Skip to content
Snippets Groups Projects
export_x3d.py 37.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • # ##### BEGIN GPL LICENSE BLOCK #####
    #
    #  This program is free software; you can redistribute it and/or
    #  modify it under the terms of the GNU General Public License
    #  as published by the Free Software Foundation; either version 2
    #  of the License, or (at your option) any later version.
    #
    #  This program is distributed in the hope that it will be useful,
    #  but WITHOUT ANY WARRANTY; without even the implied warranty of
    #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    #  GNU General Public License for more details.
    #
    #  You should have received a copy of the GNU General Public License
    #  along with this program; if not, write to the Free Software Foundation,
    #  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    #
    # ##### END GPL LICENSE BLOCK #####
    
    # <pep8 compliant>
    
    # Contributors: bart:neeneenee*de, http://www.neeneenee.de/vrml, Campbell Barton
    
    """
    This script exports to X3D format.
    
    Usage:
    Run this script from "File->Export" menu.  A pop-up will ask whether you
    want to export only selected or all relevant objects.
    
    Known issues:
        Doesn't handle multiple materials (don't use material indices);<br>
        Doesn't handle multiple UV textures on a single mesh (create a mesh for each texture);<br>
        Can't get the texture array associated with material * not the UV ones;
    """
    
    import math
    import os
    
    import bpy
    import mathutils
    
    from io_utils import create_derived_objects, free_derived_objects
    
    
    def round_color(col, cp):
        return tuple([round(max(min(c, 1.0), 0.0), cp) for c in col])
    
    
    def matrix_direction(mtx):
    
        return (mathutils.Vector((0.0, 0.0, -1.0)) * mtx.to_3x3()).normalize()[:]
    
    
    
    ##########################################################
    # Functions for writing output file
    ##########################################################
    
    
    class x3d_class:
    
        def __init__(self, filepath):
            #--- public you can change these ---
            self.proto = 1
            self.billnode = 0
            self.halonode = 0
            self.collnode = 0
            self.verbose = 2	 # level of verbosity in console 0-none, 1-some, 2-most
            self.cp = 3		  # decimals for material color values	 0.000 - 1.000
            self.vp = 3		  # decimals for vertex coordinate values  0.000 - n.000
            self.tp = 3		  # decimals for texture coordinate values 0.000 - 1.000
            self.it = 3
    
            self.global_matrix = mathutils.Matrix.Rotation(-(math.pi / 2.0), 4, 'X')
    
            #--- class private don't touch ---
            self.indentLevel = 0  # keeps track of current indenting
            self.filepath = filepath
            self.file = None
            if filepath.lower().endswith('.x3dz'):
                try:
                    import gzip
                    self.file = gzip.open(filepath, "w")
                except:
                    print("failed to import compression modules, exporting uncompressed")
                    self.filepath = filepath[:-1]  # remove trailing z
    
            if self.file is None:
    
                self.file = open(self.filepath, "w", encoding="utf8", newline="\n")
    
    
            self.bNav = 0
            self.nodeID = 0
            self.namesReserved = ("Anchor", "Appearance", "Arc2D", "ArcClose2D", "AudioClip", "Background", "Billboard",
                                 "BooleanFilter", "BooleanSequencer", "BooleanToggle", "BooleanTrigger", "Box", "Circle2D",
                                 "Collision", "Color", "ColorInterpolator", "ColorRGBA", "component", "Cone", "connect",
                                 "Contour2D", "ContourPolyline2D", "Coordinate", "CoordinateDouble", "CoordinateInterpolator",
                                 "CoordinateInterpolator2D", "Cylinder", "CylinderSensor", "DirectionalLight", "Disk2D",
                                 "ElevationGrid", "EspduTransform", "EXPORT", "ExternProtoDeclare", "Extrusion", "field",
                                 "fieldValue", "FillProperties", "Fog", "FontStyle", "GeoCoordinate", "GeoElevationGrid",
                                 "GeoLocationLocation", "GeoLOD", "GeoMetadata", "GeoOrigin", "GeoPositionInterpolator",
                                 "GeoTouchSensor", "GeoViewpoint", "Group", "HAnimDisplacer", "HAnimHumanoid", "HAnimJoint",
                                 "HAnimSegment", "HAnimSite", "head", "ImageTexture", "IMPORT", "IndexedFaceSet",
                                 "IndexedLineSet", "IndexedTriangleFanSet", "IndexedTriangleSet", "IndexedTriangleStripSet",
                                 "Inline", "IntegerSequencer", "IntegerTrigger", "IS", "KeySensor", "LineProperties", "LineSet",
                                 "LoadSensor", "LOD", "Material", "meta", "MetadataDouble", "MetadataFloat", "MetadataInteger",
                                 "MetadataSet", "MetadataString", "MovieTexture", "MultiTexture", "MultiTextureCoordinate",
                                 "MultiTextureTransform", "NavigationInfo", "Normal", "NormalInterpolator", "NurbsCurve",
                                 "NurbsCurve2D", "NurbsOrientationInterpolator", "NurbsPatchSurface",
                                 "NurbsPositionInterpolator", "NurbsSet", "NurbsSurfaceInterpolator", "NurbsSweptSurface",
                                 "NurbsSwungSurface", "NurbsTextureCoordinate", "NurbsTrimmedSurface", "OrientationInterpolator",
                                 "PixelTexture", "PlaneSensor", "PointLight", "PointSet", "Polyline2D", "Polypoint2D",
                                 "PositionInterpolator", "PositionInterpolator2D", "ProtoBody", "ProtoDeclare", "ProtoInstance",
                                 "ProtoInterface", "ProximitySensor", "ReceiverPdu", "Rectangle2D", "ROUTE", "ScalarInterpolator",
                                 "Scene", "Script", "Shape", "SignalPdu", "Sound", "Sphere", "SphereSensor", "SpotLight", "StaticGroup",
                                 "StringSensor", "Switch", "Text", "TextureBackground", "TextureCoordinate", "TextureCoordinateGenerator",
                                 "TextureTransform", "TimeSensor", "TimeTrigger", "TouchSensor", "Transform", "TransmitterPdu",
                                 "TriangleFanSet", "TriangleSet", "TriangleSet2D", "TriangleStripSet", "Viewpoint", "VisibilitySensor",
                                 "WorldInfo", "X3D", "XvlShell", "VertexShader", "FragmentShader", "MultiShaderAppearance", "ShaderAppearance")
    
