-
Campbell Barton authoredCampbell Barton authored
mesh_looptools.py 137.38 KiB
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
bl_info = {
'name': "LoopTools",
'author': "Bart Crouch",
'version': (3, 2, 0),
'blender': (2, 5, 7),
'api': 35979,
'location': "View3D > Toolbar and View3D > Specials (W-key)",
'warning': "",
'description': "Mesh modelling toolkit. Several tools to aid modelling",
'wiki_url': "http://wiki.blender.org/index.php/Extensions:2.5/Py/"\
"Scripts/Modeling/LoopTools",
'tracker_url': "http://projects.blender.org/tracker/index.php?"\
"func=detail&aid=26189",
'category': 'Mesh'}
import bpy
import mathutils
import math
##########################################
####### General functions ################
##########################################
# used by all tools to improve speed on reruns
looptools_cache = {}
# force a full recalculation next time
def cache_delete(tool):
if tool in looptools_cache:
del looptools_cache[tool]
# check cache for stored information
def cache_read(tool, object, mesh, input_method, boundaries):
# current tool not cached yet
if tool not in looptools_cache:
return(False, False, False, False, False)
# check if selected object didn't change
if object.name != looptools_cache[tool]["object"]:
return(False, False, False, False, False)
# check if input didn't change
if input_method != looptools_cache[tool]["input_method"]:
return(False, False, False, False, False)
if boundaries != looptools_cache[tool]["boundaries"]:
return(False, False, False, False, False)
modifiers = [mod.name for mod in object.modifiers if mod.show_viewport \
and mod.type == 'MIRROR']
if modifiers != looptools_cache[tool]["modifiers"]:
return(False, False, False, False, False)
input = [v.index for v in mesh.vertices if v.select and not v.hide]
if input != looptools_cache[tool]["input"]:
return(False, False, False, False, False)
# reading values
single_loops = looptools_cache[tool]["single_loops"]
loops = looptools_cache[tool]["loops"]
derived = looptools_cache[tool]["derived"]
mapping = looptools_cache[tool]["mapping"]
return(True, single_loops, loops, derived, mapping)
# store information in the cache
def cache_write(tool, object, mesh, input_method, boundaries, single_loops,
loops, derived, mapping):
# clear cache of current tool
if tool in looptools_cache:
del looptools_cache[tool]
# prepare values to be saved to cache
input = [v.index for v in mesh.vertices if v.select and not v.hide]
modifiers = [mod.name for mod in object.modifiers if mod.show_viewport \
and mod.type == 'MIRROR']
# update cache
looptools_cache[tool] = {"input": input, "object": object.name,
"input_method": input_method, "boundaries": boundaries,
"single_loops": single_loops, "loops": loops,
"derived": derived, "mapping": mapping, "modifiers": modifiers}
# calculates natural cubic splines through all given knots
def calculate_cubic_splines(mesh_mod, tknots, knots):
# hack for circular loops
if knots[0] == knots[-1] and len(knots) > 1:
circular = True
k_new1 = []
for k in range(-1, -5, -1):
if k - 1 < -len(knots):
k += len(knots)
k_new1.append(knots[k-1])
k_new2 = []
for k in range(4):
if k + 1 > len(knots) - 1:
k -= len(knots)
k_new2.append(knots[k+1])
for k in k_new1:
knots.insert(0, k)
for k in k_new2:
knots.append(k)
t_new1 = []
total1 = 0
for t in range(-1, -5, -1):
if t - 1 < -len(tknots):
t += len(tknots)
total1 += tknots[t] - tknots[t-1]
t_new1.append(tknots[0] - total1)
t_new2 = []
total2 = 0
for t in range(4):
if t + 1 > len(tknots) - 1:
t -= len(tknots)
total2 += tknots[t+1] - tknots[t]
t_new2.append(tknots[-1] + total2)
for t in t_new1:
tknots.insert(0, t)
for t in t_new2:
tknots.append(t)
else:
circular = False
# end of hack
n = len(knots)
if n < 2:
return False
x = tknots[:]
locs = [mesh_mod.vertices[k].co[:] for k in knots]
result = []
for j in range(3):
a = []
for i in locs:
a.append(i[j])
h = []
for i in range(n-1):
if x[i+1] - x[i] == 0:
h.append(1e-8)
else:
h.append(x[i+1] - x[i])
q = [False]
for i in range(1, n-1):
q.append(3/h[i]*(a[i+1]-a[i]) - 3/h[i-1]*(a[i]-a[i-1]))
l = [1.0]
u = [0.0]
z = [0.0]
for i in range(1, n-1):
l.append(2*(x[i+1]-x[i-1]) - h[i-1]*u[i-1])
if l[i] == 0:
l[i] = 1e-8
u.append(h[i] / l[i])
z.append((q[i] - h[i-1] * z[i-1]) / l[i])
l.append(1.0)
z.append(0.0)
b = [False for i in range(n-1)]
c = [False for i in range(n)]
d = [False for i in range(n-1)]
c[n-1] = 0.0
for i in range(n-2, -1, -1):
c[i] = z[i] - u[i]*c[i+1]
b[i] = (a[i+1]-a[i])/h[i] - h[i]*(c[i+1]+2*c[i])/3
d[i] = (c[i+1]-c[i]) / (3*h[i])
for i in range(n-1):
result.append([a[i], b[i], c[i], d[i], x[i]])
splines = []
for i in range(len(knots)-1):
splines.append([result[i], result[i+n-1], result[i+(n-1)*2]])
if circular: # cleaning up after hack
knots = knots[4:-4]
tknots = tknots[4:-4]
return(splines)
# calculates linear splines through all given knots
def calculate_linear_splines(mesh_mod, tknots, knots):
splines = []
for i in range(len(knots)-1):
a = mesh_mod.vertices[knots[i]].co
b = mesh_mod.vertices[knots[i+1]].co
d = b-a
t = tknots[i]
u = tknots[i+1]-t
splines.append([a, d, t, u]) # [locStart, locDif, tStart, tDif]
return(splines)
# calculate a best-fit plane to the given vertices
def calculate_plane(mesh_mod, loop, method="best_fit", object=False):
# getting the vertex locations
locs = [mathutils.Vector(mesh_mod.vertices[v].co[:]) for v in loop[0]]
# calculating the center of masss
com = mathutils.Vector()
for loc in locs:
com += loc
com /= len(locs)
