool]["object"]:
        return(False, False, False, False, False)
    # check if input didn't change
    if input_method != looptools_cache[tool]["input_method"]:
        return(False, False, False, False, False)
    if boundaries != looptools_cache[tool]["boundaries"]:
        return(False, False, False, False, False)
    modifiers = [mod.name for mod in object.modifiers if mod.show_viewport \
        and mod.type == 'MIRROR']
    if modifiers != looptools_cache[tool]["modifiers"]:
        return(False, False, False, False, False)
    input = [v.index for v in bm.verts if v.select and not v.hide]
    if input != looptools_cache[tool]["input"]:
        return(False, False, False, False, False)
    # reading values
    single_loops = looptools_cache[tool]["single_loops"]
    loops = looptools_cache[tool]["loops"]
    derived = looptools_cache[tool]["derived"]
    mapping = looptools_cache[tool]["mapping"]
    return(True, single_loops, loops, derived, mapping)


# store information in the cache
def cache_write(tool, object, bm, input_method, boundaries, single_loops,
loops, derived, mapping):
    # clear cache of current tool
    if tool in looptools_cache:
        del looptools_cache[tool]
    # prepare values to be saved to cache
    input = [v.index for v in bm.verts if v.select and not v.hide]
    modifiers = [mod.name for mod in object.modifiers if mod.show_viewport \
        and mod.type == 'MIRROR']
    # update cache
    looptools_cache[tool] = {"input": input, "object": object.name,
        "input_method": input_method, "boundaries": boundaries,
        "single_loops": single_loops, "loops": loops,
        "derived": derived, "mapping": mapping, "modifiers": modifiers}


# calculates natural cubic splines through all given knots
def calculate_cubic_splines(bm_mod, tknots, knots):
    # hack for circular loops
    if knots[0] == knots[-1] and len(knots) > 1:
        circular = True
        k_new1 = []
        for k in range(-1, -5, -1):
            if k - 1 < -len(knots):
                k += len(knots)
            k_new1.append(knots[k-1])
        k_new2 = []
        for k in range(4):
            if k + 1 > len(knots) - 1:
                k -= len(knots)
            k_new2.append(knots[k+1])
        for k in k_new1:
            knots.insert(0, k)
        for k in k_new2:
            knots.append(k)
        t_new1 = []
        total1 = 0
        for t in range(-1, -5, -1):
            if t - 1 < -len(tknots):
                t += len(tknots)
            total1 += tknots[t] - tknots[t-1]
            t_new1.append(tknots[0] - total1)
        t_new2 = []
        total2 = 0
        for t in range(4):
            if t + 1 > len(tknots) - 1:
                t -= len(tknots)
            total2 += tknots[t+1] - tknots[t]
            t_new2.append(tknots[-1] + total2)
        for t in t_new1:
            tknots.insert(0, t)
        for t in t_new2:
            tknots.append(t)
    else:
        circular = False
    # end of hack
    n = len(knots)
    if n < 2:
        return False
    x = tknots[:]
    locs = [bm_mod.verts[k].co[:] for k in knots]
    result = []
    for j in range(3):
        a = []
        for i in locs:
            a.append(i[j])
        h = []
        for i in range(n-1):
            if x[i+1] - x[i] == 0:
                h.append(1e-8)
            else:
                h.append(x[i+1] - x[i])
        q = [False]
        for i in range(1, n-1):
            q.append(3/h[i]*(a[i+1]-a[i]) - 3/h[i-1]*(a[i]-a[i-1]))
        l = [1.0]
        u = [0.0]
        z = [0.0]
        for i in range(1, n-1):
            l.append(2*(x[i+1]-x[i-1]) - h[i-1]*u[i-1])
            if l[i] == 0:
                l[i] = 1e-8
            u.append(h[i] / l[i])
            z.append((q[i] - h[i-1] * z[i-1]) / l[i])
        l.append(1.0)
        z.append(0.0)
        b = [False for i in range(n-1)]
        c = [False for i in range(n)]
        d = [False for i in range(n-1)]
        c[n-1] = 0.0
        for i in range(n-2, -1, -1):
            c[i] = z[i] - u[i]*c[i+1]
            b[i] = (a[i+1]-a[i])/h[i] - h[i]*(c[i+1]+2*c[i])/3
            d[i] = (c[i+1]-c[i]) / (3*h[i])
        for i in range(n-1):
            result.append([a[i], b[i], c[i], d[i], x[i]])
    splines = []
    for i in range(len(knots)-1):
        splines.append([result[i], result[i+n-1], result[i+(n-1)*2]])
    if circular: # cleaning up after hack
        knots = knots[4:-4]
        tknots = tknots[4:-4]
    return(splines)


# calculates linear splines through all given knots
def calculate_linear_splines(bm_mod, tknots, knots):
    splines = []
    for i in range(len(knots)-1):
        a = bm_mod.verts[knots[i]].co
        b = bm_mod.verts[knots[i+1]].co
        d = b-a
        t = tknots[i]
        u = tknots[i+1]-t
        splines.append([a, d, t, u]) # [locStart, locDif, tStart, tDif]
    return(splines)


# calculate a best-fit plane to the given vertices
def calculate_plane(bm_mod, loop, method="best_fit", object=False):
    bm_mod.verts.ensure_lookup_table() # to work in 2.73 
    # getting the vertex locations
    locs = [bm_mod.verts[v].co.copy() for v in loop[0]]
    # calculating the center of masss
    com = mathutils.Vector()
    for loc in locs:
        com += loc
    com /= len(locs)
    x, y, z = com
    if method == 'best_fit':
        # creating the covariance matrix
        mat = mathutils.Matrix(((0.0, 0.0, 0.0),
                                (0.0, 0.0, 0.0),
                                (0.0, 0.0, 0.0),
                                ))
        for loc in locs:
            mat[0][0] += (loc[0]-x)**2
            mat[1][0] += (loc[0]-x)*(loc[1]-y)
            mat[2][0] += (loc[0]-x)*(loc[2]-z)
            mat[0][1] += (loc[1]-y)*(loc[0]-x)
            mat[1][1] += (loc[1]-y)**2
            mat[2][1] += (loc[1]-y)*(loc[2]-z)
            mat[0][2] += (loc[2]-z)*(loc[0]-x)
            mat[1][2] += (loc[2]-z)*(loc[1]-y)
            mat[2][2] += (loc[2]-z)**2
        # calculating the normal to the plane
        normal = False
        try:
            mat = matrix_invert(mat)
            ax = 2
            if math.fabs(sum(mat[0])) < math.fabs(sum(mat[1])):
                if math.fabs(sum(mat[0])) < math.fabs(sum(mat[2])):
                    ax = 0
            elif math.fabs(sum(mat[1])) < math.fabs(sum(mat[2])):
                ax = 1
            if ax == 0:
                normal = mathutils.Vector((1.0, 0.0, 0.0))
                normal = mathutils.Vector((0.0, 1.0, 0.0))
                normal = mathutils.Vector((0.0, 0.0, 1.0))
        if not normal:
            # warning! this is different from .normalize()
            itermax = 500
            iter = 0
            vec = mathutils.Vector((1.0, 1.0, 1.0))
            vec2 = (mat * vec)/(mat * vec).length
            while vec != vec2 and iter<itermax:
                iter+=1
                vec = vec2
                vec2 = mat * vec
                if vec2.length != 0:
                    vec2 /= vec2.length
            if vec2.length == 0:
                vec2 = mathutils.Vector((1.0, 1.0, 1.0))
            normal = vec2
    elif method == 'normal':
        # averaging the vertex normals
        v_normals = [bm_mod.verts[v].normal for v in loop[0]]
        normal = mathutils.Vector()
        for v_normal in v_normals:
            normal += v_normal
        normal /= len(v_normals)
        normal.normalize()
    elif method == 'view':
        # calculate view normal
        rotation = bpy.context.space_data.region_3d.view_matrix.to_3x3().\
            inverted()
        normal = rotation * mathutils.Vector((0.0, 0.0, 1.0))
        if object:
            normal = object.matrix_world.inverted().to_euler().to_matrix() * \
                     normal
    return(com, normal)


# calculate splines based on given interpolation method (controller function)
def calculate_splines(interpolation, bm_mod, tknots, knots):
    if interpolation == 'cubic':
        splines = calculate_cubic_splines(bm_mod, tknots, knots[:])
    else: # interpolations == 'linear'
        splines = calculate_linear_splines(bm_mod, tknots, knots[:])
    return(splines)


# check loops and only return valid ones
def check_loops(loops, mapping, bm_mod):
    valid_loops = []
    bm_mod.verts.ensure_lookup_table() # to work in 2.73 
    for loop, circular in loops:
        # loop needs to have at least 3 vertices
        if len(loop) < 3:
            continue
        # loop needs at least 1 vertex in the original, non-mirrored mesh
        if mapping:
            all_virtual = True
            for vert in loop:
                if mapping[vert] > -1:
                    all_virtual = False
                    break
            if all_virtual:
                continue
        # vertices can not all be at the same location
        stacked = True
        for i in range(len(loop) - 1):
            if (bm_mod.verts[loop[i]].co - \
            bm_mod.verts[loop[i+1]].co).length > 1e-6:
                stacked = False
                break
        if stacked:
        # passed all tests, loop is valid
        valid_loops.append([loop, circular])
    return(valid_loops)