            self.namesFog = ("", "LINEAR", "EXPONENTIAL", "")
    
    ##########################################################
    # Writing nodes routines
    ##########################################################
    
        def writeHeader(self):
            #bfile = sys.expandpath( Blender.Get('filepath') ).replace('<', '&lt').replace('>', '&gt')
            bfile = repr(os.path.basename(self.filepath).replace('<', '&lt').replace('>', '&gt'))[1:-1]  # use outfile name
            self.file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
            self.file.write("<!DOCTYPE X3D PUBLIC \"ISO//Web3D//DTD X3D 3.0//EN\" \"http://www.web3d.org/specifications/x3d-3.0.dtd\">\n")
            self.file.write("<X3D version=\"3.0\" profile=\"Immersive\" xmlns:xsd=\"http://www.w3.org/2001/XMLSchema-instance\" xsd:noNamespaceSchemaLocation=\"http://www.web3d.org/specifications/x3d-3.0.xsd\">\n")
            self.file.write("<head>\n")
            self.file.write("\t<meta name=\"filename\" content=\"%s\" />\n" % bfile)
            # self.file.write("\t<meta name=\"filename\" content=\"%s\" />\n" % sys.basename(bfile))
            self.file.write("\t<meta name=\"generator\" content=\"Blender %s\" />\n" % bpy.app.version_string)
            # self.file.write("\t<meta name=\"generator\" content=\"Blender %s\" />\n" % Blender.Get('version'))
            self.file.write("\t<meta name=\"translator\" content=\"X3D exporter v1.55 (2006/01/17)\" />\n")
            self.file.write("</head>\n")
            self.file.write("<Scene>\n")
    
        # This functionality is poorly defined, disabling for now - campbell
        '''
        def writeScript(self):
            textEditor = Blender.Text.Get()
            alltext = len(textEditor)
            for i in xrange(alltext):
                nametext = textEditor[i].name
                nlines = textEditor[i].getNLines()
                if (self.proto == 1):
                    if (nametext == "proto" or nametext == "proto.js" or nametext == "proto.txt") and (nlines != None):
                        nalllines = len(textEditor[i].asLines())
                        alllines = textEditor[i].asLines()
                        for j in xrange(nalllines):
                            self.write_indented(alllines[j] + "\n")
                elif (self.proto == 0):
                    if (nametext == "route" or nametext == "route.js" or nametext == "route.txt") and (nlines != None):
                        nalllines = len(textEditor[i].asLines())
                        alllines = textEditor[i].asLines()
                        for j in xrange(nalllines):
                            self.write_indented(alllines[j] + "\n")
            self.write_indented("\n")
        '''
    
        def writeViewpoint(self, ob, mat, scene):
            loc, quat, scale = mat.decompose()
            self.file.write("<Viewpoint DEF=\"%s\" " % (self.cleanStr(ob.name)))
            self.file.write("description=\"%s\" " % (ob.name))
            self.file.write("centerOfRotation=\"0 0 0\" ")
            self.file.write("position=\"%3.2f %3.2f %3.2f\" " % loc[:])
            self.file.write("orientation=\"%3.2f %3.2f %3.2f %3.2f\" " % (quat.axis[:] + (quat.angle, )))
            self.file.write("fieldOfView=\"%.3f\" " % ob.data.angle)
            self.file.write(" />\n\n")
    