x, y, z = com
if method == 'best_fit':
# creating the covariance matrix
mat = mathutils.Matrix([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0],
[0.0, 0.0, 0.0]])
for loc in locs:
mat[0][0] += (loc[0]-x)**2
mat[0][1] += (loc[0]-x)*(loc[1]-y)
mat[0][2] += (loc[0]-x)*(loc[2]-z)
mat[1][0] += (loc[1]-y)*(loc[0]-x)
mat[1][1] += (loc[1]-y)**2
mat[1][2] += (loc[1]-y)*(loc[2]-z)
mat[2][0] += (loc[2]-z)*(loc[0]-x)
mat[2][1] += (loc[2]-z)*(loc[1]-y)
mat[2][2] += (loc[2]-z)**2
# calculating the normal to the plane
normal = False
try:
mat.invert()
except:
if sum(mat[0]) == 0.0:
normal = mathutils.Vector([1.0, 0.0, 0.0])
elif sum(mat[1]) == 0.0:
normal = mathutils.Vector([0.0, 1.0, 0.0])
elif sum(mat[2]) == 0.0:
normal = mathutils.Vector([0.0, 0.0, 1.0])
if not normal:
itermax = 500
iter = 0
vec = mathutils.Vector([1.0, 1.0, 1.0])
vec2 = (vec*mat)/(vec*mat).length
while vec != vec2 and iter<itermax:
iter += 1
vec = vec2
vec2 = (vec*mat)/(vec*mat).length
normal = vec2
elif method == 'normal':
# averaging the vertex normals
v_normals = [mesh_mod.vertices[v].normal for v in loop[0]]
normal = mathutils.Vector()
for v_normal in v_normals:
normal += v_normal
normal /= len(v_normals)
normal.normalize()
elif method == 'view':
# calculate view normal
rotation = bpy.context.space_data.region_3d.view_matrix.to_3x3().\
inverted()
normal = mathutils.Vector([0.0, 0.0, 1.0]) * rotation
if object:
normal *= object.matrix_world.inverted().to_euler().to_matrix()
return(com, normal)
# calculate splines based on given interpolation method (controller function)
def calculate_splines(interpolation, mesh_mod, tknots, knots):
if interpolation == 'cubic':
splines = calculate_cubic_splines(mesh_mod, tknots, knots[:])
else: # interpolations == 'linear'
splines = calculate_linear_splines(mesh_mod, tknots, knots[:])
return(splines)
# check loops and only return valid ones
def check_loops(loops, mapping, mesh_mod):
valid_loops = []
for loop, circular in loops:
# loop needs to have at least 3 vertices
if len(loop) < 3:
continue
# loop needs at least 1 vertex in the original, non-mirrored mesh
if mapping:
all_virtual = True
for vert in loop:
if mapping[vert] > -1:
all_virtual = False
break
if all_virtual:
continue
# vertices can not all be at the same location
stacked = True
for i in range(len(loop) - 1):
if (mesh_mod.vertices[loop[i]].co - \
mesh_mod.vertices[loop[i+1]].co).length > 1e-6:
stacked = False
break
if stacked:
continue
# passed all tests, loop is valid
valid_loops.append([loop, circular])
return(valid_loops)
# input: mesh, output: dict with the edge-key as key and face-index as value
def dict_edge_faces(mesh):
edge_faces = dict([[edge.key, []] for edge in mesh.edges if not edge.hide])
for face in mesh.faces:
if face.hide:
continue
for key in face.edge_keys:
edge_faces[key].append(face.index)
return(edge_faces)
# input: mesh (edge-faces optional), output: dict with face-face connections
def dict_face_faces(mesh, edge_faces=False):
if not edge_faces:
edge_faces = dict_edge_faces(mesh)
connected_faces = dict([[face.index, []] for face in mesh.faces if \
not face.hide])
for face in mesh.faces:
if face.hide:
continue
for edge_key in face.edge_keys:
for connected_face in edge_faces[edge_key]:
if connected_face == face.index:
continue
connected_faces[face.index].append(connected_face)
return(connected_faces)
# input: mesh, output: dict with the vert index as key and edge-keys as value
def dict_vert_edges(mesh):
vert_edges = dict([[v.index, []] for v in mesh.vertices if not v.hide])
for edge in mesh.edges:
if edge.hide:
continue
for vert in edge.key:
vert_edges[vert].append(edge.key)
return(vert_edges)
# input: mesh, output: dict with the vert index as key and face index as value
def dict_vert_faces(mesh):
vert_faces = dict([[v.index, []] for v in mesh.vertices if not v.hide])
for face in mesh.faces:
if not face.hide:
for vert in face.vertices:
vert_faces[vert].append(face.index)
return(vert_faces)
# input: list of edge-keys, output: dictionary with vertex-vertex connections
def dict_vert_verts(edge_keys):
# create connection data
vert_verts = {}
for ek in edge_keys:
for i in range(2):
if ek[i] in vert_verts:
vert_verts[ek[i]].append(ek[1-i])
else:
vert_verts[ek[i]] = [ek[1-i]]
return(vert_verts)
# calculate input loops
def get_connected_input(object, mesh, scene, input):
# get mesh with modifiers applied
derived, mesh_mod = get_derived_mesh(object, mesh, scene)
# calculate selected loops
edge_keys = [edge.key for edge in mesh_mod.edges if \
edge.select and not edge.hide]
loops = get_connected_selections(edge_keys)
# if only selected loops are needed, we're done
if input == 'selected':
return(derived, mesh_mod, loops)
# elif input == 'all':
loops = get_parallel_loops(mesh_mod, loops)
return(derived, mesh_mod, loops)
# sorts all edge-keys into a list of loops
def get_connected_selections(edge_keys):
# create connection data
vert_verts = dict_vert_verts(edge_keys)
# find loops consisting of connected selected edges
loops = []
while len(vert_verts) > 0:
loop = [iter(vert_verts.keys()).__next__()]
growing = True
flipped = False
# extend loop
while growing:
# no more connection data for current vertex
if loop[-1] not in vert_verts:
if not flipped:
loop.reverse()
flipped = True
else:
growing = False
else:
extended = False
for i, next_vert in enumerate(vert_verts[loop[-1]]):
if next_vert not in loop:
vert_verts[loop[-1]].pop(i)
if len(vert_verts[loop[-1]]) == 0:
del vert_verts[loop[-1]]