# input: bmesh, output: dict with the edge-key as key and face-index as value
def dict_edge_faces(bm):
    edge_faces = dict([[edgekey(edge), []] for edge in bm.edges if \
        not edge.hide])
    for face in bm.faces:
        if face.hide:
            continue
        for key in face_edgekeys(face):
            edge_faces[key].append(face.index)
    return(edge_faces)


# input: bmesh (edge-faces optional), output: dict with face-face connections
def dict_face_faces(bm, edge_faces=False):
    if not edge_faces:
        edge_faces = dict_edge_faces(bm)
    connected_faces = dict([[face.index, []] for face in bm.faces if \
        not face.hide])
    for face in bm.faces:
        if face.hide:
            continue
        for edge_key in face_edgekeys(face):
            for connected_face in edge_faces[edge_key]:
                if connected_face == face.index:
                    continue
                connected_faces[face.index].append(connected_face)
    return(connected_faces)


# input: bmesh, output: dict with the vert index as key and edge-keys as value
def dict_vert_edges(bm):
    vert_edges = dict([[v.index, []] for v in bm.verts if not v.hide])
    for edge in bm.edges:
        if edge.hide:
            continue
        ek = edgekey(edge)
        for vert in ek:
            vert_edges[vert].append(ek)
    return(vert_edges)


# input: bmesh, output: dict with the vert index as key and face index as value
def dict_vert_faces(bm):
    vert_faces = dict([[v.index, []] for v in bm.verts if not v.hide])
    for face in bm.faces:
        if not face.hide:
            for vert in face.verts:
                vert_faces[vert.index].append(face.index)
    return(vert_faces)


# input: list of edge-keys, output: dictionary with vertex-vertex connections
def dict_vert_verts(edge_keys):
    # create connection data
    vert_verts = {}
    for ek in edge_keys:
        for i in range(2):
            if ek[i] in vert_verts:
                vert_verts[ek[i]].append(ek[1-i])
            else:
                vert_verts[ek[i]] = [ek[1-i]]
    return(vert_verts)


# return the edgekey ([v1.index, v2.index]) of a bmesh edge
def edgekey(edge):
    return(tuple(sorted([edge.verts[0].index, edge.verts[1].index])))


# returns the edgekeys of a bmesh face
def face_edgekeys(face):
    return([tuple(sorted([edge.verts[0].index, edge.verts[1].index])) for \
        edge in face.edges])


# calculate input loops
def get_connected_input(object, bm, scene, input):
    # get mesh with modifiers applied
    derived, bm_mod = get_derived_bmesh(object, bm, scene)
    # calculate selected loops
    edge_keys = [edgekey(edge) for edge in bm_mod.edges if \
        edge.select and not edge.hide]
    loops = get_connected_selections(edge_keys)
    # if only selected loops are needed, we're done
    if input == 'selected':
        return(derived, bm_mod, loops)
    loops = get_parallel_loops(bm_mod, loops)
    return(derived, bm_mod, loops)


# sorts all edge-keys into a list of loops
def get_connected_selections(edge_keys):
    # create connection data
    vert_verts = dict_vert_verts(edge_keys)
    # find loops consisting of connected selected edges
    loops = []
    while len(vert_verts) > 0:
        loop = [iter(vert_verts.keys()).__next__()]
        growing = True
        flipped = False
        # extend loop
        while growing:
            # no more connection data for current vertex
            if loop[-1] not in vert_verts:
                if not flipped:
                    loop.reverse()
                    flipped = True
                else:
                    growing = False
            else:
                extended = False
                for i, next_vert in enumerate(vert_verts[loop[-1]]):
                    if next_vert not in loop:
                        vert_verts[loop[-1]].pop(i)
                        if len(vert_verts[loop[-1]]) == 0:
                            del vert_verts[loop[-1]]
                        # remove connection both ways
                        if next_vert in vert_verts:
                            if len(vert_verts[next_vert]) == 1:
                                del vert_verts[next_vert]
                            else:
                                vert_verts[next_vert].remove(loop[-1])
                        loop.append(next_vert)
                        extended = True
                        break
                if not extended:
                    # found one end of the loop, continue with next
                    if not flipped:
                        loop.reverse()
                        flipped = True
                    # found both ends of the loop, stop growing
                    else:
                        growing = False
        # check if loop is circular
        if loop[0] in vert_verts:
            if loop[-1] in vert_verts[loop[0]]:
                # is circular
                if len(vert_verts[loop[0]]) == 1:
                    del vert_verts[loop[0]]
                else:
                    vert_verts[loop[0]].remove(loop[-1])
                if len(vert_verts[loop[-1]]) == 1:
                    del vert_verts[loop[-1]]
                else:
                    vert_verts[loop[-1]].remove(loop[0])
                loop = [loop, True]
            else:
                # not circular
                loop = [loop, False]
        else:
            # not circular
            loop = [loop, False]
    return(loops)


# get the derived mesh data, if there is a mirror modifier
def get_derived_bmesh(object, bm, scene):
    # check for mirror modifiers
    if 'MIRROR' in [mod.type for mod in object.modifiers if mod.show_viewport]:
        derived = True
        # disable other modifiers
        show_viewport = [mod.name for mod in object.modifiers if \
            mod.show_viewport]
        for mod in object.modifiers:
            if mod.type != 'MIRROR':
                mod.show_viewport = False
        # get derived mesh
        bm_mod = bmesh.new()
        mesh_mod = object.to_mesh(scene, True, 'PREVIEW')
        bm_mod.from_mesh(mesh_mod)
        bpy.context.blend_data.meshes.remove(mesh_mod)
        # re-enable other modifiers
        for mod_name in show_viewport:
            object.modifiers[mod_name].show_viewport = True
    # no mirror modifiers, so no derived mesh necessary
    else:
        derived = False
        bm_mod = bm
    return(derived, bm_mod)


# return a mapping of derived indices to indices
def get_mapping(derived, bm, bm_mod, single_vertices, full_search, loops):
    if not derived:
        return(False)
    if full_search:
        verts = [v for v in bm.verts if not v.hide]
    else:
        verts = [v for v in bm.verts if v.select and not v.hide]
    # non-selected vertices around single vertices also need to be mapped
    if single_vertices:
        mapping = dict([[vert, -1] for vert in single_vertices])
        verts_mod = [bm_mod.verts[vert] for vert in single_vertices]
        for v in verts:
            for v_mod in verts_mod:
                if (v.co - v_mod.co).length < 1e-6:
                    mapping[v_mod.index] = v.index
                    break
        real_singles = [v_real for v_real in mapping.values() if v_real>-1]
        verts_indices = [vert.index for vert in verts]
        for face in [face for face in bm.faces if not face.select \
        and not face.hide]:
            for vert in face.verts:
                if vert.index in real_singles:
                    for v in face.verts:
                        if not v.index in verts_indices:
                            if v not in verts:
                                verts.append(v)
                    break
    # create mapping of derived indices to indices
    mapping = dict([[vert, -1] for loop in loops for vert in loop[0]])
    if single_vertices:
        for single in single_vertices:
            mapping[single] = -1
    verts_mod = [bm_mod.verts[i] for i in mapping.keys()]
    for v in verts:
        for v_mod in verts_mod:
            if (v.co - v_mod.co).length < 1e-6:
                mapping[v_mod.index] = v.index
                verts_mod.remove(v_mod)
                break
# calculate the determinant of a matrix
def matrix_determinant(m):
    determinant = m[0][0] * m[1][1] * m[2][2] + m[0][1] * m[1][2] * m[2][0] \
        + m[0][2] * m[1][0] * m[2][1] - m[0][2] * m[1][1] * m[2][0] \
        - m[0][1] * m[1][0] * m[2][2] - m[0][0] * m[1][2] * m[2][1]

    return(determinant)


# custom matrix inversion, to provide higher precision than the built-in one
def matrix_invert(m):
    r = mathutils.Matrix((
        (m[1][1]*m[2][2] - m[1][2]*m[2][1], m[0][2]*m[2][1] - m[0][1]*m[2][2],
        m[0][1]*m[1][2] - m[0][2]*m[1][1]),
        (m[1][2]*m[2][0] - m[1][0]*m[2][2], m[0][0]*m[2][2] - m[0][2]*m[2][0],
        m[0][2]*m[1][0] - m[0][0]*m[1][2]),
        (m[1][0]*m[2][1] - m[1][1]*m[2][0], m[0][1]*m[2][0] - m[0][0]*m[2][1],
        m[0][0]*m[1][1] - m[0][1]*m[1][0])))
    return (r * (1 / matrix_determinant(m)))