        def writeFog(self, world):
            if world:
                mtype = world.mist_settings.falloff
                mparam = world.mist_settings
            else:
                return
            if (mtype == 'LINEAR' or mtype == 'INVERSE_QUADRATIC'):
                mtype = 1 if mtype == 'LINEAR' else 2
            # if (mtype == 1 or mtype == 2):
                self.file.write("<Fog fogType=\"%s\" " % self.namesFog[mtype])
                self.file.write("color=\"%s %s %s\" " % round_color(world.horizon_color, self.cp))
                self.file.write("visibilityRange=\"%s\" />\n\n" % round(mparam[2], self.cp))
            else:
                return
    
        def writeNavigationInfo(self, scene):
            self.file.write('<NavigationInfo headlight="false" visibilityLimit="0.0" type=\'"EXAMINE","ANY"\' avatarSize="0.25, 1.75, 0.75" />\n')
    
        def writeSpotLight(self, ob, mtx, lamp, world):
            safeName = self.cleanStr(ob.name)
            if world:
                ambi = world.ambient_color
    
                amb_intensity = ((ambi[0] + ambi[1] + ambi[2]) / 3.0) / 2.5
    
    
            # compute cutoff and beamwidth
            intensity = min(lamp.energy / 1.75, 1.0)
            beamWidth = lamp.spot_size * 0.37
            # beamWidth=((lamp.spotSize*math.pi)/180.0)*.37
            cutOffAngle = beamWidth * 1.3
    
            dx, dy, dz = matrix_direction(mtx)
    
    
            location = mtx.to_translation()[:]
    
    
            radius = lamp.distance * math.cos(beamWidth)
            # radius = lamp.dist*math.cos(beamWidth)
            self.file.write("<SpotLight DEF=\"%s\" " % safeName)
    
            self.file.write("radius=\"%.4f\" " % radius)
            self.file.write("ambientIntensity=\"%.4f\" " % amb_intensity)
            self.file.write("intensity=\"%.4f\" " % intensity)
            self.file.write("color=\"%.4f %.4f %.4f\" " % round_color(lamp.color, 4))
            self.file.write("beamWidth=\"%.4f\" " % beamWidth)
            self.file.write("cutOffAngle=\"%.4f\" " % cutOffAngle)
            self.file.write("direction=\"%.4f %.4f %.4f\" " % (dx, dy, dz))
            self.file.write("location=\"%.4f %.4f %.4f\" />\n\n" % location)
    
    
        def writeDirectionalLight(self, ob, mtx, lamp, world):
            safeName = self.cleanStr(ob.name)
            if world:
                ambi = world.ambient_color
                # ambi = world.amb
    
                amb_intensity = ((float(ambi[0] + ambi[1] + ambi[2])) / 3.0) / 2.5
    
    
            intensity = min(lamp.energy / 1.75, 1.0)
            dx, dy, dz = matrix_direction(mtx)
            self.file.write("<DirectionalLight DEF=\"%s\" " % safeName)
    
            self.file.write("ambientIntensity=\"%.4f\" " % amb_intensity)
            self.file.write("color=\"%.4f %.4f %.4f\" " % round_color(lamp.color, 4))
            self.file.write("intensity=\"%.4f\" " % intensity)
            self.file.write("direction=\"%.4f %.4f %.4f\" />\n\n" % (dx, dy, dz))
    
    
        def writePointLight(self, ob, mtx, lamp, world):
            safeName = self.cleanStr(ob.name)
            if world:
                ambi = world.ambient_color
                # ambi = world.amb
    
                amb_intensity = ((float(ambi[0] + ambi[1] + ambi[2])) / 3) / 2.5
    
                ambi = 0.0
                amb_intensity = 0.0
    
            intensity = min(lamp.energy / 1.75, 1.0)
    
            location = mtx.to_translation()[:]
    
    
            self.file.write("<PointLight DEF=\"%s\" " % safeName)
    
            self.file.write("ambientIntensity=\"%.4f\" " % amb_intensity)
            self.file.write("color=\"%.4f %.4f %.4f\" " % round_color(lamp.color, 4))
    
            self.file.write("intensity=\"%.4f\" " % intensity)
            self.file.write("radius=\"%.4f\" " % lamp.distance)
            self.file.write("location=\"%.4f %.4f %.4f\" />\n\n" % location)
    
