Skip to content
Snippets Groups Projects
object_cloud_gen.py 25.04 KiB
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

# <pep8 compliant>

bl_info = {
    "name": "Cloud Generator",
    "author": "Nick Keeline(nrk)",
    "version": (1, 0),
    "blender": (2, 5, 9),
    "location": "View3D > Tool Shelf > Cloud Generator Panel",
    "description": "Creates Volumetric Clouds",
    "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.5/Py/"
                "Scripts/Object/Cloud_Gen",
    "tracker_url": "https://projects.blender.org/tracker/index.php?"
                   "func=detail&aid=22015",
    "category": "Object"}

import bpy
from bpy.props import BoolProperty, EnumProperty
from bpy.types import Operator, Panel


# This routine takes an object and deletes all of the geometry in it
# and adds a bounding box to it.
# It will add or subtract the bound box size by the variable sizeDifference.

def getMeshandPutinEditMode(scene, object):

    # Go into Object Mode
    bpy.ops.object.mode_set(mode='OBJECT')

    # Deselect All
    bpy.ops.object.select_all(action='DESELECT')

    # Select the object
    object.select = True
    scene.objects.active = object

    # Go into Edit Mode
    bpy.ops.object.mode_set(mode='EDIT')

    return object.data


def maxAndMinVerts(scene, object):

    mesh = getMeshandPutinEditMode(scene, object)
    verts = mesh.vertices

    #Set the max and min verts to the first vertex on the list
    maxVert = [verts[0].co[0], verts[0].co[1], verts[0].co[2]]
    minVert = [verts[0].co[0], verts[0].co[1], verts[0].co[2]]

    #Create Max and Min Vertex array for the outer corners of the box
    for vert in verts:
        #Max vertex
        if vert.co[0] > maxVert[0]:
            maxVert[0] = vert.co[0]
        if vert.co[1] > maxVert[1]:
            maxVert[1] = vert.co[1]
        if vert.co[2] > maxVert[2]:
            maxVert[2] = vert.co[2]

        #Min Vertex
        if vert.co[0] < minVert[0]:
            minVert[0] = vert.co[0]
        if vert.co[1] < minVert[1]:
            minVert[1] = vert.co[1]
        if vert.co[2] < minVert[2]:
            minVert[2] = vert.co[2]

    return [maxVert, minVert]


def makeObjectIntoBoundBox(scene, object, sizeDifference, takeFromObject):

    # Let's find the max and min of the reference object,
    # it can be the same as the destination object
    [maxVert, minVert] = maxAndMinVerts(scene, takeFromObject)

    #get objects mesh
    mesh = getMeshandPutinEditMode(scene, object)

    #Add the size difference to the max size of the box
    maxVert[0] = maxVert[0] + sizeDifference
    maxVert[1] = maxVert[1] + sizeDifference
    maxVert[2] = maxVert[2] + sizeDifference

    #subtract the size difference to the min size of the box
    minVert[0] = minVert[0] - sizeDifference
    minVert[1] = minVert[1] - sizeDifference
    minVert[2] = minVert[2] - sizeDifference

    #Create arrays of verts and faces to be added to the mesh
    addVerts = []

    #X high loop
    addVerts.append([maxVert[0], maxVert[1], maxVert[2]])
    addVerts.append([maxVert[0], maxVert[1], minVert[2]])
    addVerts.append([maxVert[0], minVert[1], minVert[2]])
    addVerts.append([maxVert[0], minVert[1], maxVert[2]])

    #x low loop
    addVerts.append([minVert[0], maxVert[1], maxVert[2]])
    addVerts.append([minVert[0], maxVert[1], minVert[2]])
    addVerts.append([minVert[0], minVert[1], minVert[2]])
    addVerts.append([minVert[0], minVert[1], maxVert[2]])

    # Make the faces of the bounding box.
    addFaces = []

    # Draw a box on paper and number the vertices.
    # Use right hand rule to come up with number orders for faces on
    # the box (with normals pointing out).
    addFaces.append([0, 3, 2, 1])
    addFaces.append([4, 5, 6, 7])
    addFaces.append([0, 1, 5, 4])
    addFaces.append([1, 2, 6, 5])
    addFaces.append([2, 3, 7, 6])
    addFaces.append([0, 4, 7, 3])