# returns a list of all loops parallel to the input, input included
def get_parallel_loops(bm_mod, loops):
    # get required dictionaries
    edge_faces = dict_edge_faces(bm_mod)
    connected_faces = dict_face_faces(bm_mod, edge_faces)
    # turn vertex loops into edge loops
    edgeloops = []
    bm_mod.faces.ensure_lookup_table() # to work in 2.73 
    for loop in loops:
        edgeloop = [[sorted([loop[0][i], loop[0][i+1]]) for i in \
            range(len(loop[0])-1)], loop[1]]
        if loop[1]: # circular
            edgeloop[0].append(sorted([loop[0][-1], loop[0][0]]))
        edgeloops.append(edgeloop[:])
    # variables to keep track while iterating
    all_edgeloops = []
    has_branches = False
    for loop in edgeloops:
        # initialise with original loop
        all_edgeloops.append(loop[0])
        newloops = [loop[0]]
        verts_used = []
        for edge in loop[0]:
            if edge[0] not in verts_used:
                verts_used.append(edge[0])
            if edge[1] not in verts_used:
                verts_used.append(edge[1])
        # find parallel loops
        while len(newloops) > 0:
            side_a = []
            side_b = []
            for i in newloops[-1]:
                i = tuple(i)
                forbidden_side = False
                if not i in edge_faces:
                    # weird input with branches
                    has_branches = True
                    break
                for face in edge_faces[i]:
                    if len(side_a) == 0 and forbidden_side != "a":
                        side_a.append(face)
                        if forbidden_side:
                            break
                        forbidden_side = "a"
                        continue
                    elif side_a[-1] in connected_faces[face] and \
                    forbidden_side != "a":
                        side_a.append(face)
                        if forbidden_side:
                            break
                        forbidden_side = "a"
                        continue
                    if len(side_b) == 0 and forbidden_side != "b":
                        side_b.append(face)
                        if forbidden_side:
                            break
                        forbidden_side = "b"
                        continue
                    elif side_b[-1] in connected_faces[face] and \
                    forbidden_side != "b":
                        side_b.append(face)
                        if forbidden_side:
                            break
                        forbidden_side = "b"
                        continue
            if has_branches:
                # weird input with branches
                break
            newloops.pop(-1)
            sides = []
            if side_a:
                sides.append(side_a)
            if side_b:
                sides.append(side_b)
            for side in sides:
                extraloop = []
                for fi in side:
                    for key in face_edgekeys(bm_mod.faces[fi]):
                        if key[0] not in verts_used and key[1] not in \
                        verts_used:
                            extraloop.append(key)
                            break
                if extraloop:
                    for key in extraloop:
                        for new_vert in key:
                            if new_vert not in verts_used:
                                verts_used.append(new_vert)
                    newloops.append(extraloop)
                    all_edgeloops.append(extraloop)
    # input contains branches, only return selected loop
    if has_branches:
        return(loops)
    # change edgeloops into normal loops
    loops = []
    for edgeloop in all_edgeloops:
        loop = []
        # grow loop by comparing vertices between consecutive edge-keys
        for i in range(len(edgeloop)-1):
            for vert in range(2):
                if edgeloop[i][vert] in edgeloop[i+1]:
                    loop.append(edgeloop[i][vert])
                    break
        if loop:
            # add starting vertex
            for vert in range(2):
                if edgeloop[0][vert] != loop[0]:
                    loop = [edgeloop[0][vert]] + loop
                    break
            # add ending vertex
            for vert in range(2):
                if edgeloop[-1][vert] != loop[-1]:
                    loop.append(edgeloop[-1][vert])
                    break
            # check if loop is circular
            if loop[0] == loop[-1]:
                circular = True
                loop = loop[:-1]
            else:
                circular = False
        loops.append([loop, circular])
    return(loops)


# gather initial data
def initialise():
    global_undo = bpy.context.user_preferences.edit.use_global_undo
    bpy.context.user_preferences.edit.use_global_undo = False
    object = bpy.context.active_object
Bart Crouch's avatar
Bart Crouch committed
    if 'MIRROR' in [mod.type for mod in object.modifiers if mod.show_viewport]:
        # ensure that selection is synced for the derived mesh
        bpy.ops.object.mode_set(mode='OBJECT')
        bpy.ops.object.mode_set(mode='EDIT')
    bm = bmesh.from_edit_mesh(object.data)
    return(global_undo, object, bm)


# move the vertices to their new locations
def move_verts(object, bm, mapping, move, lock, influence):
    if lock:
        lock_x, lock_y, lock_z = lock
        orientation = bpy.context.space_data.transform_orientation
        custom = bpy.context.space_data.current_orientation
        if custom:
            mat = custom.matrix.to_4x4().inverted() * object.matrix_world.copy()
        elif orientation == 'LOCAL':
            mat = mathutils.Matrix.Identity(4)
        elif orientation == 'VIEW':
            mat = bpy.context.region_data.view_matrix.copy() * \
                object.matrix_world.copy()
        else: # orientation == 'GLOBAL'
            mat = object.matrix_world.copy()
        mat_inv = mat.inverted()

    for loop in move:
        for index, loc in loop:
            if mapping:
                if mapping[index] == -1:
                    continue
                else:
                    index = mapping[index]
            if lock:
                delta = (loc - bm.verts[index].co) * mat_inv
                if lock_x:
                    delta[0] = 0
                if lock_y:
                    delta[1] = 0
                if lock_z:
                    delta[2] = 0
                delta = delta * mat
                loc = bm.verts[index].co + delta
            if influence < 0:
                new_loc = loc
Brendon Murphy's avatar
Brendon Murphy committed
                bm.verts.ensure_lookup_table()
                new_loc = loc*(influence/100) + \
                    bm.verts[index].co*((100-influence)/100)
            bm.verts[index].co = new_loc
    bm.normal_update()
    object.data.update()


def settings_load(self):
    lt = bpy.context.window_manager.looptools
    tool = self.name.split()[0].lower()
    keys = self.as_keywords().keys()
    for key in keys:
        setattr(self, key, getattr(lt, tool + "_" + key))


# store custom tool settings
def settings_write(self):
    lt = bpy.context.window_manager.looptools
    tool = self.name.split()[0].lower()
    keys = self.as_keywords().keys()
    for key in keys:
        setattr(lt, tool + "_" + key, getattr(self, key))


# clean up and set settings back to original state
def terminate(global_undo):
    # update editmesh cached data
    obj = bpy.context.active_object
    if obj.mode == 'EDIT':
        bmesh.update_edit_mesh(obj.data, tessface=True, destructive=True)

    bpy.context.user_preferences.edit.use_global_undo = global_undo


##########################################
####### Bridge functions #################
##########################################

# calculate a cubic spline through the middle section of 4 given coordinates
def bridge_calculate_cubic_spline(bm, coordinates):
    result = []
    x = [0, 1, 2, 3]
    for j in range(3):
        a = []
        for i in coordinates:
            a.append(float(i[j]))
        h = []
        for i in range(3):
            h.append(x[i+1]-x[i])
        q = [False]
        for i in range(1,3):
            q.append(3.0/h[i]*(a[i+1]-a[i])-3.0/h[i-1]*(a[i]-a[i-1]))
        l = [1.0]
        u = [0.0]
        z = [0.0]
        for i in range(1,3):
            l.append(2.0*(x[i+1]-x[i-1])-h[i-1]*u[i-1])
            u.append(h[i]/l[i])
            z.append((q[i]-h[i-1]*z[i-1])/l[i])
        l.append(1.0)
        z.append(0.0)
        b = [False for i in range(3)]
        c = [False for i in range(4)]
        d = [False for i in range(3)]
        c[3] = 0.0
        for i in range(2,-1,-1):
            c[i] = z[i]-u[i]*c[i+1]
            b[i] = (a[i+1]-a[i])/h[i]-h[i]*(c[i+1]+2.0*c[i])/3.0
            d[i] = (c[i+1]-c[i])/(3.0*h[i])
        for i in range(3):
            result.append([a[i], b[i], c[i], d[i], x[i]])
    spline = [result[1], result[4], result[7]]

    return(spline)