    
        def secureName(self, name):
            name = name + str(self.nodeID)
            self.nodeID = self.nodeID + 1
            if len(name) <= 3:
                newname = "_" + str(self.nodeID)
                return "%s" % (newname)
            else:
                for bad in ('"', '#', "'", ', ', '.', '[', '\\', ']', '{', '}'):
                    name = name.replace(bad, "_")
                if name in self.namesReserved:
                    newname = name[0:3] + "_" + str(self.nodeID)
                    return "%s" % (newname)
                elif name[0].isdigit():
                    newname = "_" + name + str(self.nodeID)
                    return "%s" % (newname)
                else:
                    newname = name
                    return "%s" % (newname)
    
        def writeIndexedFaceSet(self, ob, mesh, mtx, world, EXPORT_TRI=False):
            fw = self.file.write
            mesh_name_x3d = self.cleanStr(ob.name)
    
            if not mesh.faces:
                return
    
            mode = []
            # mode = 0
            if mesh.uv_textures.active:
            # if mesh.faceUV:
                for face in mesh.uv_textures.active.data:
                # for face in mesh.faces:
                    if face.use_halo and 'HALO' not in mode:
                        mode += ['HALO']
                    if face.use_billboard and 'BILLBOARD' not in mode:
                        mode += ['BILLBOARD']
                    if face.use_object_color and 'OBJECT_COLOR' not in mode:
                        mode += ['OBJECT_COLOR']
                    if face.use_collision and 'COLLISION' not in mode:
                        mode += ['COLLISION']
                    # mode |= face.mode
    
            if 'HALO' in mode and self.halonode == 0:
            # if mode & Mesh.FaceModes.HALO and self.halonode == 0:
                self.write_indented("<Billboard axisOfRotation=\"0 0 0\">\n", 1)
                self.halonode = 1
            elif 'BILLBOARD' in mode and self.billnode == 0:
            # elif mode & Mesh.FaceModes.BILLBOARD and self.billnode == 0:
                self.write_indented("<Billboard axisOfRotation=\"0 1 0\">\n", 1)
                self.billnode = 1
            elif 'COLLISION' not in mode and self.collnode == 0:
            # elif not mode & Mesh.FaceModes.DYNAMIC and self.collnode == 0:
                self.write_indented("<Collision enabled=\"false\">\n", 1)
                self.collnode = 1
    
            loc, quat, sca = mtx.decompose()
    
            self.write_indented("<Transform DEF=\"%s\" " % mesh_name_x3d, 1)
            fw("translation=\"%.6f %.6f %.6f\" " % loc[:])
            fw("scale=\"%.6f %.6f %.6f\" " % sca[:])
            fw("rotation=\"%.6f %.6f %.6f %.6f\" " % (quat.axis[:] + (quat.angle, )))
            fw(">\n")
    
            if mesh.tag:
                self.write_indented("<Group USE=\"G_%s\" />\n" % mesh_name_x3d, 1)
            else:
                mesh.tag = True
    
                self.write_indented("<Group DEF=\"G_%s\">\n" % mesh_name_x3d, 1)
    
                is_uv = bool(mesh.uv_textures.active)
                # is_col, defined for each material
    
                is_coords_written = False
    
                mesh_materials = mesh.materials[:]
                if not mesh_materials:
                    mesh_materials = [None]
    
                mesh_material_tex = [None] * len(mesh_materials)
                mesh_material_mtex = [None] * len(mesh_materials)
                mesh_material_images = [None] * len(mesh_materials)
    
                for i, material in enumerate(mesh_materials):
                    if material:
                        for mtex in material.texture_slots:
                            if mtex:
                                tex = mtex.texture
                                if tex and tex.type == 'IMAGE':
                                    image = tex.image
                                    if image:
                                        mesh_material_tex[i] = tex
                                        mesh_material_mtex[i] = mtex
                                        mesh_material_images[i] = image
                                        break
    
                mesh_materials_use_face_texture = [getattr(material, "use_face_texture", True) for material in mesh_materials]
    
                mesh_faces = mesh.faces[:]
                mesh_faces_materials = [f.material_index for f in mesh_faces]
    
                if is_uv and True in mesh_materials_use_face_texture:
                    mesh_faces_image = [(fuv.image if (mesh_materials_use_face_texture[mesh_faces_materials[i]] and fuv.use_image) else mesh_material_images[mesh_faces_materials[i]]) for i, fuv in enumerate(mesh.uv_textures.active.data)]
                    mesh_faces_image_unique = set(mesh_faces_image)
                elif len(set(mesh_material_images) | {None}) > 1:  # make sure there is at least one image
                    mesh_faces_image = [mesh_material_images[material_index] for material_index in mesh_faces_materials]
                    mesh_faces_image_unique = set(mesh_faces_image)
                else:
                    mesh_faces_image = [None] * len(mesh_faces)
                    mesh_faces_image_unique = {None}
    
                # group faces
                face_groups = {}
                for material_index in range(len(mesh_materials)):
                    for image in mesh_faces_image_unique:
                        face_groups[material_index, image] = []
                del mesh_faces_image_unique
    
                for i, (material_index, image) in enumerate(zip(mesh_faces_materials, mesh_faces_image)):
                    face_groups[material_index, image].append(i)
    