# remove connection both ways
if next_vert in vert_verts:
if len(vert_verts[next_vert]) == 1:
del vert_verts[next_vert]
else:
vert_verts[next_vert].remove(loop[-1])
loop.append(next_vert)
extended = True
break
if not extended:
# found one end of the loop, continue with next
if not flipped:
loop.reverse()
flipped = True
# found both ends of the loop, stop growing
else:
growing = False
# check if loop is circular
if loop[0] in vert_verts:
if loop[-1] in vert_verts[loop[0]]:
# is circular
if len(vert_verts[loop[0]]) == 1:
del vert_verts[loop[0]]
else:
vert_verts[loop[0]].remove(loop[-1])
if len(vert_verts[loop[-1]]) == 1:
del vert_verts[loop[-1]]
else:
vert_verts[loop[-1]].remove(loop[0])
loop = [loop, True]
else:
# not circular
loop = [loop, False]
else:
# not circular
loop = [loop, False]
loops.append(loop)
return(loops)
# get the derived mesh data, if there is a mirror modifier
def get_derived_mesh(object, mesh, scene):
# check for mirror modifiers
if 'MIRROR' in [mod.type for mod in object.modifiers if mod.show_viewport]:
derived = True
# disable other modifiers
show_viewport = [mod.name for mod in object.modifiers if \
mod.show_viewport]
for mod in object.modifiers:
if mod.type != 'MIRROR':
mod.show_viewport = False
# get derived mesh
mesh_mod = object.to_mesh(scene, True, 'PREVIEW')
# re-enable other modifiers
for mod_name in show_viewport:
object.modifiers[mod_name].show_viewport = True
# no mirror modifiers, so no derived mesh necessary
else:
derived = False
mesh_mod = mesh
return(derived, mesh_mod)
# return a mapping of derived indices to indices
def get_mapping(derived, mesh, mesh_mod, single_vertices, full_search, loops):
if not derived:
return(False)
if full_search:
verts = [v for v in mesh.vertices if not v.hide]
else:
verts = [v for v in mesh.vertices if v.select and not v.hide]
# non-selected vertices around single vertices also need to be mapped
if single_vertices:
mapping = dict([[vert, -1] for vert in single_vertices])
verts_mod = [mesh_mod.vertices[vert] for vert in single_vertices]
for v in verts:
for v_mod in verts_mod:
if (v.co - v_mod.co).length < 1e-6:
mapping[v_mod.index] = v.index
break
real_singles = [v_real for v_real in mapping.values() if v_real>-1]
verts_indices = [vert.index for vert in verts]
for face in [face for face in mesh.faces if not face.select \
and not face.hide]:
for vert in face.vertices:
if vert in real_singles:
for v in face.vertices:
if not v in verts_indices:
if mesh.vertices[v] not in verts:
verts.append(mesh.vertices[v])
break
# create mapping of derived indices to indices
mapping = dict([[vert, -1] for loop in loops for vert in loop[0]])
if single_vertices:
for single in single_vertices:
mapping[single] = -1
verts_mod = [mesh_mod.vertices[i] for i in mapping.keys()]
for v in verts:
for v_mod in verts_mod:
if (v.co - v_mod.co).length < 1e-6:
mapping[v_mod.index] = v.index
verts_mod.remove(v_mod)
break
return(mapping)
# returns a list of all loops parallel to the input, input included
def get_parallel_loops(mesh_mod, loops):
# get required dictionaries
edge_faces = dict_edge_faces(mesh_mod)
connected_faces = dict_face_faces(mesh_mod, edge_faces)
# turn vertex loops into edge loops
edgeloops = []
for loop in loops:
edgeloop = [[sorted([loop[0][i], loop[0][i+1]]) for i in \
range(len(loop[0])-1)], loop[1]]
if loop[1]: # circular
edgeloop[0].append(sorted([loop[0][-1], loop[0][0]]))
edgeloops.append(edgeloop[:])
# variables to keep track while iterating
all_edgeloops = []
has_branches = False
for loop in edgeloops:
# initialise with original loop
all_edgeloops.append(loop[0])
newloops = [loop[0]]
verts_used = []
for edge in loop[0]:
if edge[0] not in verts_used:
verts_used.append(edge[0])
if edge[1] not in verts_used:
verts_used.append(edge[1])
# find parallel loops
while len(newloops) > 0:
side_a = []
side_b = []
for i in newloops[-1]:
i = tuple(i)
forbidden_side = False
if not i in edge_faces:
# weird input with branches
has_branches = True
break
for face in edge_faces[i]:
if len(side_a) == 0 and forbidden_side != "a":
side_a.append(face)
if forbidden_side:
break
forbidden_side = "a"
continue
elif side_a[-1] in connected_faces[face] and \
forbidden_side != "a":
side_a.append(face)
if forbidden_side:
break
forbidden_side = "a"
continue
if len(side_b) == 0 and forbidden_side != "b":
side_b.append(face)
if forbidden_side:
break
forbidden_side = "b"
continue
elif side_b[-1] in connected_faces[face] and \
forbidden_side != "b":
side_b.append(face)
if forbidden_side:
break
forbidden_side = "b"
continue
if has_branches:
# weird input with branches
break
newloops.pop(-1)
sides = []
if side_a:
sides.append(side_a)
if side_b:
sides.append(side_b)
for side in sides:
extraloop = []
for fi in side:
for key in mesh_mod.faces[fi].edge_keys:
if key[0] not in verts_used and key[1] not in \
verts_used:
extraloop.append(key)
break
if extraloop:
for key in extraloop:
for new_vert in key:
if new_vert not in verts_used:
verts_used.append(new_vert)
newloops.append(extraloop)
all_edgeloops.append(extraloop)
# input contains branches, only return selected loop
if has_branches:
return(loops)
# change edgeloops into normal loops
loops = []
for edgeloop in all_edgeloops:
loop = []
# grow loop by comparing vertices between consecutive edge-keys
for i in range(len(edgeloop)-1):
for vert in range(2):
if edgeloop[i][vert] in edgeloop[i+1]:
loop.append(edgeloop[i][vert])
break
if loop:
# add starting vertex
for vert in range(2):