    # Delete all geometry from the object.
    bpy.ops.mesh.select_all(action='SELECT')
    bpy.ops.mesh.delete(type='VERT')

    # Must be in object mode for from_pydata to work
    bpy.ops.object.mode_set(mode='OBJECT')

    # Add the mesh data.
    mesh.from_pydata(addVerts, [], addFaces)

    # Update the mesh
    mesh.update()


def applyScaleRotLoc(scene, obj):
    # Deselect All
    bpy.ops.object.select_all(action='DESELECT')

    # Select the object
    obj.select = True
    scene.objects.active = obj

    bpy.ops.object.transform_apply(location=True, rotation=True, scale=True)


def totallyDeleteObject(scene, obj):
    scene.objects.unlink(obj)
    bpy.data.objects.remove(obj)


def makeParent(parentobj, childobj, scene):

    applyScaleRotLoc(scene, parentobj)
    applyScaleRotLoc(scene, childobj)
    childobj.parent = parentobj


def addNewObject(scene, name, copyobj):

    # Create new mesh
    mesh = bpy.data.meshes.new(name)

    # Create a new object.
    ob_new = bpy.data.objects.new(name, mesh)
    tempme = copyobj.data
    ob_new.data = tempme.copy()
    ob_new.scale = copyobj.scale
    ob_new.location = copyobj.location

    # Link new object to the given scene and select it.
    scene.objects.link(ob_new)
    ob_new.select = True

    return ob_new


def getpdensitytexture(object):

    for mslot in object.material_slots:
        mat = mslot.material
        for tslot in mat.texture_slots:
            if tslot != 'NoneType':
                tex = tslot.texture
                if tex.type == 'POINT_DENSITY':
                    if tex.point_density.point_source == 'PARTICLE_SYSTEM':
                        return tex


def removeParticleSystemFromObj(scene, object):

    # Deselect All
    bpy.ops.object.select_all(action='DESELECT')

    # Select the object.
    object.select = True
    scene.objects.active = object

    bpy.ops.object.particle_system_remove()

    # Deselect All
    bpy.ops.object.select_all(action='DESELECT')


def convertParticlesToMesh(scene, particlesobj, destobj, replacemesh):

    # Select the Destination object.
    destobj.select = True
    scene.objects.active = destobj

    #Go to Edit Mode
    bpy.ops.object.mode_set(mode='EDIT', toggle=False)

    #Delete everything in mesh if replace true
    if replacemesh:
        bpy.ops.mesh.select_all(action='SELECT')
        bpy.ops.mesh.delete(type='VERT')

    meshPnts = destobj.data

    listCloudParticles = particlesobj.particles

    listMeshPnts = []
    for pTicle in listCloudParticles:
        listMeshPnts.append(pTicle.location)

    # Must be in object mode for from_pydata to work.
    bpy.ops.object.mode_set(mode='OBJECT')

    # Add in the mesh data.
    meshPnts.from_pydata(listMeshPnts, [], [])

    # Update the mesh.
    meshPnts.update()


def combineObjects(scene, combined, listobjs):
    # scene is the current scene
    # combined is the object we want to combine everything into
    # listobjs is the list of objects to stick into combined

    # Deselect All
    bpy.ops.object.select_all(action='DESELECT')

    # Select the new object.
    combined.select = True
    scene.objects.active = combined

    # Add data
    if len(listobjs) > 0:
        for i in listobjs:
            # Add a modifier
            bpy.ops.object.modifier_add(type='BOOLEAN')

            union = combined.modifiers
            union[0].name = "AddEmUp"
            union[0].object = i
            union[0].operation = 'UNION'