    
                # same as face_groups.items() but sorted so we can get predictable output.
                face_groups_items = list(face_groups.items())
                face_groups_items.sort(key=lambda m: (m[0][0], getattr(m[0][1], "name", "")))
    
                for (material_index, image), face_group in face_groups_items:  # face_groups.items()
    
                    if face_group:
                        material = mesh_materials[material_index]
    
                        self.write_indented("<Shape>\n", 1)
                        is_smooth = False
                        is_col = (mesh.vertex_colors.active and (material is None or material.use_vertex_color_paint))
    
                        # kludge but as good as it gets!
                        for i in face_group:
                            if mesh_faces[i].use_smooth:
                                is_smooth = True
                                break
    
                        if image:
                            self.write_indented("<Appearance>\n", 1)
                            self.writeImageTexture(image)
    
                            if mesh_materials_use_face_texture[material_index]:
                                if image.use_tiles:
                                    self.write_indented("<TextureTransform scale=\"%s %s\" />\n" % (image.tiles_x, image.tiles_y))
                            else:
                                # transform by mtex
                                loc = mesh_material_mtex[material_index].offset[:2]
    
                                # mtex_scale * tex_repeat
                                sca_x, sca_y = mesh_material_mtex[material_index].scale[:2]
    
                                sca_x *= mesh_material_tex[material_index].repeat_x
                                sca_y *= mesh_material_tex[material_index].repeat_y
    
                                # flip x/y is a sampling feature, convert to transform
                                if mesh_material_tex[material_index].use_flip_axis:
                                    rot = math.pi / -2.0
                                    sca_x, sca_y = sca_y, -sca_x
                                else:
                                    rot = 0.0
    
                                self.write_indented("<TextureTransform ", 1)
                                # fw("center=\"%.6f %.6f\" " % (0.0, 0.0))
                                fw("translation=\"%.6f %.6f\" " % loc)
                                fw("scale=\"%.6f %.6f\" " % (sca_x, sca_y))
                                fw("rotation=\"%.6f\" " % rot)
                                fw("/>\n")
    
                            self.write_indented("</Appearance>\n", -1)
    
                        elif material:
                            self.write_indented("<Appearance>\n", 1)
                            self.writeMaterial(material, self.cleanStr(material.name, ""), world)
                            self.write_indented("</Appearance>\n", -1)
    
                        #-- IndexedFaceSet or IndexedLineSet
    
                        self.write_indented("<IndexedFaceSet ", 1)
    
                        # --- Write IndexedFaceSet Attributes
                        if mesh.show_double_sided:
                            fw("solid=\"true\" ")
                        else:
                            fw("solid=\"false\" ")
    
                        if is_smooth:
                            fw("creaseAngle=\"%.4f\" " % mesh.auto_smooth_angle)
    
                        if is_uv:
                            # "texCoordIndex"
                            fw("\n\t\t\ttexCoordIndex=\"")
                            j = 0
                            for i in face_group:
                                if len(mesh_faces[i].vertices) == 4:
                                    fw("%d %d %d %d -1, " % (j, j + 1, j + 2, j + 3))
                                    j += 4
                                else:
                                    fw("%d %d %d -1, " % (j, j + 1, j + 2))
                                    j += 3
                            fw("\" ")
                            # --- end texCoordIndex
    
                        if is_col:
                            fw("colorPerVertex=\"false\" ")
    
                        if True:
                            # "coordIndex"
                            fw('coordIndex="')
                            if EXPORT_TRI:
                                for i in face_group:
                                    fv = mesh_faces[i].vertices[:]
                                    if len(fv) == 3:
                                        fw("%i %i %i -1, " % fv)
                                    else:
                                        fw("%i %i %i -1, " % (fv[0], fv[1], fv[2]))
                                        fw("%i %i %i -1, " % (fv[0], fv[2], fv[3]))
                            else:
                                for i in face_group:
                                    fv = mesh_faces[i].vertices[:]
                                    if len(fv) == 3:
                                        fw("%i %i %i -1, " % fv)
                                    else:
                                        fw("%i %i %i %i -1, " % fv)
    
                            fw("\" ")
                            # --- end coordIndex
    
                        # close IndexedFaceSet
                        fw(">\n")
    
                        # --- Write IndexedFaceSet Elements
                        if True:
                            if is_coords_written:
                                self.write_indented("<Coordinate USE=\"%s%s\" />\n" % ("coord_", mesh_name_x3d))
                            else:
                                self.write_indented("<Coordinate DEF=\"%s%s\" \n" % ("coord_", mesh_name_x3d), 1)
                                fw("\t\t\t\tpoint=\"")
                                for v in mesh.vertices:
                                    fw("%.6f %.6f %.6f, " % v.co[:])
                                fw("\" />")
                                self.write_indented("\n", -1)
                                is_coords_written = True
    