if edgeloop[0][vert] != loop[0]:
loop = [edgeloop[0][vert]] + loop
break
# add ending vertex
for vert in range(2):
if edgeloop[-1][vert] != loop[-1]:
loop.append(edgeloop[-1][vert])
break
# check if loop is circular
if loop[0] == loop[-1]:
circular = True
loop = loop[:-1]
else:
circular = False
loops.append([loop, circular])
return(loops)
# gather initial data
def initialise():
global_undo = bpy.context.user_preferences.edit.use_global_undo
bpy.context.user_preferences.edit.use_global_undo = False
bpy.ops.object.mode_set(mode='OBJECT')
object = bpy.context.active_object
mesh = bpy.context.active_object.data
return(global_undo, object, mesh)
# move the vertices to their new locations
def move_verts(mesh, mapping, move, influence):
for loop in move:
for index, loc in loop:
if mapping:
if mapping[index] == -1:
continue
else:
index = mapping[index]
if influence >= 0:
mesh.vertices[index].co = loc*(influence/100) + \
mesh.vertices[index].co*((100-influence)/100)
else:
mesh.vertices[index].co = loc
# load custom tool settings
def settings_load(self):
lt = bpy.context.window_manager.looptools
tool = self.name.split()[0].lower()
keys = self.as_keywords().keys()
for key in keys:
setattr(self, key, getattr(lt, tool + "_" + key))
# store custom tool settings
def settings_write(self):
lt = bpy.context.window_manager.looptools
tool = self.name.split()[0].lower()
keys = self.as_keywords().keys()
for key in keys:
setattr(lt, tool + "_" + key, getattr(self, key))
# clean up and set settings back to original state
def terminate(global_undo):
bpy.ops.object.mode_set(mode='EDIT')
bpy.context.user_preferences.edit.use_global_undo = global_undo
##########################################
####### Bridge functions #################
##########################################
# calculate a cubic spline through the middle section of 4 given coordinates
def bridge_calculate_cubic_spline(mesh, coordinates):
result = []
x = [0, 1, 2, 3]
for j in range(3):
a = []
for i in coordinates:
a.append(float(i[j]))
h = []
for i in range(3):
h.append(x[i+1]-x[i])
q = [False]
for i in range(1,3):
q.append(3.0/h[i]*(a[i+1]-a[i])-3.0/h[i-1]*(a[i]-a[i-1]))
l = [1.0]
u = [0.0]
z = [0.0]
for i in range(1,3):
l.append(2.0*(x[i+1]-x[i-1])-h[i-1]*u[i-1])
u.append(h[i]/l[i])
z.append((q[i]-h[i-1]*z[i-1])/l[i])
l.append(1.0)
z.append(0.0)
b = [False for i in range(3)]
c = [False for i in range(4)]
d = [False for i in range(3)]
c[3] = 0.0
for i in range(2,-1,-1):
c[i] = z[i]-u[i]*c[i+1]
b[i] = (a[i+1]-a[i])/h[i]-h[i]*(c[i+1]+2.0*c[i])/3.0
d[i] = (c[i+1]-c[i])/(3.0*h[i])
for i in range(3):
result.append([a[i], b[i], c[i], d[i], x[i]])
spline = [result[1], result[4], result[7]]
return(spline)
# return a list with new vertex location vectors, a list with face vertex
# integers, and the highest vertex integer in the virtual mesh
def bridge_calculate_geometry(mesh, lines, vertex_normals, segments,
interpolation, cubic_strength, min_width, max_vert_index):
new_verts = []
faces = []
# calculate location based on interpolation method
def get_location(line, segment, splines):
v1 = mesh.vertices[lines[line][0]].co
v2 = mesh.vertices[lines[line][1]].co
if interpolation == 'linear':
return v1 + (segment/segments) * (v2-v1)
else: # interpolation == 'cubic'
m = (segment/segments)
ax,bx,cx,dx,tx = splines[line][0]
x = ax+bx*m+cx*m**2+dx*m**3
ay,by,cy,dy,ty = splines[line][1]
y = ay+by*m+cy*m**2+dy*m**3
az,bz,cz,dz,tz = splines[line][2]
z = az+bz*m+cz*m**2+dz*m**3
return mathutils.Vector([x,y,z])
# no interpolation needed
if segments == 1:
for i, line in enumerate(lines):
if i < len(lines)-1:
faces.append([line[0], lines[i+1][0], lines[i+1][1], line[1]])
# more than 1 segment, interpolate
else:
# calculate splines (if necessary) once, so no recalculations needed
if interpolation == 'cubic':
splines = []
for line in lines:
v1 = mesh.vertices[line[0]].co
v2 = mesh.vertices[line[1]].co
size = (v2-v1).length * cubic_strength
splines.append(bridge_calculate_cubic_spline(mesh,
[v1+size*vertex_normals[line[0]], v1, v2,
v2+size*vertex_normals[line[1]]]))
else:
splines = False
# create starting situation
virtual_width = [(mathutils.Vector(mesh.vertices[lines[i][0]].co) - \
mathutils.Vector(mesh.vertices[lines[i+1][0]].co)).length for i \
in range(len(lines)-1)]
new_verts = [get_location(0, seg, splines) for seg in range(1,
segments)]
first_line_indices = [i for i in range(max_vert_index+1,
max_vert_index+segments)]
prev_verts = new_verts[:] # vertex locations of verts on previous line
prev_vert_indices = first_line_indices[:]
max_vert_index += segments - 1 # highest vertex index in virtual mesh
next_verts = [] # vertex locations of verts on current line
next_vert_indices = []
for i, line in enumerate(lines):
if i < len(lines)-1:
v1 = line[0]
v2 = lines[i+1][0]
end_face = True
for seg in range(1, segments):
loc1 = prev_verts[seg-1]
loc2 = get_location(i+1, seg, splines)
if (loc1-loc2).length < (min_width/100)*virtual_width[i] \
and line[1]==lines[i+1][1]:
# triangle, no new vertex
faces.append([v1, v2, prev_vert_indices[seg-1],
prev_vert_indices[seg-1]])
next_verts += prev_verts[seg-1:]
next_vert_indices += prev_vert_indices[seg-1:]
end_face = False
break
else:
if i == len(lines)-2 and lines[0] == lines[-1]:
# quad with first line, no new vertex
faces.append([v1, v2, first_line_indices[seg-1],
prev_vert_indices[seg-1]])
v2 = first_line_indices[seg-1]
v1 = prev_vert_indices[seg-1]
else:
# quad, add new vertex
max_vert_index += 1
