Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
import bpy
import bmesh
from mathutils.geometry import intersect_line_line as LineIntersect
import itertools
from collections import defaultdict
from . import cad_module as cm
def order_points(edge, point_list):
''' order these edges from distance to v1, then
sandwich the sorted list with v1, v2 '''
v1, v2 = edge
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def dist(co):
return (v1 - co).length
point_list = sorted(point_list, key=dist)
return [v1] + point_list + [v2]
def remove_permutations_that_share_a_vertex(bm, permutations):
''' Get useful Permutations '''
final_permutations = []
for edges in permutations:
raw_vert_indices = cm.vertex_indices_from_edges_tuple(bm, edges)
if cm.duplicates(raw_vert_indices):
continue
# reaches this point if they do not share.
final_permutations.append(edges)
return final_permutations
def get_valid_permutations(bm, edge_indices):
raw_permutations = itertools.permutations(edge_indices, 2)
permutations = [r for r in raw_permutations if r[0] < r[1]]
return remove_permutations_that_share_a_vertex(bm, permutations)
def can_skip(closest_points, vert_vectors):
'''this checks if the intersection lies on both edges, returns True
when criteria are not met, and thus this point can be skipped'''
if not closest_points:
return True
if not isinstance(closest_points[0].x, float):
return True
if cm.num_edges_point_lies_on(closest_points[0], vert_vectors) < 2:
return True
# if this distance is larger than than VTX_PRECISION, we can skip it.
cpa, cpb = closest_points
return (cpa - cpb).length > cm.CAD_prefs.VTX_PRECISION
def get_intersection_dictionary(bm, edge_indices):
bm.verts.ensure_lookup_table()
bm.edges.ensure_lookup_table()
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
permutations = get_valid_permutations(bm, edge_indices)
k = defaultdict(list)
d = defaultdict(list)
for edges in permutations:
raw_vert_indices = cm.vertex_indices_from_edges_tuple(bm, edges)
vert_vectors = cm.vectors_from_indices(bm, raw_vert_indices)
points = LineIntersect(*vert_vectors)
# some can be skipped. (NaN, None, not on both edges)
if can_skip(points, vert_vectors):
continue
# reaches this point only when an intersection happens on both edges.
[k[edge].append(points[0]) for edge in edges]
# k will contain a dict of edge indices and points found on those edges.
for edge_idx, unordered_points in k.items():
tv1, tv2 = bm.edges[edge_idx].verts
v1 = bm.verts[tv1.index].co
v2 = bm.verts[tv2.index].co
ordered_points = order_points((v1, v2), unordered_points)
d[edge_idx].extend(ordered_points)
return d
new_verts = []
collect = new_verts.extend
a = ov.new(point_list[i])
b = ov.new(point_list[i+1])
oe.new((a, b))
bm.normal_update()
collect([a, b])
bmesh.ops.delete(bm, geom=[edge for edge in bm.edges if edge.select], context=2) # 2 = edges
#bpy.ops.mesh.remove_doubles(
# threshold=cm.CAD_prefs.VTX_DOUBLES_THRSHLD,
# use_unselected=False)
bmesh.ops.remove_doubles(bm, verts=new_verts, dist=cm.CAD_prefs.VTX_DOUBLES_THRSHLD)
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
def unselect_nonintersecting(bm, d_edges, edge_indices):
if len(edge_indices) > len(d_edges):
reserved_edges = set(edge_indices) - set(d_edges)
for edge in reserved_edges:
bm.edges[edge].select = False
print("unselected {}, non intersecting edges".format(reserved_edges))
class TCIntersectAllEdges(bpy.types.Operator):
'''Adds a vertex at the intersections of all selected edges'''
bl_idname = 'tinycad.intersectall'
bl_label = 'XALL intersect all edges'
bl_options = {'REGISTER', 'UNDO'}
@classmethod
def poll(cls, context):
obj = context.active_object
return obj is not None and obj.type == 'MESH' and obj.mode == 'EDIT'
def execute(self, context):
# must force edge selection mode here
bpy.context.tool_settings.mesh_select_mode = (False, True, False)
obj = context.active_object
if obj.mode == "EDIT":
bm = bmesh.from_edit_mesh(obj.data)
selected_edges = [edge for edge in bm.edges if edge.select]
edge_indices = [i.index for i in selected_edges]
d = get_intersection_dictionary(bm, edge_indices)
unselect_nonintersecting(bm, d.keys(), edge_indices)
update_mesh(bm, d)
bmesh.update_edit_mesh(obj.data)