            # Apply modifier
            bpy.ops.object.modifier_apply(apply_as='DATA', modifier=union[0].name)


# Returns the action we want to take
def getActionToDo(obj):

    if not obj or obj.type != 'MESH':
        return 'NOT_OBJ_DO_NOTHING'
    elif obj is None:
        return 'NO_SELECTION_DO_NOTHING'
    elif "CloudMember" in obj:
        if obj["CloudMember"] != None:
            if obj["CloudMember"] == "MainObj":
                return 'DEGENERATE'
            elif obj["CloudMember"] == "CreatedObj" and len(obj.particle_systems) > 0:
                return 'CLOUD_CONVERT_TO_MESH'
            else:
                return 'CLOUD_DO_NOTHING'
    elif obj.type == 'MESH':
        return 'GENERATE'
    else:
        return 'DO_NOTHING'


class VIEW3D_PT_tools_cloud(Panel):
    bl_space_type = 'VIEW_3D'
    bl_region_type = 'TOOLS'

    bl_label = "Cloud Generator"
    bl_context = "objectmode"

    def draw(self, context):
        active_obj = context.active_object
        layout = self.layout
        col = layout.column(align=True)

        WhatToDo = getActionToDo(active_obj)

        if WhatToDo == 'DEGENERATE':
            col.operator("cloud.generate_cloud", text="DeGenerate")

        elif WhatToDo == 'CLOUD_CONVERT_TO_MESH':
            col.operator("cloud.generate_cloud", text="Convert to Mesh")

        elif WhatToDo == 'NO_SELECTION_DO_NOTHING':
            col.label(text="Select one or more")
            col.label(text="objects to generate")
            col.label(text="a cloud")

        elif WhatToDo == 'CLOUD_DO_NOTHING':
            col.label(text="Must select")
            col.label(text="bound box")

        elif WhatToDo == 'GENERATE':
            col.operator("cloud.generate_cloud", text="Generate Cloud")

            col.prop(context.scene, "cloud_type")
            col.prop(context.scene, "cloudparticles")
            col.prop(context.scene, "cloudsmoothing")
        else:
            col.label(text="Select one or more")
            col.label(text="objects to generate")
            col.label(text="a cloud")


class GenerateCloud(Operator):
    """Create a Cloud,Undo Cloud, or convert to Mesh Cloud depending on selection"""
    bl_idname = "cloud.generate_cloud"
    bl_label = "Generate Cloud"
    bl_register = True
    bl_undo = True

    @classmethod
    def poll(cls, context):
        if not context.active_object:
            return False
        else:
            return (context.active_object.type == 'MESH')

    def execute(self, context):
        # Make variable that is the current .blend file main data blocks
        blend_data = context.blend_data

        # Make variable that is the active object selected by user
        active_object = context.active_object

        # Make variable scene that is current scene
        scene = context.scene

        # Parameters the user may want to change:
        # Number of points this number is multiplied by the volume to get
        # the number of points the scripts will put in the volume.
        numOfPoints = 1.0
        maxNumOfPoints = 100000
        maxPointDensityRadius = 1.5
        scattering = 2.5
        pointDensityRadiusFactor = 1.0
        densityScale = 1.5

        # What should we do?
        WhatToDo = getActionToDo(active_object)

        if WhatToDo == 'DEGENERATE':
            # Degenerate Cloud
            mainObj = active_object

            cloudMembers = active_object.children

            createdObjects = []
            definitionObjects = []
            for member in cloudMembers:
                applyScaleRotLoc(scene, member)
                if member["CloudMember"] == "CreatedObj":
                    createdObjects.append(member)
                else:
                    definitionObjects.append(member)

            for defObj in definitionObjects:
                # Delete cloudmember data from objects
                if "CloudMember" in defObj:
                    del(defObj["CloudMember"])

            for createdObj in createdObjects:
                totallyDeleteObject(scene, createdObj)