faces.append([v1, v2, max_vert_index,
prev_vert_indices[seg-1]])
v2 = max_vert_index
v1 = prev_vert_indices[seg-1]
new_verts.append(loc2)
next_verts.append(loc2)
next_vert_indices.append(max_vert_index)
if end_face:
faces.append([v1, v2, lines[i+1][1], line[1]])
prev_verts = next_verts[:]
prev_vert_indices = next_vert_indices[:]
next_verts = []
next_vert_indices = []
return(new_verts, faces, max_vert_index)
# calculate lines (list of lists, vertex indices) that are used for bridging
def bridge_calculate_lines(mesh, loops, mode, twist, reverse):
lines = []
loop1, loop2 = [i[0] for i in loops]
loop1_circular, loop2_circular = [i[1] for i in loops]
circular = loop1_circular or loop2_circular
circle_full = False
# calculate loop centers
centers = []
for loop in [loop1, loop2]:
center = mathutils.Vector([0,0,0])
for vertex in loop:
center += mesh.vertices[vertex].co
center /= len(loop)
centers.append(center)
for i, loop in enumerate([loop1, loop2]):
for vertex in loop:
if mesh.vertices[vertex].co == centers[i]:
# prevent zero-length vectors in angle comparisons
centers[i] += mathutils.Vector([0.01, 0, 0])
break
center1, center2 = centers
# calculate the normals of the virtual planes that the loops are on
normals = []
normal_plurity = False
for i, loop in enumerate([loop1, loop2]):
# covariance matrix
mat = mathutils.Matrix(((0.0, 0.0, 0.0), (0.0, 0.0, 0.0),
(0.0, 0.0, 0.0)))
x, y, z = centers[i]
for loc in [mesh.vertices[vertex].co for vertex in loop]:
mat[0][0] += (loc[0]-x)**2
mat[0][1] += (loc[0]-x)*(loc[1]-y)
mat[0][2] += (loc[0]-x)*(loc[2]-z)
mat[1][0] += (loc[1]-y)*(loc[0]-x)
mat[1][1] += (loc[1]-y)**2
mat[1][2] += (loc[1]-y)*(loc[2]-z)
mat[2][0] += (loc[2]-z)*(loc[0]-x)
mat[2][1] += (loc[2]-z)*(loc[1]-y)
mat[2][2] += (loc[2]-z)**2
# plane normal
normal = False
if sum(mat[0]) < 1e-6 or sum(mat[1]) < 1e-6 or sum(mat[2]) < 1e-6:
normal_plurity = True
try:
mat.invert()
except:
if sum(mat[0]) == 0:
normal = mathutils.Vector([1.0, 0.0, 0.0])
elif sum(mat[1]) == 0:
normal = mathutils.Vector([0.0, 1.0, 0.0])
elif sum(mat[2]) == 0:
normal = mathutils.Vector([0.0, 0.0, 1.0])
if not normal:
itermax = 500
iter = 0
vec = mathutils.Vector([1.0, 1.0, 1.0])
vec2 = (vec*mat)/(vec*mat).length
while vec != vec2 and iter<itermax:
iter+=1
vec = vec2
vec2 = (vec*mat)/(vec*mat).length
normal = vec2
normals.append(normal)
# have plane normals face in the same direction (maximum angle: 90 degrees)
if ((center1 + normals[0]) - center2).length < \
((center1 - normals[0]) - center2).length:
normals[0].negate()
if ((center2 + normals[1]) - center1).length > \
((center2 - normals[1]) - center1).length:
normals[1].negate()
# rotation matrix, representing the difference between the plane normals
axis = normals[0].cross(normals[1])
axis = mathutils.Vector([loc if abs(loc) > 1e-8 else 0 for loc in axis])
if axis.angle(mathutils.Vector([0, 0, 1]), 0) > 1.5707964:
axis.negate()
angle = normals[0].dot(normals[1])
rotation_matrix = mathutils.Matrix.Rotation(angle, 4, axis)
# if circular, rotate loops so they are aligned
if circular:
# make sure loop1 is the circular one (or both are circular)
if loop2_circular and not loop1_circular:
loop1_circular, loop2_circular = True, False
loop1, loop2 = loop2, loop1
# match start vertex of loop1 with loop2
target_vector = mesh.vertices[loop2[0]].co - center2
dif_angles = [[((mesh.vertices[vertex].co - center1) * \
rotation_matrix).angle(target_vector, 0), False, i] for \
i, vertex in enumerate(loop1)]
dif_angles.sort()
if len(loop1) != len(loop2):
angle_limit = dif_angles[0][0] * 1.2 # 20% margin
dif_angles = [[(mesh.vertices[loop2[0]].co - \
mesh.vertices[loop1[index]].co).length, angle, index] for \
angle, distance, index in dif_angles if angle <= angle_limit]
dif_angles.sort()
loop1 = loop1[dif_angles[0][2]:] + loop1[:dif_angles[0][2]]
# have both loops face the same way
if normal_plurity and not circular:
second_to_first, second_to_second, second_to_last = \
[(mesh.vertices[loop1[1]].co - center1).\
angle(mesh.vertices[loop2[i]].co - center2) for i in [0, 1, -1]]
last_to_first, last_to_second = [(mesh.vertices[loop1[-1]].co - \
center1).angle(mesh.vertices[loop2[i]].co - center2) for \
i in [0, 1]]
if (min(last_to_first, last_to_second)*1.1 < min(second_to_first, \
second_to_second)) or (loop2_circular and second_to_last*1.1 < \
min(second_to_first, second_to_second)):
loop1.reverse()
if circular:
loop1 = [loop1[-1]] + loop1[:-1]
else:
angle = (mesh.vertices[loop1[0]].co - center1).\
cross(mesh.vertices[loop1[1]].co - center1).angle(normals[0], 0)
target_angle = (mesh.vertices[loop2[0]].co - center2).\
cross(mesh.vertices[loop2[1]].co - center2).angle(normals[1], 0)
limit = 1.5707964 # 0.5*pi, 90 degrees
if not ((angle > limit and target_angle > limit) or \
(angle < limit and target_angle < limit)):
loop1.reverse()
if circular:
loop1 = [loop1[-1]] + loop1[:-1]
elif normals[0].angle(normals[1]) > limit:
loop1.reverse()
if circular:
loop1 = [loop1[-1]] + loop1[:-1]
# both loops have the same length
if len(loop1) == len(loop2):
# manual override
if twist:
if abs(twist) < len(loop1):
loop1 = loop1[twist:]+loop1[:twist]
if reverse:
loop1.reverse()
lines.append([loop1[0], loop2[0]])
for i in range(1, len(loop1)):
lines.append([loop1[i], loop2[i]])
# loops of different lengths
else:
# make loop1 longest loop
if len(loop2) > len(loop1):
loop1, loop2 = loop2, loop1
loop1_circular, loop2_circular = loop2_circular, loop1_circular
# manual override
if twist:
if abs(twist) < len(loop1):
loop1 = loop1[twist:]+loop1[:twist]
if reverse:
loop1.reverse()
# shortest angle difference doesn't always give correct start vertex
if loop1_circular and not loop2_circular:
shifting = 1
while shifting:
if len(loop1) - shifting < len(loop2):
shifting = False
break
to_last, to_first = [((mesh.vertices[loop1[-1]].co - \
center1) * rotation_matrix).angle((mesh.\
vertices[loop2[i]].co - center2), 0) for i in [-1, 0]]
if to_first < to_last:
loop1 = [loop1[-1]] + loop1[:-1]
shifting += 1
else:
shifting = False
break
# basic shortest side first
if mode == 'basic':
lines.append([loop1[0], loop2[0]])
for i in range(1, len(loop1)):
if i >= len(loop2) - 1:
# triangles
lines.append([loop1[i], loop2[-1]])
else:
# quads
lines.append([loop1[i], loop2[i]])
# shortest edge algorithm
else: # mode == 'shortest'
lines.append([loop1[0], loop2[0]])
prev_vert2 = 0
for i in range(len(loop1) -1):
if prev_vert2 == len(loop2) - 1 and not loop2_circular:
# force triangles, reached end of loop2
tri, quad = 0, 1
elif prev_vert2 == len(loop2) - 1 and loop2_circular:
# at end of loop2, but circular, so check with first vert
tri, quad = [(mathutils.Vector(mesh.vertices[loop1[i+1]].\
co) - mathutils.Vector(mesh.vertices[loop2[j]].co)).\
length for j in [prev_vert2, 0]]
circle_full = 2
elif len(loop1) - 1 - i == len(loop2) - 1 - prev_vert2 and \
not circle_full:
# force quads, otherwise won't make it to end of loop2
tri, quad = 1, 0
else:
# calculate if tri or quad gives shortest edge
tri, quad = [(mathutils.Vector(mesh.vertices[loop1[i+1]].\
co) - mathutils.Vector(mesh.vertices[loop2[j]].co)).\
length for j in range(prev_vert2, prev_vert2+2)]
# triangle
if tri < quad:
lines.append([loop1[i+1], loop2[prev_vert2]])
if circle_full == 2:
circle_full = False
# quad
elif not circle_full:
lines.append([loop1[i+1], loop2[prev_vert2+1]])
prev_vert2 += 1
# quad to first vertex of loop2
else:
lines.append([loop1[i+1], loop2[0]])
prev_vert2 = 0
circle_full = True
# final face for circular loops
if loop1_circular and loop2_circular:
lines.append([loop1[0], loop2[0]])
return(lines)
# calculate number of segments needed
def bridge_calculate_segments(mesh, lines, loops, segments):
# return if amount of segments is set by user
if segments != 0:
return segments
# edge lengths
average_edge_length = [(mesh.vertices[vertex].co - \
mesh.vertices[loop[0][i+1]].co).length for loop in loops for \
i, vertex in enumerate(loop[0][:-1])]
# closing edges of circular loops
average_edge_length += [(mesh.vertices[loop[0][-1]].co - \
mesh.vertices[loop[0][0]].co).length for loop in loops if loop[1]]
# average lengths
average_edge_length = sum(average_edge_length) / len(average_edge_length)
average_bridge_length = sum([(mesh.vertices[v1].co - \
mesh.vertices[v2].co).length for v1, v2 in lines]) / len(lines)
segments = max(1, round(average_bridge_length / average_edge_length))
return(segments)
# return dictionary with vertex index as key, and the normal vector as value
def bridge_calculate_virtual_vertex_normals(mesh, lines, loops, edge_faces,
edgekey_to_edge):
if not edge_faces: # interpolation isn't set to cubic
return False
# pity reduce() isn't one of the basic functions in python anymore
def average_vector_dictionary(dic):
for key, vectors in dic.items():
#if type(vectors) == type([]) and len(vectors) > 1:
if len(vectors) > 1:
average = mathutils.Vector([0, 0, 0])
for vector in vectors:
average += vector
average /= len(vectors)
dic[key] = [average]
return dic
# get all edges of the loop
edges = [[edgekey_to_edge[tuple(sorted([loops[j][0][i],
loops[j][0][i+1]]))] for i in range(len(loops[j][0])-1)] for \
j in [0,1]]
edges = edges[0] + edges[1]
for j in [0, 1]:
if loops[j][1]: # circular
edges.append(edgekey_to_edge[tuple(sorted([loops[j][0][0],
loops[j][0][-1]]))])
"""
calculation based on face topology (assign edge-normals to vertices)
edge_normal = face_normal x edge_vector
vertex_normal = average(edge_normals)
"""
vertex_normals = dict([(vertex, []) for vertex in loops[0][0]+loops[1][0]])
for edge in edges:
faces = edge_faces[edge.key] # valid faces connected to edge
if faces:
# get edge coordinates
v1, v2 = [mesh.vertices[edge.key[i]].co for i in [0,1]]
edge_vector = v1 - v2
if edge_vector.length < 1e-4:
# zero-length edge, vertices at same location
continue
edge_center = (v1 + v2) / 2
# average face coordinates, if connected to more than 1 valid face
if len(faces) > 1:
face_normal = mathutils.Vector([0, 0, 0])
face_center = mathutils.Vector([0, 0, 0])
for face in faces:
face_normal += face.normal
face_center += face.center
face_normal /= len(faces)
face_center /= len(faces)
else:
face_normal = faces[0].normal
face_center = faces[0].center
if face_normal.length < 1e-4:
# faces with a surface of 0 have no face normal
continue
# calculate virtual edge normal
edge_normal = edge_vector.cross(face_normal)
edge_normal.length = 0.01
if (face_center - (edge_center + edge_normal)).length > \
(face_center - (edge_center - edge_normal)).length:
# make normal face the correct way
edge_normal.negate()
edge_normal.normalize()
# add virtual edge normal as entry for both vertices it connects
for vertex in edge.key:
vertex_normals[vertex].append(edge_normal)
"""
calculation based on connection with other loop (vertex focused method)
- used for vertices that aren't connected to any valid faces
plane_normal = edge_vector x connection_vector
vertex_normal = plane_normal x edge_vector
"""