# return a list with new vertex location vectors, a list with face vertex
# integers, and the highest vertex integer in the virtual mesh
def bridge_calculate_geometry(bm, lines, vertex_normals, segments,
interpolation, cubic_strength, min_width, max_vert_index):
    new_verts = []
    faces = []
    # calculate location based on interpolation method
    def get_location(line, segment, splines):
        v1 = bm.verts[lines[line][0]].co
        v2 = bm.verts[lines[line][1]].co
        if interpolation == 'linear':
            return v1 + (segment/segments) * (v2-v1)
        else: # interpolation == 'cubic'
            m = (segment/segments)
            ax,bx,cx,dx,tx = splines[line][0]
            x = ax+bx*m+cx*m**2+dx*m**3
            ay,by,cy,dy,ty = splines[line][1]
            y = ay+by*m+cy*m**2+dy*m**3
            az,bz,cz,dz,tz = splines[line][2]
            z = az+bz*m+cz*m**2+dz*m**3
            return mathutils.Vector((x, y, z))
    # no interpolation needed
    if segments == 1:
        for i, line in enumerate(lines):
            if i < len(lines)-1:
                faces.append([line[0], lines[i+1][0], lines[i+1][1], line[1]])
    # more than 1 segment, interpolate
    else:
        # calculate splines (if necessary) once, so no recalculations needed
        if interpolation == 'cubic':
            splines = []
            for line in lines:
                v1 = bm.verts[line[0]].co
                v2 = bm.verts[line[1]].co
                size = (v2-v1).length * cubic_strength
                splines.append(bridge_calculate_cubic_spline(bm,
                    [v1+size*vertex_normals[line[0]], v1, v2,
                    v2+size*vertex_normals[line[1]]]))
        else:
            splines = False
        # create starting situation
        virtual_width = [(bm.verts[lines[i][0]].co -
                          bm.verts[lines[i+1][0]].co).length for i
                          in range(len(lines)-1)]
        new_verts = [get_location(0, seg, splines) for seg in range(1,
            segments)]
        first_line_indices = [i for i in range(max_vert_index+1,
            max_vert_index+segments)]
        prev_verts = new_verts[:] # vertex locations of verts on previous line
        prev_vert_indices = first_line_indices[:]
        max_vert_index += segments - 1 # highest vertex index in virtual mesh
        next_verts = [] # vertex locations of verts on current line
        next_vert_indices = []
        for i, line in enumerate(lines):
            if i < len(lines)-1:
                v1 = line[0]
                v2 = lines[i+1][0]
                end_face = True
                for seg in range(1, segments):
                    loc1 = prev_verts[seg-1]
                    loc2 = get_location(i+1, seg, splines)
                    if (loc1-loc2).length < (min_width/100)*virtual_width[i] \
                    and line[1]==lines[i+1][1]:
                        # triangle, no new vertex
                        faces.append([v1, v2, prev_vert_indices[seg-1],
                            prev_vert_indices[seg-1]])
                        next_verts += prev_verts[seg-1:]
                        next_vert_indices += prev_vert_indices[seg-1:]
                        end_face = False
                        break
                    else:
                        if i == len(lines)-2 and lines[0] == lines[-1]:
                            # quad with first line, no new vertex
                            faces.append([v1, v2, first_line_indices[seg-1],
                                prev_vert_indices[seg-1]])
                            v2 = first_line_indices[seg-1]
                            v1 = prev_vert_indices[seg-1]
                        else:
                            # quad, add new vertex
                            max_vert_index += 1
                            faces.append([v1, v2, max_vert_index,
                                prev_vert_indices[seg-1]])
                            v2 = max_vert_index
                            v1 = prev_vert_indices[seg-1]
                            new_verts.append(loc2)
                            next_verts.append(loc2)
                            next_vert_indices.append(max_vert_index)
                if end_face:
                    faces.append([v1, v2, lines[i+1][1], line[1]])
                prev_verts = next_verts[:]
                prev_vert_indices = next_vert_indices[:]
                next_verts = []
                next_vert_indices = []
    return(new_verts, faces, max_vert_index)


# calculate lines (list of lists, vertex indices) that are used for bridging
def bridge_calculate_lines(bm, loops, mode, twist, reverse):
    lines = []
    loop1, loop2 = [i[0] for i in loops]
    loop1_circular, loop2_circular = [i[1] for i in loops]
    circular = loop1_circular or loop2_circular
    circle_full = False
    # calculate loop centers
    centers = []
    bm.verts.ensure_lookup_table() # to work in 2.73 
    for loop in [loop1, loop2]:
        center = mathutils.Vector()
        for vertex in loop:
            center += bm.verts[vertex].co
        center /= len(loop)
        centers.append(center)
    for i, loop in enumerate([loop1, loop2]):
        for vertex in loop:
            if bm.verts[vertex].co == centers[i]:
                # prevent zero-length vectors in angle comparisons
                centers[i] += mathutils.Vector((0.01, 0, 0))
                break
    center1, center2 = centers
    # calculate the normals of the virtual planes that the loops are on
    normals = []
    normal_plurity = False
    for i, loop in enumerate([loop1, loop2]):
        # covariance matrix
        mat = mathutils.Matrix(((0.0, 0.0, 0.0),
                                (0.0, 0.0, 0.0),
                                (0.0, 0.0, 0.0)))
        x, y, z = centers[i]
        for loc in [bm.verts[vertex].co for vertex in loop]:
            mat[0][0] += (loc[0]-x)**2
            mat[1][0] += (loc[0]-x)*(loc[1]-y)
            mat[2][0] += (loc[0]-x)*(loc[2]-z)
            mat[0][1] += (loc[1]-y)*(loc[0]-x)
            mat[1][1] += (loc[1]-y)**2
            mat[2][1] += (loc[1]-y)*(loc[2]-z)
            mat[0][2] += (loc[2]-z)*(loc[0]-x)
            mat[1][2] += (loc[2]-z)*(loc[1]-y)
            mat[2][2] += (loc[2]-z)**2
        # plane normal
        normal = False
        if sum(mat[0]) < 1e-6 or sum(mat[1]) < 1e-6 or sum(mat[2]) < 1e-6:
            normal_plurity = True
        try:
            mat.invert()
        except:
            if sum(mat[0]) == 0:
                normal = mathutils.Vector((1.0, 0.0, 0.0))
            elif sum(mat[1]) == 0:
                normal = mathutils.Vector((0.0, 1.0, 0.0))
            elif sum(mat[2]) == 0:
                normal = mathutils.Vector((0.0, 0.0, 1.0))
        if not normal:
            # warning! this is different from .normalize()
            itermax = 500
            iter = 0
            vec = mathutils.Vector((1.0, 1.0, 1.0))
            vec2 = (mat * vec)/(mat * vec).length
            while vec != vec2 and iter<itermax:
                iter+=1
                vec = vec2
                vec2 = mat * vec
                if vec2.length != 0:
                    vec2 /= vec2.length
            if vec2.length == 0:
                vec2 = mathutils.Vector((1.0, 1.0, 1.0))
            normal = vec2
        normals.append(normal)
    # have plane normals face in the same direction (maximum angle: 90 degrees)
    if ((center1 + normals[0]) - center2).length < \
    ((center1 - normals[0]) - center2).length:
        normals[0].negate()
    if ((center2 + normals[1]) - center1).length > \
    ((center2 - normals[1]) - center1).length:
        normals[1].negate()
    # rotation matrix, representing the difference between the plane normals
    axis = normals[0].cross(normals[1])
    axis = mathutils.Vector([loc if abs(loc) > 1e-8 else 0 for loc in axis])
    if axis.angle(mathutils.Vector((0, 0, 1)), 0) > 1.5707964:
        axis.negate()
    angle = normals[0].dot(normals[1])
    rotation_matrix = mathutils.Matrix.Rotation(angle, 4, axis)
    # if circular, rotate loops so they are aligned
    if circular:
        # make sure loop1 is the circular one (or both are circular)
        if loop2_circular and not loop1_circular:
            loop1_circular, loop2_circular = True, False
            loop1, loop2 = loop2, loop1
        # match start vertex of loop1 with loop2
        target_vector = bm.verts[loop2[0]].co - center2
        dif_angles = [[(rotation_matrix * (bm.verts[vertex].co - center1)
                       ).angle(target_vector, 0), False, i] for
                       i, vertex in enumerate(loop1)]
        dif_angles.sort()
        if len(loop1) != len(loop2):
            angle_limit = dif_angles[0][0] * 1.2 # 20% margin
            dif_angles = [[(bm.verts[loop2[0]].co - \
                bm.verts[loop1[index]].co).length, angle, index] for \
                angle, distance, index in dif_angles if angle <= angle_limit]
            dif_angles.sort()
        loop1 = loop1[dif_angles[0][2]:] + loop1[:dif_angles[0][2]]
    # have both loops face the same way
    if normal_plurity and not circular:
        second_to_first, second_to_second, second_to_last = \
            [(bm.verts[loop1[1]].co - center1).\
            angle(bm.verts[loop2[i]].co - center2) for i in [0, 1, -1]]
        last_to_first, last_to_second = [(bm.verts[loop1[-1]].co - \
            center1).angle(bm.verts[loop2[i]].co - center2) for \
            i in [0, 1]]
        if (min(last_to_first, last_to_second)*1.1 < min(second_to_first, \
        second_to_second)) or (loop2_circular and second_to_last*1.1 < \
        min(second_to_first, second_to_second)):
            loop1.reverse()
            if circular:
                loop1 = [loop1[-1]] + loop1[:-1]
    else:
        angle = (bm.verts[loop1[0]].co - center1).\
            cross(bm.verts[loop1[1]].co - center1).angle(normals[0], 0)
        target_angle = (bm.verts[loop2[0]].co - center2).\
            cross(bm.verts[loop2[1]].co - center2).angle(normals[1], 0)
        limit = 1.5707964 # 0.5*pi, 90 degrees
        if not ((angle > limit and target_angle > limit) or \
        (angle < limit and target_angle < limit)):
            loop1.reverse()
            if circular:
                loop1 = [loop1[-1]] + loop1[:-1]
        elif normals[0].angle(normals[1]) > limit:
            loop1.reverse()
            if circular:
                loop1 = [loop1[-1]] + loop1[:-1]
    # both loops have the same length
    if len(loop1) == len(loop2):
        # manual override
        if twist:
            if abs(twist) < len(loop1):
                loop1 = loop1[twist:]+loop1[:twist]
        if reverse:
            loop1.reverse()
        lines.append([loop1[0], loop2[0]])
        for i in range(1, len(loop1)):
            lines.append([loop1[i], loop2[i]])
    # loops of different lengths
    else:
        # make loop1 longest loop
        if len(loop2) > len(loop1):
            loop1, loop2 = loop2, loop1
            loop1_circular, loop2_circular = loop2_circular, loop1_circular
        # manual override
        if twist:
            if abs(twist) < len(loop1):
                loop1 = loop1[twist:]+loop1[:twist]
        if reverse:
            loop1.reverse()
        # shortest angle difference doesn't always give correct start vertex
        if loop1_circular and not loop2_circular:
            shifting = 1
            while shifting:
                if len(loop1) - shifting < len(loop2):
                    shifting = False
                    break
                to_last, to_first = [(rotation_matrix *
                    (bm.verts[loop1[-1]].co - center1)).angle((bm.\
                    verts[loop2[i]].co - center2), 0) for i in [-1, 0]]
                if to_first < to_last:
                    loop1 = [loop1[-1]] + loop1[:-1]
                    shifting += 1
                else:
                    shifting = False
                    break
        # basic shortest side first
        if mode == 'basic':
            lines.append([loop1[0], loop2[0]])
            for i in range(1, len(loop1)):
                if i >= len(loop2) - 1:
                    # triangles
                    lines.append([loop1[i], loop2[-1]])
                else:
                    # quads
                    lines.append([loop1[i], loop2[i]])
        # shortest edge algorithm
        else: # mode == 'shortest'
            lines.append([loop1[0], loop2[0]])
            prev_vert2 = 0
            for i in range(len(loop1) -1):
                if prev_vert2 == len(loop2) - 1 and not loop2_circular:
                    # force triangles, reached end of loop2
                    tri, quad = 0, 1
                elif prev_vert2 == len(loop2) - 1 and loop2_circular:
                    # at end of loop2, but circular, so check with first vert
                    tri, quad = [(bm.verts[loop1[i+1]].co -
                                  bm.verts[loop2[j]].co).length
                                 for j in [prev_vert2, 0]]
                    circle_full = 2
                elif len(loop1) - 1 - i == len(loop2) - 1 - prev_vert2 and \
                not circle_full:
                    # force quads, otherwise won't make it to end of loop2
                    tri, quad = 1, 0
                else:
                    # calculate if tri or quad gives shortest edge
                    tri, quad = [(bm.verts[loop1[i+1]].co -
                                  bm.verts[loop2[j]].co).length
                                 for j in range(prev_vert2, prev_vert2+2)]
                # triangle
                if tri < quad:
                    lines.append([loop1[i+1], loop2[prev_vert2]])
                    if circle_full == 2:
                        circle_full = False
                # quad
                elif not circle_full:
                    lines.append([loop1[i+1], loop2[prev_vert2+1]])
                    prev_vert2 += 1
                # quad to first vertex of loop2
                else:
                    lines.append([loop1[i+1], loop2[0]])
                    prev_vert2 = 0
                    circle_full = True
    # final face for circular loops
    if loop1_circular and loop2_circular:
        lines.append([loop1[0], loop2[0]])
    return(lines)