                        if is_uv:
                            self.write_indented("<TextureCoordinate point=\"", 1)
                            fw = fw
                            mesh_faces_uv = mesh.uv_textures.active.data
                            for i in face_group:
                                for uv in mesh_faces_uv[i].uv:
                                    fw("%.4f %.4f, " % uv[:])
                            del mesh_faces_uv
                            fw("\" />")
                            self.write_indented("\n", -1)
    
                        if is_col:
                            self.write_indented("<Color color=\"", 1)
                            # XXX, 1 color per face, only
                            mesh_faces_col = mesh.vertex_colors.active.data
                            for i in face_group:
                                fw("%.3f %.3f %.3f, " % mesh_faces_col[i].color1[:])
                            del mesh_faces_col
                            fw("\" />")
                            self.write_indented("\n", -1)
    
                        #--- output vertexColors
    
                        #--- output closing braces
                        self.write_indented("</IndexedFaceSet>\n", -1)
                        self.write_indented("</Shape>\n", -1)
    
                self.write_indented("</Group>\n", -1)
    
            self.write_indented("</Transform>\n", -1)
    
            if self.halonode == 1:
                self.write_indented("</Billboard>\n", -1)
                self.halonode = 0
    
            if self.billnode == 1:
                self.write_indented("</Billboard>\n", -1)
                self.billnode = 0
    
            if self.collnode == 1:
                self.write_indented("</Collision>\n", -1)
                self.collnode = 0
    
            fw("\n")
    
        def writeMaterial(self, mat, matName, world):
            # look up material name, use it if available
            if mat.tag:
                self.write_indented("<Material USE=\"MA_%s\" />\n" % matName)
            else:
                mat.tag = True
    
                emit = mat.emit
                ambient = mat.ambient / 3.0
                diffuseColor = tuple(mat.diffuse_color)
                if world:
                    ambiColor = tuple(((c * mat.ambient) * 2.0) for c in world.ambient_color)
                else:
                    ambiColor = 0.0, 0.0, 0.0
    
                emitColor = tuple(((c * emit) + ambiColor[i]) / 2.0 for i, c in enumerate(diffuseColor))
                shininess = mat.specular_hardness / 512.0
                specColor = tuple((c + 0.001) / (1.25 / (mat.specular_intensity + 0.001)) for c in mat.specular_color)
                transp = 1.0 - mat.alpha
    
                if mat.use_shadeless:
                    ambient = 1.0
                    shininess = 0.0
                    specColor = emitColor = diffuseColor
    
                self.write_indented("<Material DEF=\"MA_%s\" " % matName, 1)
                self.file.write("diffuseColor=\"%s %s %s\" " % round_color(diffuseColor, self.cp))
                self.file.write("specularColor=\"%s %s %s\" " % round_color(specColor, self.cp))
                self.file.write("emissiveColor=\"%s %s %s\" \n" % round_color(emitColor, self.cp))
                self.write_indented("ambientIntensity=\"%s\" " % (round(ambient, self.cp)))
                self.file.write("shininess=\"%s\" " % (round(shininess, self.cp)))
                self.file.write("transparency=\"%s\" />" % (round(transp, self.cp)))
                self.write_indented("\n", -1)
    
        def writeImageTexture(self, image):
            name = image.name
    
            if image.tag:
                self.write_indented("<ImageTexture USE=\"%s\" />\n" % self.cleanStr(name))
            else:
                image.tag = True
    
                self.write_indented("<ImageTexture DEF=\"%s\" " % self.cleanStr(name), 1)
    
                relpath = os.path.dirname(self.filepath)  # could cache
    
                filepath_full = bpy.path.abspath(filepath)
                # collect image paths, can load multiple
    
                if bpy.path.is_subdir(filepath_full, relpath):
                    images.append(os.path.relpath(filepath_full, relpath))
    
    
                images.append(os.path.basename(filepath_full))
    
                self.file.write("url='%s' />" % " ".join(["\"%s\"" % f.replace("\\", "/") for f in images]))
    
                self.write_indented("\n", -1)
    
        def writeBackground(self, world, alltextures):
            if world:
                worldname = world.name
            else:
                return
    
            blending = world.use_sky_blend, world.use_sky_paper, world.use_sky_real
    
            grd_triple = round_color(world.horizon_color, self.cp)
            sky_triple = round_color(world.zenith_color, self.cp)
            mix_triple = round_color(((grd_triple[i] + sky_triple[i]) / 2.0 for i in range(3)), self.cp)
    