vertices = [vertex for vertex, normal in vertex_normals.items() if not \
normal]
if vertices:
# edge vectors connected to vertices
edge_vectors = dict([[vertex, []] for vertex in vertices])
for edge in edges:
for v in edge.key:
if v in edge_vectors:
edge_vector = mesh.vertices[edge.key[0]].co - \
mesh.vertices[edge.key[1]].co
if edge_vector.length < 1e-4:
# zero-length edge, vertices at same location
continue
edge_vectors[v].append(edge_vector)
# connection vectors between vertices of both loops
connection_vectors = dict([[vertex, []] for vertex in vertices])
connections = dict([[vertex, []] for vertex in vertices])
for v1, v2 in lines:
if v1 in connection_vectors or v2 in connection_vectors:
new_vector = mesh.vertices[v1].co - mesh.vertices[v2].co
if new_vector.length < 1e-4:
# zero-length connection vector,
# vertices in different loops at same location
continue
if v1 in connection_vectors:
connection_vectors[v1].append(new_vector)
connections[v1].append(v2)
if v2 in connection_vectors:
connection_vectors[v2].append(new_vector)
connections[v2].append(v1)
connection_vectors = average_vector_dictionary(connection_vectors)
connection_vectors = dict([[vertex, vector[0]] if vector else \
[vertex, []] for vertex, vector in connection_vectors.items()])
for vertex, values in edge_vectors.items():
# vertex normal doesn't matter, just assign a random vector to it
if not connection_vectors[vertex]:
vertex_normals[vertex] = [mathutils.Vector([1, 0, 0])]
continue
# calculate to what location the vertex is connected,
# used to determine what way to flip the normal
connected_center = mathutils.Vector([0, 0, 0])
for v in connections[vertex]:
connected_center += mesh.vertices[v].co
if len(connections[vertex]) > 1:
connected_center /= len(connections[vertex])
if len(connections[vertex]) == 0:
# shouldn't be possible, but better safe than sorry
vertex_normals[vertex] = [mathutils.Vector([1, 0, 0])]
continue
# can't do proper calculations, because of zero-length vector
if not values:
if (connected_center - (mesh.vertices[vertex].co + \
connection_vectors[vertex])).length < (connected_center - \
(mesh.vertices[vertex].co - connection_vectors[vertex])).\
length:
connection_vectors[vertex].negate()
vertex_normals[vertex] = [connection_vectors[vertex].\
normalized()]
continue
# calculate vertex normals using edge-vectors,
# connection-vectors and the derived plane normal
for edge_vector in values:
plane_normal = edge_vector.cross(connection_vectors[vertex])
vertex_normal = edge_vector.cross(plane_normal)
vertex_normal.length = 0.1
if (connected_center - (mesh.vertices[vertex].co + \
vertex_normal)).length < (connected_center - \
(mesh.vertices[vertex].co - vertex_normal)).length:
# make normal face the correct way
vertex_normal.negate()
vertex_normal.normalize()
vertex_normals[vertex].append(vertex_normal)
# average virtual vertex normals, based on all edges it's connected to
vertex_normals = average_vector_dictionary(vertex_normals)
vertex_normals = dict([[vertex, vector[0]] for vertex, vector in \
vertex_normals.items()])
return(vertex_normals)
# add vertices to mesh
def bridge_create_vertices(mesh, vertices):
start_index = len(mesh.vertices)
mesh.vertices.add(len(vertices))
for i in range(len(vertices)):
mesh.vertices[start_index + i].co = vertices[i]
# add faces to mesh
def bridge_create_faces(mesh, faces, twist):
# have the normal point the correct way
if twist < 0:
[face.reverse() for face in faces]
faces = [face[2:]+face[:2] if face[0]==face[1] else face for \
face in faces]
# eekadoodle prevention
for i in range(len(faces)):
if not faces[i][-1]:
if faces[i][0] == faces[i][-1]:
faces[i] = [faces[i][1], faces[i][2], faces[i][3], faces[i][1]]
else:
faces[i] = [faces[i][-1]] + faces[i][:-1]
start_faces = len(mesh.faces)
mesh.faces.add(len(faces))
for i in range(len(faces)):
mesh.faces[start_faces + i].vertices_raw = faces[i]
mesh.update(calc_edges = True) # calc_edges prevents memory-corruption
# calculate input loops
def bridge_get_input(mesh):
# create list of internal edges, which should be skipped
eks_of_selected_faces = [item for sublist in [face.edge_keys for face \
in mesh.faces if face.select and not face.hide] for item in sublist]
edge_count = {}
for ek in eks_of_selected_faces:
if ek in edge_count:
edge_count[ek] += 1
else:
edge_count[ek] = 1
internal_edges = [ek for ek in edge_count if edge_count[ek] > 1]
# sort correct edges into loops
selected_edges = [edge.key for edge in mesh.edges if edge.select \
and not edge.hide and edge.key not in internal_edges]
loops = get_connected_selections(selected_edges)
return(loops)
# return values needed by the bridge operator
def bridge_initialise(mesh, interpolation):
if interpolation == 'cubic':
# dict with edge-key as key and list of connected valid faces as value
face_blacklist = [face.index for face in mesh.faces if face.select or \
face.hide]
edge_faces = dict([[edge.key, []] for edge in mesh.edges if not \
edge.hide])
for face in mesh.faces:
if face.index in face_blacklist:
continue
for key in face.edge_keys:
edge_faces[key].append(face)
# dictionary with the edge-key as key and edge as value
edgekey_to_edge = dict([[edge.key, edge] for edge in mesh.edges if \
edge.select and not edge.hide])
else:
edge_faces = False
edgekey_to_edge = False
# selected faces input
old_selected_faces = [face.index for face in mesh.faces if face.select \
and not face.hide]
# find out if faces created by bridging should be smoothed
smooth = False