# calculate number of segments needed
def bridge_calculate_segments(bm, lines, loops, segments):
    # return if amount of segments is set by user
    if segments != 0:
        return segments
    # edge lengths
    average_edge_length = [(bm.verts[vertex].co - \
        bm.verts[loop[0][i+1]].co).length for loop in loops for \
        i, vertex in enumerate(loop[0][:-1])]
    # closing edges of circular loops
    average_edge_length += [(bm.verts[loop[0][-1]].co - \
        bm.verts[loop[0][0]].co).length for loop in loops if loop[1]]

    # average lengths
    average_edge_length = sum(average_edge_length) / len(average_edge_length)
    average_bridge_length = sum([(bm.verts[v1].co - \
        bm.verts[v2].co).length for v1, v2 in lines]) / len(lines)
    segments = max(1, round(average_bridge_length / average_edge_length))
    return(segments)


# return dictionary with vertex index as key, and the normal vector as value
def bridge_calculate_virtual_vertex_normals(bm, lines, loops, edge_faces,
edgekey_to_edge):
    if not edge_faces: # interpolation isn't set to cubic
        return False
    # pity reduce() isn't one of the basic functions in python anymore
    def average_vector_dictionary(dic):
        for key, vectors in dic.items():
            #if type(vectors) == type([]) and len(vectors) > 1:
            if len(vectors) > 1:
                average = mathutils.Vector()
                for vector in vectors:
                    average += vector
                average /= len(vectors)
                dic[key] = [average]
        return dic
    # get all edges of the loop
    edges = [[edgekey_to_edge[tuple(sorted([loops[j][0][i],
        loops[j][0][i+1]]))] for i in range(len(loops[j][0])-1)] for \
        j in [0,1]]
    edges = edges[0] + edges[1]
    for j in [0, 1]:
        if loops[j][1]: # circular
            edges.append(edgekey_to_edge[tuple(sorted([loops[j][0][0],
                loops[j][0][-1]]))])
    """
    calculation based on face topology (assign edge-normals to vertices)
    edge_normal = face_normal x edge_vector
    vertex_normal = average(edge_normals)
    """
    vertex_normals = dict([(vertex, []) for vertex in loops[0][0]+loops[1][0]])
    for edge in edges:
        faces = edge_faces[edgekey(edge)] # valid faces connected to edge
        if faces:
            # get edge coordinates
            v1, v2 = [bm.verts[edgekey(edge)[i]].co for i in [0,1]]
            edge_vector = v1 - v2
            if edge_vector.length < 1e-4:
                # zero-length edge, vertices at same location
                continue
            edge_center = (v1 + v2) / 2
            # average face coordinates, if connected to more than 1 valid face
            if len(faces) > 1:
                face_normal = mathutils.Vector()
                face_center = mathutils.Vector()
                for face in faces:
                    face_normal += face.normal
                    face_center += face.calc_center_median()
                face_normal /= len(faces)
                face_center /= len(faces)
            else:
                face_normal = faces[0].normal
                face_center = faces[0].calc_center_median()
            if face_normal.length < 1e-4:
                # faces with a surface of 0 have no face normal
                continue
            # calculate virtual edge normal
            edge_normal = edge_vector.cross(face_normal)
            edge_normal.length = 0.01
            if (face_center - (edge_center + edge_normal)).length > \
            (face_center - (edge_center - edge_normal)).length:
                # make normal face the correct way
                edge_normal.negate()
            edge_normal.normalize()
            # add virtual edge normal as entry for both vertices it connects
            for vertex in edgekey(edge):
                vertex_normals[vertex].append(edge_normal)

    """
    calculation based on connection with other loop (vertex focused method)
    - used for vertices that aren't connected to any valid faces
    plane_normal = edge_vector x connection_vector
    vertex_normal = plane_normal x edge_vector
    """
    vertices = [vertex for vertex, normal in vertex_normals.items() if not \
        normal]
    if vertices:
        # edge vectors connected to vertices
        edge_vectors = dict([[vertex, []] for vertex in vertices])
        for edge in edges:
            for v in edgekey(edge):
                if v in edge_vectors:
                    edge_vector = bm.verts[edgekey(edge)[0]].co - \
                        bm.verts[edgekey(edge)[1]].co
                    if edge_vector.length < 1e-4:
                        # zero-length edge, vertices at same location
                        continue
                    edge_vectors[v].append(edge_vector)
        # connection vectors between vertices of both loops
        connection_vectors = dict([[vertex, []] for vertex in vertices])
        connections = dict([[vertex, []] for vertex in vertices])
        for v1, v2 in lines:
            if v1 in connection_vectors or v2 in connection_vectors:
                new_vector = bm.verts[v1].co - bm.verts[v2].co
                if new_vector.length < 1e-4:
                    # zero-length connection vector,
                    # vertices in different loops at same location
                    continue
                if v1 in connection_vectors:
                    connection_vectors[v1].append(new_vector)
                    connections[v1].append(v2)
                if v2 in connection_vectors:
                    connection_vectors[v2].append(new_vector)
                    connections[v2].append(v1)
        connection_vectors = average_vector_dictionary(connection_vectors)
        connection_vectors = dict([[vertex, vector[0]] if vector else \
            [vertex, []] for vertex, vector in connection_vectors.items()])
        for vertex, values in edge_vectors.items():
            # vertex normal doesn't matter, just assign a random vector to it
            if not connection_vectors[vertex]:
                vertex_normals[vertex] = [mathutils.Vector((1, 0, 0))]
                continue

            # calculate to what location the vertex is connected,
            # used to determine what way to flip the normal
            connected_center = mathutils.Vector()
            for v in connections[vertex]:
                connected_center += bm.verts[v].co
            if len(connections[vertex]) > 1:
                connected_center /= len(connections[vertex])
            if len(connections[vertex]) == 0:
                # shouldn't be possible, but better safe than sorry
                vertex_normals[vertex] = [mathutils.Vector((1, 0, 0))]
                continue
            # can't do proper calculations, because of zero-length vector
            if not values:
                if (connected_center - (bm.verts[vertex].co + \
                connection_vectors[vertex])).length < (connected_center - \
                (bm.verts[vertex].co - connection_vectors[vertex])).\
                length:
                    connection_vectors[vertex].negate()
                vertex_normals[vertex] = [connection_vectors[vertex].\
                    normalized()]
                continue
            # calculate vertex normals using edge-vectors,
            # connection-vectors and the derived plane normal
            for edge_vector in values:
                plane_normal = edge_vector.cross(connection_vectors[vertex])
                vertex_normal = edge_vector.cross(plane_normal)
                vertex_normal.length = 0.1
                if (connected_center - (bm.verts[vertex].co + \
                vertex_normal)).length < (connected_center - \
                (bm.verts[vertex].co - vertex_normal)).length:
                # make normal face the correct way
                    vertex_normal.negate()
                vertex_normal.normalize()
                vertex_normals[vertex].append(vertex_normal)
    # average virtual vertex normals, based on all edges it's connected to
    vertex_normals = average_vector_dictionary(vertex_normals)
    vertex_normals = dict([[vertex, vector[0]] for vertex, vector in \
        vertex_normals.items()])
    return(vertex_normals)