            # Delete the blend_data object
            totallyDeleteObject(scene, mainObj)

            # Select all of the left over boxes so people can immediately
            # press generate again if they want.
            for eachMember in definitionObjects:
                eachMember.draw_type = 'SOLID'
                eachMember.select = True
                eachMember.hide_render = False

        elif WhatToDo == 'CLOUD_CONVERT_TO_MESH':

            cloudParticles = active_object.particle_systems.active

            bounds = active_object.parent

            ###############Create CloudPnts for putting points in#########
            # Create a new object cloudPnts
            cloudPnts = addNewObject(scene, "CloudPoints", bounds)
            cloudPnts["CloudMember"] = "CreatedObj"
            cloudPnts.draw_type = 'WIRE'
            cloudPnts.hide_render = True

            makeParent(bounds, cloudPnts, scene)

            convertParticlesToMesh(scene, cloudParticles, cloudPnts, True)

            removeParticleSystemFromObj(scene, active_object)

            pDensity = getpdensitytexture(bounds)
            pDensity.point_density.point_source = 'OBJECT'
            pDensity.point_density.object = cloudPnts

            #Let's resize the bound box to be more accurate.
            how_much_bigger = pDensity.point_density.radius
            makeObjectIntoBoundBox(scene, bounds, how_much_bigger, cloudPnts)

        else:
            # Generate Cloud

            ###############Create Combined Object bounds##################
            # Make a list of all Selected objects.
            selectedObjects = bpy.context.selected_objects
            if not selectedObjects:
                selectedObjects = [bpy.context.active_object]

            # Create a new object bounds
            bounds = addNewObject(scene,
                    "CloudBounds",
                    selectedObjects[0])

            bounds.draw_type = 'BOUNDS'
            bounds.hide_render = False

            # Just add a Definition Property designating this
            # as the blend_data object.
            bounds["CloudMember"] = "MainObj"

            # Since we used iteration 0 to copy with object we
            # delete it off the list.
            firstObject = selectedObjects[0]
            del selectedObjects[0]

            # Apply location Rotation and Scale to all objects involved.
            applyScaleRotLoc(scene, bounds)
            for each in selectedObjects:
                applyScaleRotLoc(scene, each)

            # Let's combine all of them together.
            combineObjects(scene, bounds, selectedObjects)

            # Let's add some property info to the objects.
            for selObj in selectedObjects:
                selObj["CloudMember"] = "DefinitioinObj"
                selObj.name = "DefinitioinObj"
                selObj.draw_type = 'WIRE'
                selObj.hide_render = True
                makeParent(bounds, selObj, scene)

            # Do the same to the 1. object since it is no longer in list.
            firstObject["CloudMember"] = "DefinitioinObj"
            firstObject.name = "DefinitioinObj"
            firstObject.draw_type = 'WIRE'
            firstObject.hide_render = True
            makeParent(bounds, firstObject, scene)

            ###############Create Cloud for putting Cloud Mesh############
            # Create a new object cloud.
            cloud = addNewObject(scene, "CloudMesh", bounds)
            cloud["CloudMember"] = "CreatedObj"
            cloud.draw_type = 'WIRE'
            cloud.hide_render = True

            makeParent(bounds, cloud, scene)

            bpy.ops.object.editmode_toggle()
            bpy.ops.mesh.select_all(action='SELECT')

            #Don't subdivide object or smooth if smoothing box not checked.
            if scene.cloudsmoothing:
                bpy.ops.mesh.subdivide(number_cuts=2, fractal=0, smoothness=1)
 #               bpy.ops.object.transform_apply(location=True)
                bpy.ops.mesh.vertices_smooth(repeat=20)
            bpy.ops.mesh.tris_convert_to_quads()
            bpy.ops.mesh.faces_shade_smooth()
            bpy.ops.object.editmode_toggle()

            ###############Create Particles in cloud obj##################

            # Set time to 0.
            scene.frame_current = 0

            # Add a new particle system.
            bpy.ops.object.particle_system_add()

            #Particle settings setting it up!
            cloudParticles = cloud.particle_systems.active
            cloudParticles.name = "CloudParticles"
            cloudParticles.settings.frame_start = 0
            cloudParticles.settings.frame_end = 0
            cloudParticles.settings.emit_from = 'VOLUME'
            cloudParticles.settings.lifetime = scene.frame_end
            cloudParticles.settings.draw_method = 'DOT'
            cloudParticles.settings.render_type = 'NONE'
            cloudParticles.settings.distribution = 'RAND'
            cloudParticles.settings.physics_type = 'NEWTON'
            cloudParticles.settings.normal_factor = 0