            self.file.write("<Background DEF=\"%s\" " % self.secureName(worldname))
            # No Skytype - just Hor color
            if blending == (False, False, False):
                self.file.write("groundColor=\"%s %s %s\" " % grd_triple)
                self.file.write("skyColor=\"%s %s %s\" " % grd_triple)
            # Blend Gradient
            elif blending == (True, False, False):
                self.file.write("groundColor=\"%s %s %s, " % grd_triple)
                self.file.write("%s %s %s\" groundAngle=\"1.57, 1.57\" " % mix_triple)
                self.file.write("skyColor=\"%s %s %s, " % sky_triple)
                self.file.write("%s %s %s\" skyAngle=\"1.57, 1.57\" " % mix_triple)
            # Blend+Real Gradient Inverse
            elif blending == (True, False, True):
                self.file.write("groundColor=\"%s %s %s, " % sky_triple)
                self.file.write("%s %s %s\" groundAngle=\"1.57, 1.57\" " % mix_triple)
                self.file.write("skyColor=\"%s %s %s, " % grd_triple)
                self.file.write("%s %s %s\" skyAngle=\"1.57, 1.57\" " % mix_triple)
            # Paper - just Zen Color
            elif blending == (False, False, True):
                self.file.write("groundColor=\"%s %s %s\" " % sky_triple)
                self.file.write("skyColor=\"%s %s %s\" " % sky_triple)
            # Blend+Real+Paper - komplex gradient
            elif blending == (True, True, True):
                self.write_indented("groundColor=\"%s %s %s, " % sky_triple)
                self.write_indented("%s %s %s\" groundAngle=\"1.57, 1.57\" " % grd_triple)
                self.write_indented("skyColor=\"%s %s %s, " % sky_triple)
                self.write_indented("%s %s %s\" skyAngle=\"1.57, 1.57\" " % grd_triple)
            # Any Other two colors
            else:
                self.file.write("groundColor=\"%s %s %s\" " % grd_triple)
                self.file.write("skyColor=\"%s %s %s\" " % sky_triple)
    
            alltexture = len(alltextures)
    
            for i in range(alltexture):
                tex = alltextures[i]
    
                if tex.type != 'IMAGE' or tex.image is None:
                    continue
    
                namemat = tex.name
                # namemat = alltextures[i].name
    
                pic = tex.image
    
                # using .expandpath just in case, os.path may not expect //
                basename = os.path.basename(bpy.path.abspath(pic.filepath))
    
                pic = alltextures[i].image
                if (namemat == "back") and (pic != None):
                    self.file.write("\n\tbackUrl=\"%s\" " % basename)
                elif (namemat == "bottom") and (pic != None):
                    self.write_indented("bottomUrl=\"%s\" " % basename)
                elif (namemat == "front") and (pic != None):
                    self.write_indented("frontUrl=\"%s\" " % basename)
                elif (namemat == "left") and (pic != None):
                    self.write_indented("leftUrl=\"%s\" " % basename)
                elif (namemat == "right") and (pic != None):
                    self.write_indented("rightUrl=\"%s\" " % basename)
                elif (namemat == "top") and (pic != None):
                    self.write_indented("topUrl=\"%s\" " % basename)
            self.write_indented("/>\n\n")
    
    ##########################################################
    # export routine
    ##########################################################
    
        def export(self, scene, world, alltextures,
    
                    EXPORT_TRI=False,
                    ):
    
            # tag un-exported IDs
            bpy.data.meshes.tag(False)
            bpy.data.materials.tag(False)
            bpy.data.images.tag(False)
    
            print("Info: starting X3D export to %r..." % self.filepath)
            self.writeHeader()
            # self.writeScript()
            self.writeNavigationInfo(scene)
            self.writeBackground(world, alltextures)
            self.writeFog(world)
            self.proto = 0
    
    
            if use_selection:
                objects = (o for o in scene.objects if o.is_visible(scene) and o.select)
            else:
                objects = (o for o in scene.objects if o.is_visible(scene))
    
            for ob_main in objects:
    
    
                free, derived = create_derived_objects(scene, ob_main)
    
                if derived is None:
                    continue
    
                for ob, ob_mat in derived:
                    objType = ob.type
                    objName = ob.name
                    ob_mat = self.global_matrix * ob_mat
    
                    if objType == 'CAMERA':
                        self.writeViewpoint(ob, ob_mat, scene)
                    elif objType in ('MESH', 'CURVE', 'SURF', 'FONT'):
    
                        if use_apply_modifiers or objType != 'MESH':
                            try:
                                me = ob.create_mesh(scene, use_apply_modifiers, 'PREVIEW')
                            except:
                                me = None
    
                        if me is not None:
                            self.writeIndexedFaceSet(ob, me, ob_mat, world, EXPORT_TRI=EXPORT_TRI)
    
                            # free mesh created with create_mesh()
                            if me != ob.data:
                                bpy.data.meshes.remove(me)
    