# add vertices to mesh
def bridge_create_vertices(bm, vertices):
    for i in range(len(vertices)):
        bm.verts.new(vertices[i])


# add faces to mesh
def bridge_create_faces(object, bm, faces, twist):
    # have the normal point the correct way
    if twist < 0:
        [face.reverse() for face in faces]
        faces = [face[2:]+face[:2] if face[0]==face[1] else face for \
            face in faces]
    # eekadoodle prevention
    for i in range(len(faces)):
        if not faces[i][-1]:
            if faces[i][0] == faces[i][-1]:
                faces[i] = [faces[i][1], faces[i][2], faces[i][3], faces[i][1]]
            else:
                faces[i] = [faces[i][-1]] + faces[i][:-1]
        # result of converting from pre-bmesh period
        if faces[i][-1] == faces[i][-2]:
            faces[i] = faces[i][:-1]
    for i in range(len(faces)):
        bm.faces.ensure_lookup_table()
        bm.verts.ensure_lookup_table()
        new_faces.append(bm.faces.new([bm.verts[v] for v in faces[i]]))
    bm.normal_update()
    object.data.update(calc_edges=True) # calc_edges prevents memory-corruption


# calculate input loops
def bridge_get_input(bm):
    # create list of internal edges, which should be skipped
    eks_of_selected_faces = [item for sublist in [face_edgekeys(face) for \
        face in bm.faces if face.select and not face.hide] for item in sublist]
    edge_count = {}
    for ek in eks_of_selected_faces:
        if ek in edge_count:
            edge_count[ek] += 1
        else:
            edge_count[ek] = 1
    internal_edges = [ek for ek in edge_count if edge_count[ek] > 1]
    # sort correct edges into loops
    selected_edges = [edgekey(edge) for edge in bm.edges if edge.select \
        and not edge.hide and edgekey(edge) not in internal_edges]
    loops = get_connected_selections(selected_edges)
    return(loops)


# return values needed by the bridge operator
def bridge_initialise(bm, interpolation):
    if interpolation == 'cubic':
        # dict with edge-key as key and list of connected valid faces as value
        face_blacklist = [face.index for face in bm.faces if face.select or \
            face.hide]
        edge_faces = dict([[edgekey(edge), []] for edge in bm.edges if not \
            edge.hide])
        for face in bm.faces:
            if face.index in face_blacklist:
                continue
            for key in face_edgekeys(face):
                edge_faces[key].append(face)
        # dictionary with the edge-key as key and edge as value
        edgekey_to_edge = dict([[edgekey(edge), edge] for edge in \
            bm.edges if edge.select and not edge.hide])
    else:
        edge_faces = False
        edgekey_to_edge = False
    # selected faces input
    old_selected_faces = [face.index for face in bm.faces if face.select \
        and not face.hide]
    # find out if faces created by bridging should be smoothed
    smooth = False
    if bm.faces:
        if sum([face.smooth for face in bm.faces])/len(bm.faces) \
        >= 0.5:
            smooth = True
    return(edge_faces, edgekey_to_edge, old_selected_faces, smooth)


# return a string with the input method
def bridge_input_method(loft, loft_loop):
    method = ""
    if loft:
        if loft_loop:
            method = "Loft loop"
        else:
            method = "Loft no-loop"
    else:
        method = "Bridge"
    return(method)


# match up loops in pairs, used for multi-input bridging
def bridge_match_loops(bm, loops):
    # calculate average loop normals and centers
    normals = []
    centers = []
    for vertices, circular in loops:
        normal = mathutils.Vector()
        center = mathutils.Vector()
        for vertex in vertices:
            normal += bm.verts[vertex].normal
            center += bm.verts[vertex].co
        normals.append(normal / len(vertices) / 10)
        centers.append(center / len(vertices))
    # possible matches if loop normals are faced towards the center
    # of the other loop
    matches = dict([[i, []] for i in range(len(loops))])
    matches_amount = 0
    for i in range(len(loops) + 1):
        for j in range(i+1, len(loops)):
            if (centers[i] - centers[j]).length > (centers[i] - (centers[j] \
            + normals[j])).length and (centers[j] - centers[i]).length > \
            (centers[j] - (centers[i] + normals[i])).length:
                matches_amount += 1
                matches[i].append([(centers[i] - centers[j]).length, i, j])
                matches[j].append([(centers[i] - centers[j]).length, j, i])
    # if no loops face each other, just make matches between all the loops
    if matches_amount == 0:
        for i in range(len(loops) + 1):
            for j in range(i+1, len(loops)):
                matches[i].append([(centers[i] - centers[j]).length, i, j])
                matches[j].append([(centers[i] - centers[j]).length, j, i])
    for key, value in matches.items():
        value.sort()
    # matches based on distance between centers and number of vertices in loops
    new_order = []
    for loop_index in range(len(loops)):
        if loop_index in new_order:
            continue
        loop_matches = matches[loop_index]
        if not loop_matches:
            continue
        shortest_distance = loop_matches[0][0]
        shortest_distance *= 1.1
        loop_matches = [[abs(len(loops[loop_index][0]) - \
            len(loops[loop[2]][0])), loop[0], loop[1], loop[2]] for loop in \
            loop_matches if loop[0] < shortest_distance]
        loop_matches.sort()
        for match in loop_matches:
            if match[3] not in new_order:
                new_order += [loop_index, match[3]]
                break
    # reorder loops based on matches
    if len(new_order) >= 2:
        loops = [loops[i] for i in new_order]
    return(loops)


# remove old_selected_faces
def bridge_remove_internal_faces(bm, old_selected_faces):
    # collect bmesh faces and internal bmesh edges
    remove_faces = [bm.faces[face] for face in old_selected_faces]
    edges = collections.Counter([edge.index for face in remove_faces for \
        edge in face.edges])
    remove_edges = [bm.edges[edge] for edge in edges if edges[edge] > 1]
    # remove internal faces and edges
    for face in remove_faces:
        bm.faces.remove(face)
    for edge in remove_edges:
        bm.edges.remove(edge)


# update list of internal faces that are flagged for removal
def bridge_save_unused_faces(bm, old_selected_faces, loops):
    # key: vertex index, value: lists of selected faces using it
    vertex_to_face = dict([[i, []] for i in range(len(bm.verts))])
    [[vertex_to_face[vertex.index].append(face) for vertex in \
        bm.faces[face].verts] for face in old_selected_faces]
    # group selected faces that are connected
    groups = []
    grouped_faces = []
    for face in old_selected_faces:
        if face in grouped_faces:
            continue
        grouped_faces.append(face)
        group = [face]
        new_faces = [face]
        while new_faces:
            grow_face = new_faces[0]
            for vertex in bm.faces[grow_face].verts:
                vertex_face_group = [face for face in vertex_to_face[\
                    vertex.index] if face not in grouped_faces]
                new_faces += vertex_face_group
                grouped_faces += vertex_face_group
                group += vertex_face_group
            new_faces.pop(0)
        groups.append(group)
    # key: vertex index, value: True/False (is it in a loop that is used)
    used_vertices = dict([[i, 0] for i in range(len(bm.verts))])
    for loop in loops:
        for vertex in loop[0]:
            used_vertices[vertex] = True
    # check if group is bridged, if not remove faces from internal faces list
    for group in groups:
        used = False
        for face in group:
            if used:
                break
            for vertex in bm.faces[face].verts:
                if used_vertices[vertex.index]:
                    used = True
                    break
        if not used:
            for face in group:
                old_selected_faces.remove(face)


# add the newly created faces to the selection
def bridge_select_new_faces(new_faces, smooth):
    for face in new_faces:
        face.select_set(True)
        face.smooth = smooth


# sort loops, so they are connected in the correct order when lofting
def bridge_sort_loops(bm, loops, loft_loop):
    # simplify loops to single points, and prepare for pathfinding
    x, y, z = [[sum([bm.verts[i].co[j] for i in loop[0]]) / \
        len(loop[0]) for loop in loops] for j in range(3)]
    nodes = [mathutils.Vector((x[i], y[i], z[i])) for i in range(len(loops))]
    active_node = 0
    open = [i for i in range(1, len(loops))]
    path = [[0,0]]
    # connect node to path, that is shortest to active_node
    while len(open) > 0:
        distances = [(nodes[active_node] - nodes[i]).length for i in open]
        active_node = open[distances.index(min(distances))]
        open.remove(active_node)
        path.append([active_node, min(distances)])
    # check if we didn't start in the middle of the path
    for i in range(2, len(path)):
        if (nodes[path[i][0]]-nodes[0]).length < path[i][1]:
            temp = path[:i]
            path.reverse()
            path = path[:-i] + temp
            break
    # reorder loops
    loops = [loops[i[0]] for i in path]
    # if requested, duplicate first loop at last position, so loft can loop
    if loft_loop:
        loops = loops + [loops[0]]
# remapping old indices to new position in list
def bridge_update_old_selection(bm, old_selected_faces):
    #old_indices = old_selected_faces[:]
    #old_selected_faces = []
    #for i, face in enumerate(bm.faces):
    #    if face.index in old_indices:
    #        old_selected_faces.append(i)
    old_selected_faces = [i for i, face in enumerate(bm.faces) if face.index \
        in old_selected_faces]
##########################################
####### Circle functions #################
##########################################