            #Gravity does not effect the particle system
            eWeights = cloudParticles.settings.effector_weights
            eWeights.gravity = 0

            ####################Create Volume Material####################
            # Deselect All
            bpy.ops.object.select_all(action='DESELECT')

            # Select the object.
            bounds.select = True
            scene.objects.active = bounds

            # Turn bounds object into a box.  Use itself as a reference.
            makeObjectIntoBoundBox(scene, bounds, 1.0, bounds)

            # Delete all material slots in bounds object.
            for i in range(len(bounds.material_slots)):
                bounds.active_material_index = i - 1
                bpy.ops.object.material_slot_remove()

            # Add a new material.
            cloudMaterial = blend_data.materials.new("CloudMaterial")
            bpy.ops.object.material_slot_add()
            bounds.material_slots[0].material = cloudMaterial

            # Set Up the Cloud Material
            cloudMaterial.name = "CloudMaterial"
            cloudMaterial.type = 'VOLUME'
            mVolume = cloudMaterial.volume
            mVolume.scattering = scattering
            mVolume.density = 0
            mVolume.density_scale = densityScale
            mVolume.transmission_color = 3.0, 3.0, 3.0
            mVolume.step_size = 0.1
            mVolume.use_light_cache = True
            mVolume.cache_resolution = 45

            # Add a texture
            # vMaterialTextureSlots = cloudMaterial.texture_slots  # UNUSED
            cloudtex = blend_data.textures.new("CloudTex", type='CLOUDS')
            cloudtex.noise_type = 'HARD_NOISE'
            cloudtex.noise_scale = 2
            mtex = cloudMaterial.texture_slots.add()
            mtex.texture = cloudtex
            mtex.texture_coords = 'ORCO'
            mtex.use_map_color_diffuse = True

            # Set time
            scene.frame_current = 1

            # Add a Point Density texture
            pDensity = blend_data.textures.new("CloudPointDensity", 'POINT_DENSITY')

            mtex = cloudMaterial.texture_slots.add()
            mtex.texture = pDensity
            mtex.texture_coords = 'GLOBAL'
            mtex.use_map_density = True
            mtex.use_rgb_to_intensity = True
            mtex.texture_coords = 'GLOBAL'

            pDensity.point_density.vertex_cache_space = 'WORLD_SPACE'
            pDensity.point_density.use_turbulence = True
            pDensity.point_density.noise_basis = 'VORONOI_F2'
            pDensity.point_density.turbulence_depth = 3

            pDensity.use_color_ramp = True
            pRamp = pDensity.color_ramp
            #pRamp.use_interpolation = 'LINEAR'
            pRampElements = pRamp.elements
            #pRampElements[1].position = .9
            #pRampElements[1].color = 0.18, 0.18, 0.18, 0.8
            bpy.ops.texture.slot_move(type='UP')

            # Estimate the number of particles for the size of bounds.
            volumeBoundBox = (bounds.dimensions[0] * bounds.dimensions[1] * bounds.dimensions[2])
            numParticles = int((2.4462 * volumeBoundBox + 430.4) * numOfPoints)
            if numParticles > maxNumOfPoints:
                numParticles = maxNumOfPoints
            if numParticles < 10000:
                numParticles = int(numParticles + 15 * volumeBoundBox)
            print(numParticles)

            # Set the number of particles according to the volume
            # of bounds.
            cloudParticles.settings.count = numParticles

            pDensity.point_density.radius = (.00013764 * volumeBoundBox + .3989) * pointDensityRadiusFactor

            if pDensity.point_density.radius > maxPointDensityRadius:
                pDensity.point_density.radius = maxPointDensityRadius

            # Set time to 1.
            scene.frame_current = 1

            if not scene.cloudparticles:
                ###############Create CloudPnts for putting points in#########
                # Create a new object cloudPnts
                cloudPnts = addNewObject(scene, "CloudPoints", bounds)
                cloudPnts["CloudMember"] = "CreatedObj"
                cloudPnts.draw_type = 'WIRE'
                cloudPnts.hide_render = True

                makeParent(bounds, cloudPnts, scene)

                convertParticlesToMesh(scene, cloudParticles, cloudPnts, True)