    
                    elif objType == 'LAMP':
                        data = ob.data
                        datatype = data.type
                        if datatype == 'POINT':
                            self.writePointLight(ob, ob_mat, data, world)
                        elif datatype == 'SPOT':
                            self.writeSpotLight(ob, ob_mat, data, world)
                        elif datatype == 'SUN':
                            self.writeDirectionalLight(ob, ob_mat, data, world)
                        else:
                            self.writeDirectionalLight(ob, ob_mat, data, world)
                    else:
                        #print "Info: Ignoring [%s], object type [%s] not handle yet" % (object.name,object.getType)
                        pass
    
                if free:
                    free_derived_objects(ob_main)
    
            self.file.write("\n</Scene>\n</X3D>")
    
    
            # 	if containerMesh:
            # 		containerMesh.vertices = None
    
            self.cleanup()
    
    ##########################################################
    # Utility methods
    ##########################################################
    
        def cleanup(self):
            self.file.close()
            self.indentLevel = 0
            print("Info: finished X3D export to %r" % self.filepath)
    
        def cleanStr(self, name, prefix='rsvd_'):
            """cleanStr(name,prefix) - try to create a valid VRML DEF name from object name"""
    
            newName = name
            if len(newName) == 0:
                self.nNodeID += 1
                return "%s%d" % (prefix, self.nNodeID)
    
            if newName in self.namesReserved:
                newName = '%s%s' % (prefix, newName)
    
            if newName[0].isdigit():
                newName = "%s%s" % ('_', newName)
    
            for bad in [' ', '"', '#', "'", ', ', '.', '[', '\\', ']', '{', '}']:
                newName = newName.replace(bad, '_')
            return newName
    
        def faceToString(self, face):
    
            print("Debug: face.flag=0x%x (bitflags)" % face.flag)
            if face.sel:
                print("Debug: face.sel=true")
    
            print("Debug: face.mode=0x%x (bitflags)" % face.mode)
            if face.mode & Mesh.FaceModes.TWOSIDE:
                print("Debug: face.mode twosided")
    
            print("Debug: face.transp=0x%x (enum)" % face.blend_type)
            if face.blend_type == Mesh.FaceTranspModes.SOLID:
                print("Debug: face.transp.SOLID")
    
            if face.image:
                print("Debug: face.image=%s" % face.image.name)
            print("Debug: face.materialIndex=%d" % face.materialIndex)
    
        def meshToString(self, mesh):
            # print("Debug: mesh.hasVertexUV=%d" % mesh.vertexColors)
            print("Debug: mesh.faceUV=%d" % (len(mesh.uv_textures) > 0))
            # print("Debug: mesh.faceUV=%d" % mesh.faceUV)
            print("Debug: mesh.hasVertexColours=%d" % (len(mesh.vertex_colors) > 0))
            # print("Debug: mesh.hasVertexColours=%d" % mesh.hasVertexColours())
            print("Debug: mesh.vertices=%d" % len(mesh.vertices))
            print("Debug: mesh.faces=%d" % len(mesh.faces))
            print("Debug: mesh.materials=%d" % len(mesh.materials))
    
            # s="%s %s %s" % (
            # 	round(c.r/255.0,self.cp),
            # 	round(c.g/255.0,self.cp),
            # 	round(c.b/255.0,self.cp))
            return s
    
        # For writing well formed VRML code
        #------------------------------------------------------------------------
        def write_indented(self, s, inc=0):
            if inc < 1:
                self.indentLevel = self.indentLevel + inc
    
            self.file.write((self.indentLevel * "\t") + s)
    
            if inc > 0:
                self.indentLevel = self.indentLevel + inc
    
    ##########################################################
    # Callbacks, needed before Main
    ##########################################################
    
    
    def save(operator, context, filepath="",
    
              use_apply_modifiers=False,
              use_triangulate=False,
              use_compress=False):
    
        if use_compress:
            if not filepath.lower().endswith('.x3dz'):
                filepath = '.'.join(filepath.split('.')[:-1]) + '.x3dz'
        else:
            if not filepath.lower().endswith('.x3d'):
                filepath = '.'.join(filepath.split('.')[:-1]) + '.x3d'
    
        scene = context.scene
        world = scene.world
    
        if bpy.ops.object.mode_set.poll():
            bpy.ops.object.mode_set(mode='OBJECT')
    
        # XXX these are global textures while .Get() returned only scene's?
        alltextures = bpy.data.textures
        # alltextures = Blender.Texture.Get()
    
        wrlexport = x3d_class(filepath)
        wrlexport.export(scene,
                         world,
                         alltextures,
    
                         use_apply_modifiers=use_apply_modifiers,
                         use_selection=use_selection,
    
                         EXPORT_TRI=use_triangulate,
                         )
    
        return {'FINISHED'}