# convert 3d coordinates to 2d coordinates on plane
def circle_3d_to_2d(bm_mod, loop, com, normal):
    # project vertices onto the plane
    verts = [bm_mod.verts[v] for v in loop[0]]
    verts_projected = [[v.co - (v.co - com).dot(normal) * normal, v.index]
                       for v in verts]

    # calculate two vectors (p and q) along the plane
    m = mathutils.Vector((normal[0] + 1.0, normal[1], normal[2]))
    p = m - (m.dot(normal) * normal)
Bart Crouch's avatar
Bart Crouch committed
    if p.dot(p) < 1e-6:
        m = mathutils.Vector((normal[0], normal[1] + 1.0, normal[2]))
        p = m - (m.dot(normal) * normal)
    q = p.cross(normal)
    # change to 2d coordinates using perpendicular projection
    locs_2d = []
    for loc, vert in verts_projected:
        vloc = loc - com
        x = p.dot(vloc) / p.dot(p)
        y = q.dot(vloc) / q.dot(q)
        locs_2d.append([x, y, vert])
    return(locs_2d, p, q)


# calculate a best-fit circle to the 2d locations on the plane
def circle_calculate_best_fit(locs_2d):
    # initial guess
    x0 = 0.0
    y0 = 0.0
    r = 1.0
    # calculate center and radius (non-linear least squares solution)
    for iter in range(500):
        jmat = []
        k = []
        for v in locs_2d:
            d = (v[0]**2-2.0*x0*v[0]+v[1]**2-2.0*y0*v[1]+x0**2+y0**2)**0.5
            jmat.append([(x0-v[0])/d, (y0-v[1])/d, -1.0])
            k.append(-(((v[0]-x0)**2+(v[1]-y0)**2)**0.5-r))
        jmat2 = mathutils.Matrix(((0.0, 0.0, 0.0),
                                  (0.0, 0.0, 0.0),
                                  (0.0, 0.0, 0.0),
                                  ))
        k2 = mathutils.Vector((0.0, 0.0, 0.0))
        for i in range(len(jmat)):
            k2 += mathutils.Vector(jmat[i])*k[i]
            jmat2[0][0] += jmat[i][0]**2
            jmat2[1][0] += jmat[i][0]*jmat[i][1]
            jmat2[2][0] += jmat[i][0]*jmat[i][2]
            jmat2[1][1] += jmat[i][1]**2
            jmat2[2][1] += jmat[i][1]*jmat[i][2]
            jmat2[2][2] += jmat[i][2]**2
        jmat2[0][1] = jmat2[1][0]
        jmat2[0][2] = jmat2[2][0]
        jmat2[1][2] = jmat2[2][1]
        try:
            jmat2.invert()
        except:
            pass
        dx0, dy0, dr = jmat2 * k2
        x0 += dx0
        y0 += dy0
        r += dr
        # stop iterating if we're close enough to optimal solution
        if abs(dx0)<1e-6 and abs(dy0)<1e-6 and abs(dr)<1e-6:
            break
    # return center of circle and radius
    return(x0, y0, r)


# calculate circle so no vertices have to be moved away from the center
def circle_calculate_min_fit(locs_2d):
    # center of circle
    x0 = (min([i[0] for i in locs_2d])+max([i[0] for i in locs_2d]))/2.0
    y0 = (min([i[1] for i in locs_2d])+max([i[1] for i in locs_2d]))/2.0
    center = mathutils.Vector([x0, y0])
    # radius of circle
    r = min([(mathutils.Vector([i[0], i[1]])-center).length for i in locs_2d])
    # return center of circle and radius
    return(x0, y0, r)


# calculate the new locations of the vertices that need to be moved
def circle_calculate_verts(flatten, bm_mod, locs_2d, com, p, q, normal):
    # changing 2d coordinates back to 3d coordinates
    locs_3d = []
    for loc in locs_2d:
        locs_3d.append([loc[2], loc[0]*p + loc[1]*q + com])
    if flatten: # flat circle
        return(locs_3d)
    else: # project the locations on the existing mesh
        vert_edges = dict_vert_edges(bm_mod)
        vert_faces = dict_vert_faces(bm_mod)
        faces = [f for f in bm_mod.faces if not f.hide]
        bm_mod.faces.ensure_lookup_table() # to work in 2.73 
        rays = [normal, -normal]
        new_locs = []
        for loc in locs_3d:
            projection = False
            if bm_mod.verts[loc[0]].co == loc[1]: # vertex hasn't moved
                projection = loc[1]
            else:
                dif = normal.angle(loc[1]-bm_mod.verts[loc[0]].co)
                if -1e-6 < dif < 1e-6 or math.pi-1e-6 < dif < math.pi+1e-6:
                    # original location is already along projection normal
                    projection = bm_mod.verts[loc[0]].co
                else:
                    # quick search through adjacent faces
                    for face in vert_faces[loc[0]]:
                        verts = [v.co for v in bm_mod.faces[face].verts]
                        if len(verts) == 3: # triangle
                            v1, v2, v3 = verts
                            v4 = False
                        else: # assume quad
                            v1, v2, v3, v4 = verts[:4]
                        for ray in rays:
                            intersect = mathutils.geometry.\
                            intersect_ray_tri(v1, v2, v3, ray, loc[1])
                            if intersect:
                                projection = intersect
                                break
                            elif v4:
                                intersect = mathutils.geometry.\
                                intersect_ray_tri(v1, v3, v4, ray, loc[1])
                                if intersect:
                                    projection = intersect
                                    break
                        if projection:
                            break
            if not projection:
                # check if projection is on adjacent edges
                for edgekey in vert_edges[loc[0]]:
                    line1 = bm_mod.verts[edgekey[0]].co
                    line2 = bm_mod.verts[edgekey[1]].co
                    intersect, dist = mathutils.geometry.intersect_point_line(\
                        loc[1], line1, line2)
                    if 1e-6 < dist < 1 - 1e-6:
                        projection = intersect
                        break
            if not projection:
                # full search through the entire mesh
                hits = []
                for face in faces:
                    verts = [v.co for v in face.verts]
                    if len(verts) == 3: # triangle
                        v1, v2, v3 = verts
                        v4 = False
                    else: # assume quad
                        v1, v2, v3, v4 = verts[:4]
                    for ray in rays:
                        intersect = mathutils.geometry.intersect_ray_tri(\
                            v1, v2, v3, ray, loc[1])
                        if intersect:
                            hits.append([(loc[1] - intersect).length,
                                intersect])
                            break
                        elif v4:
                            intersect = mathutils.geometry.intersect_ray_tri(\
                                v1, v3, v4, ray, loc[1])
                            if intersect:
                                hits.append([(loc[1] - intersect).length,
                                    intersect])
                                break
                if len(hits) >= 1:
                    # if more than 1 hit with mesh, closest hit is new loc
                    hits.sort()
                    projection = hits[0][1]
            if not projection:
                # nothing to project on, remain at flat location
                projection = loc[1]
            new_locs.append([loc[0], projection])
        # return new positions of projected circle
        return(new_locs)


# check loops and only return valid ones
def circle_check_loops(single_loops, loops, mapping, bm_mod):
    valid_single_loops = {}
    valid_loops = []
    for i, [loop, circular] in enumerate(loops):
        # loop needs to have at least 3 vertices
        if len(loop) < 3:
            continue
        # loop needs at least 1 vertex in the original, non-mirrored mesh
        if mapping:
            all_virtual = True
            for vert in loop:
                if mapping[vert] > -1:
                    all_virtual = False
                    break
            if all_virtual:
                continue
        # loop has to be non-collinear
        collinear = True
        loc0 = mathutils.Vector(bm_mod.verts[loop[0]].co[:])
        loc1 = mathutils.Vector(bm_mod.verts[loop[1]].co[:])
        for v in loop[2:]:
            locn = mathutils.Vector(bm_mod.verts[v].co[:])
            if loc0 == loc1 or loc1 == locn:
                loc0 = loc1
                loc1 = locn
                continue
            d1 = loc1-loc0
            d2 = locn-loc1
            if -1e-6 < d1.angle(d2, 0) < 1e-6:
                loc0 = loc1
                loc1 = locn
                continue
            collinear = False
            break
        if collinear:
            continue
        # passed all tests, loop is valid
        valid_loops.append([loop, circular])
        valid_single_loops[len(valid_loops)-1] = single_loops[i]
    return(valid_single_loops, valid_loops)


# calculate the location of single input vertices that need to be flattened
def circle_flatten_singles(bm_mod, com, p, q, normal, single_loop):
    new_locs = []
    for vert in single_loop:
        loc = mathutils.Vector(bm_mod.verts[vert].co[:])
        new_locs.append([vert,  loc - (loc-com).dot(normal)*normal])
    return(new_locs)