                # Add a modifier.
                bpy.ops.object.modifier_add(type='DISPLACE')

                cldPntsModifiers = cloudPnts.modifiers
                cldPntsModifiers[0].name = "CloudPnts"
                cldPntsModifiers[0].texture = cloudtex
                cldPntsModifiers[0].texture_coords = 'OBJECT'
                cldPntsModifiers[0].texture_coords_object = cloud
                cldPntsModifiers[0].strength = -1.4

                # Apply modifier
                bpy.ops.object.modifier_apply(apply_as='DATA', modifier=cldPntsModifiers[0].name)

                pDensity.point_density.point_source = 'OBJECT'
                pDensity.point_density.object = cloudPnts

                removeParticleSystemFromObj(scene, cloud)

            else:

                pDensity.point_density.point_source = 'PARTICLE_SYSTEM'
                pDensity.point_density.object = cloud
                pDensity.point_density.particle_system = cloudParticles

            if scene.cloud_type == '1':  # Cumulous
                print("Cumulous")
                mVolume.density_scale = 2.22
                pDensity.point_density.turbulence_depth = 10
                pDensity.point_density.turbulence_strength = 6.3
                pDensity.point_density.turbulence_scale = 2.9
                pRampElements[1].position = .606
                pDensity.point_density.radius = pDensity.point_density.radius + 0.1

            elif scene.cloud_type == '2':  # Cirrus
                print("Cirrus")
                pDensity.point_density.turbulence_strength = 22
                mVolume.transmission_color = 3.5, 3.5, 3.5
                mVolume.scattering = 0.13

            elif scene.cloud_type == '3':  # Explosion
                mVolume.emission = 1.42
                mtex.use_rgb_to_intensity = False
                pRampElements[0].position = 0.825
                pRampElements[0].color = 0.119, 0.119, 0.119, 1
                pRampElements[1].position = .049
                pRampElements[1].color = 1.0, 1.0, 1.0, 0
                pDensity.point_density.turbulence_strength = 1.5
                pRampElement1 = pRampElements.new(.452)
                pRampElement1.color = 0.814, 0.112, 0, 1
                pRampElement2 = pRampElements.new(.234)
                pRampElement2.color = 0.814, 0.310, 0.002, 1
                pRampElement3 = pRampElements.new(0.669)
                pRampElement3.color = 0.0, 0.0, 0.040, 1

            # Select the object.
            bounds.select = True
            scene.objects.active = bounds

            #Let's resize the bound box to be more accurate.
            how_much_bigger = pDensity.point_density.radius + 0.1

            #If it's a particle cloud use cloud mesh if otherwise use point mesh
            if not scene.cloudparticles:
                makeObjectIntoBoundBox(scene, bounds, how_much_bigger, cloudPnts)
            else:
                makeObjectIntoBoundBox(scene, bounds, how_much_bigger, cloud)

        return {'FINISHED'}


def register():
    bpy.utils.register_module(__name__)

    bpy.types.Scene.cloudparticles = BoolProperty(
        name="Particles",
        description="Generate Cloud as Particle System",
        default=False)

    bpy.types.Scene.cloudsmoothing = BoolProperty(
        name="Smoothing",
        description="Smooth Resultant Geometry From Gen Cloud Operation",
        default=True)

    bpy.types.Scene.cloud_type = EnumProperty(
        name="Type",
        description="Select the type of cloud to create with material settings",
        items=[("0", "Stratus", "Generate Stratus_foggy Cloud"),
               ("1", "Cumulous", "Generate Cumulous_puffy Cloud"),
               ("2", "Cirrus", "Generate Cirrus_wispy Cloud"),
               ("3", "Explosion", "Generate Explosion"),
              ],
        default='0')


def unregister():
    bpy.utils.unregister_module(__name__)

    del bpy.types.Scene.cloudparticles
    del bpy.types.Scene.cloud_type


if __name__ == "__main__":
    register()