# calculate input loops
def circle_get_input(object, bm, scene):
    # get mesh with modifiers applied
    derived, bm_mod = get_derived_bmesh(object, bm, scene)
    # create list of edge-keys based on selection state
    faces = False
    for face in bm.faces:
        if face.select and not face.hide:
            faces = True
            break
    if faces:
        # get selected, non-hidden , non-internal edge-keys
        eks_selected = [key for keys in [face_edgekeys(face) for face in \
            bm_mod.faces if face.select and not face.hide] for key in keys]
        edge_count = {}
        for ek in eks_selected:
            if ek in edge_count:
                edge_count[ek] += 1
            else:
                edge_count[ek] = 1
        edge_keys = [edgekey(edge) for edge in bm_mod.edges if edge.select \
            and not edge.hide and edge_count.get(edgekey(edge), 1)==1]
    else:
        # no faces, so no internal edges either
        edge_keys = [edgekey(edge) for edge in bm_mod.edges if edge.select \
            and not edge.hide]
    # add edge-keys around single vertices
    verts_connected = dict([[vert, 1] for edge in [edge for edge in \
        bm_mod.edges if edge.select and not edge.hide] for vert in \
        edgekey(edge)])
    single_vertices = [vert.index for vert in bm_mod.verts if \
        vert.select and not vert.hide and not \
        verts_connected.get(vert.index, False)]
    if single_vertices and len(bm.faces)>0:
        vert_to_single = dict([[v.index, []] for v in bm_mod.verts \
            if not v.hide])
        for face in [face for face in bm_mod.faces if not face.select \
        and not face.hide]:
            for vert in face.verts:
                vert = vert.index
                if vert in single_vertices:
                    for ek in face_edgekeys(face):
                        if not vert in ek:
                            edge_keys.append(ek)
                            if vert not in vert_to_single[ek[0]]:
                                vert_to_single[ek[0]].append(vert)
                            if vert not in vert_to_single[ek[1]]:
                                vert_to_single[ek[1]].append(vert)
                    break
    # sort edge-keys into loops
    loops = get_connected_selections(edge_keys)
    # find out to which loops the single vertices belong
    single_loops = dict([[i, []] for i in range(len(loops))])
    if single_vertices and len(bm.faces)>0:
        for i, [loop, circular] in enumerate(loops):
            for vert in loop:
                if vert_to_single[vert]:
                    for single in vert_to_single[vert]:
                        if single not in single_loops[i]:
                            single_loops[i].append(single)
    return(derived, bm_mod, single_vertices, single_loops, loops)


# recalculate positions based on the influence of the circle shape
def circle_influence_locs(locs_2d, new_locs_2d, influence):
    for i in range(len(locs_2d)):
        oldx, oldy, j = locs_2d[i]
        newx, newy, k = new_locs_2d[i]
        altx = newx*(influence/100)+ oldx*((100-influence)/100)
        alty = newy*(influence/100)+ oldy*((100-influence)/100)
        locs_2d[i] = [altx, alty, j]
    return(locs_2d)


# project 2d locations on circle, respecting distance relations between verts
def circle_project_non_regular(locs_2d, x0, y0, r):
    for i in range(len(locs_2d)):
        x, y, j = locs_2d[i]
        loc = mathutils.Vector([x-x0, y-y0])
        loc.length = r
        locs_2d[i] = [loc[0], loc[1], j]
    return(locs_2d)


# project 2d locations on circle, with equal distance between all vertices
def circle_project_regular(locs_2d, x0, y0, r):
    # find offset angle and circling direction
    x, y, i = locs_2d[0]
    loc = mathutils.Vector([x-x0, y-y0])
    loc.length = r
    offset_angle = loc.angle(mathutils.Vector([1.0, 0.0]), 0.0)
    loca = mathutils.Vector([x-x0, y-y0, 0.0])
    if loc[1] < -1e-6:
        offset_angle *= -1
    x, y, j = locs_2d[1]
    locb = mathutils.Vector([x-x0, y-y0, 0.0])
    if loca.cross(locb)[2] >= 0:
        ccw = 1
    else:
        ccw = -1
    # distribute vertices along the circle
    for i in range(len(locs_2d)):
        t = offset_angle + ccw * (i / len(locs_2d) * 2 * math.pi)
        x = math.cos(t) * r
        y = math.sin(t) * r
        locs_2d[i] = [x, y, locs_2d[i][2]]
    return(locs_2d)


# shift loop, so the first vertex is closest to the center
def circle_shift_loop(bm_mod, loop, com):
    verts, circular = loop
    distances = [[(bm_mod.verts[vert].co - com).length, i] \
        for i, vert in enumerate(verts)]
    distances.sort()
    shift = distances[0][1]
    loop = [verts[shift:] + verts[:shift], circular]
    return(loop)


##########################################
####### Curve functions ##################
##########################################

# create lists with knots and points, all correctly sorted
def curve_calculate_knots(loop, verts_selected):
    knots = [v for v in loop[0] if v in verts_selected]
    points = loop[0][:]
    # circular loop, potential for weird splines
    if loop[1]:
        offset = int(len(loop[0]) / 4)
        kpos = []
        for k in knots:
            kpos.append(loop[0].index(k))
        kdif = []
        for i in range(len(kpos) - 1):
            kdif.append(kpos[i+1] - kpos[i])
        kdif.append(len(loop[0]) - kpos[-1] + kpos[0])
        kadd = []
        for k in kdif:
            if k > 2 * offset:
                kadd.append([kdif.index(k), True])
            # next 2 lines are optional, they insert
            # an extra control point in small gaps
            #elif k > offset:
            #   kadd.append([kdif.index(k), False])
        kins = []
        krot = False
        for k in kadd: # extra knots to be added
            if k[1]: # big gap (break circular spline)
                kpos = loop[0].index(knots[k[0]]) + offset
                if kpos > len(loop[0]) - 1:
                    kpos -= len(loop[0])
                kins.append([knots[k[0]], loop[0][kpos]])
                kpos2 = k[0] + 1
                if kpos2 > len(knots)-1:
                    kpos2 -= len(knots)
                kpos2 = loop[0].index(knots[kpos2]) - offset
                if kpos2 < 0:
                    kpos2 += len(loop[0])
                kins.append([loop[0][kpos], loop[0][kpos2]])
                krot = loop[0][kpos2]
            else: # small gap (keep circular spline)
                k1 = loop[0].index(knots[k[0]])
                k2 = k[0] + 1
                if k2 > len(knots)-1:
                    k2 -= len(knots)
                k2 = loop[0].index(knots[k2])
                if k2 < k1:
                    dif = len(loop[0]) - 1 - k1 + k2
                else:
                    dif = k2 - k1
                kn = k1 + int(dif/2)
                if kn > len(loop[0]) - 1:
                    kn -= len(loop[0])
                kins.append([loop[0][k1], loop[0][kn]])
        for j in kins: # insert new knots
            knots.insert(knots.index(j[0]) + 1, j[1])
        if not krot: # circular loop
            knots.append(knots[0])
            points = loop[0][loop[0].index(knots[0]):]
            points += loop[0][0:loop[0].index(knots[0]) + 1]
        else: # non-circular loop (broken by script)
            krot = knots.index(krot)
            knots = knots[krot:] + knots[0:krot]
            if loop[0].index(knots[0]) > loop[0].index(knots[-1]):
                points = loop[0][loop[0].index(knots[0]):]
                points += loop[0][0:loop[0].index(knots[-1])+1]
            else:
                points = loop[0][loop[0].index(knots[0]):\
                    loop[0].index(knots[-1]) + 1]
    # non-circular loop, add first and last point as knots
    else:
        if loop[0][0] not in knots:
            knots.insert(0, loop[0][0])
        if loop[0][-1] not in knots:
            knots.append(loop[0][-1])
    return(knots, points)


# calculate relative positions compared to first knot
def curve_calculate_t(bm_mod, knots, points, pknots, regular, circular):
    tpoints = []
    loc_prev = False
    len_total = 0
    for p in points:
        if p in knots:
            loc = pknots[knots.index(p)] # use projected knot location
        else:
            loc = mathutils.Vector(bm_mod.verts[p].co[:])
        if not loc_prev:
            loc_prev = loc
        len_total += (loc-loc_prev).length
        tpoints.append(len_total)
        loc_prev = loc
    tknots = []
    for p in points:
        if p in knots:
            tknots.append(tpoints[points.index(p)])
    if circular:
        tknots[-1] = tpoints[-1]
    # regular option
    if regular:
        tpoints_average = tpoints[-1] / (len(tpoints) - 1)
        for i in range(1, len(tpoints) - 1):
            tpoints[i] = i * tpoints_average
        for i in range(len(knots)):
            tknots[i] = tpoints[points.index(knots[i])]
        if circular:
            tknots[-1] = tpoints[-1]
    return(tknots, tpoints)


# change the location of non-selected points to their place on the spline
def curve_calculate_vertices(bm_mod, knots, tknots, points, tpoints, splines,
interpolation, restriction):
    newlocs = {}
    move = []
    for p in points:
        if p in knots:
            continue
        m = tpoints[points.index(p)]
        if m in tknots:
            n = tknots.index(m)
        else:
            t = tknots[:]
            t.append(m)
            t.sort()
            n = t.index(m) - 1
        if n > len(splines) - 1:
            n = len(splines) - 1
        elif n < 0:
            n = 0
        if interpolation == 'cubic':
            ax, bx, cx, dx, tx = splines[n][0]
            x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
            ay, by, cy, dy, ty = splines[n][1]
            y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
Loading
Loading full blame...