if mesh.faces:
if sum([face.use_smooth for face in mesh.faces])/len(mesh.faces) \
>= 0.5:
smooth = True
return(edge_faces, edgekey_to_edge, old_selected_faces, smooth)
# return a string with the input method
def bridge_input_method(loft, loft_loop):
method = ""
if loft:
if loft_loop:
method = "Loft loop"
else:
method = "Loft no-loop"
else:
method = "Bridge"
return(method)
# match up loops in pairs, used for multi-input bridging
def bridge_match_loops(mesh, loops):
# calculate average loop normals and centers
normals = []
centers = []
for vertices, circular in loops:
normal = mathutils.Vector([0, 0, 0])
center = mathutils.Vector([0, 0, 0])
for vertex in vertices:
normal += mesh.vertices[vertex].normal
center += mesh.vertices[vertex].co
normals.append(normal / len(vertices) / 10)
centers.append(center / len(vertices))
# possible matches if loop normals are faced towards the center
# of the other loop
matches = dict([[i, []] for i in range(len(loops))])
matches_amount = 0
for i in range(len(loops) + 1):
for j in range(i+1, len(loops)):
if (centers[i] - centers[j]).length > (centers[i] - (centers[j] \
+ normals[j])).length and (centers[j] - centers[i]).length > \
(centers[j] - (centers[i] + normals[i])).length:
matches_amount += 1
matches[i].append([(centers[i] - centers[j]).length, i, j])
matches[j].append([(centers[i] - centers[j]).length, j, i])
# if no loops face each other, just make matches between all the loops
if matches_amount == 0:
for i in range(len(loops) + 1):
for j in range(i+1, len(loops)):
matches[i].append([(centers[i] - centers[j]).length, i, j])
matches[j].append([(centers[i] - centers[j]).length, j, i])
for key, value in matches.items():
value.sort()
# matches based on distance between centers and number of vertices in loops
new_order = []
for loop_index in range(len(loops)):
if loop_index in new_order:
continue
loop_matches = matches[loop_index]
if not loop_matches:
continue
shortest_distance = loop_matches[0][0]
shortest_distance *= 1.1
loop_matches = [[abs(len(loops[loop_index][0]) - \
len(loops[loop[2]][0])), loop[0], loop[1], loop[2]] for loop in \
loop_matches if loop[0] < shortest_distance]
loop_matches.sort()
for match in loop_matches:
if match[3] not in new_order:
new_order += [loop_index, match[3]]
break
# reorder loops based on matches
if len(new_order) >= 2:
loops = [loops[i] for i in new_order]
return(loops)
# have normals of selection face outside
def bridge_recalculate_normals():
bpy.ops.object.mode_set(mode = 'EDIT')
bpy.ops.mesh.normals_make_consistent()
# remove old_selected_faces
def bridge_remove_internal_faces(mesh, old_selected_faces):
select_mode = [i for i in bpy.context.tool_settings.mesh_select_mode]
bpy.context.tool_settings.mesh_select_mode = [False, False, True]
# hack to keep track of the current selection
for edge in mesh.edges:
if edge.select and not edge.hide:
edge.bevel_weight = (edge.bevel_weight/3) + 0.2
else:
edge.bevel_weight = (edge.bevel_weight/3) + 0.6
# remove faces
bpy.ops.object.mode_set(mode = 'EDIT')
bpy.ops.mesh.select_all(action = 'DESELECT')
bpy.ops.object.mode_set(mode = 'OBJECT')
for face in old_selected_faces:
mesh.faces[face].select = True
bpy.ops.object.mode_set(mode = 'EDIT')
bpy.ops.mesh.delete(type = 'FACE')
# restore old selection, using hack
bpy.ops.object.mode_set(mode = 'OBJECT')
bpy.context.tool_settings.mesh_select_mode = [False, True, False]
for edge in mesh.edges:
if edge.bevel_weight < 0.6:
edge.bevel_weight = (edge.bevel_weight-0.2) * 3
edge.select = True
else:
edge.bevel_weight = (edge.bevel_weight-0.6) * 3
bpy.ops.object.mode_set(mode = 'EDIT')
bpy.ops.object.mode_set(mode = 'OBJECT')
bpy.context.tool_settings.mesh_select_mode = select_mode
# update list of internal faces that are flagged for removal
def bridge_save_unused_faces(mesh, old_selected_faces, loops):
# key: vertex index, value: lists of selected faces using it
vertex_to_face = dict([[i, []] for i in range(len(mesh.vertices))])
[[vertex_to_face[vertex_index].append(face) for vertex_index in \
mesh.faces[face].vertices] for face in old_selected_faces]
# group selected faces that are connected
groups = []
grouped_faces = []
for face in old_selected_faces:
if face in grouped_faces:
continue
grouped_faces.append(face)
group = [face]
new_faces = [face]
while new_faces:
grow_face = new_faces[0]
for vertex in mesh.faces[grow_face].vertices:
vertex_face_group = [face for face in vertex_to_face[vertex] \
if face not in grouped_faces]
new_faces += vertex_face_group
grouped_faces += vertex_face_group
group += vertex_face_group
new_faces.pop(0)
groups.append(group)
# key: vertex index, value: True/False (is it in a loop that is used)
used_vertices = dict([[i, 0] for i in range(len(mesh.vertices))])
for loop in loops:
for vertex in loop[0]:
used_vertices[vertex] = True
# check if group is bridged, if not remove faces from internal faces list
for group in groups:
used = False
for face in group:
if used:
break
for vertex in mesh.faces[face].vertices:
if used_vertices[vertex]:
used = True
break
if not used:
for face in group:
old_selected_faces.remove(face)
# add the newly created faces to the selection
def bridge_select_new_faces(mesh, amount, smooth):
select_mode = [i for i in bpy.context.tool_settings.mesh_select_mode]
bpy.context.tool_settings.mesh_select_mode = [False, False, True]
for i in range(amount):
mesh.faces[-(i+1)].select = True
mesh.faces[-(i+1)].use_smooth = smooth
bpy.ops.object.mode_set(mode = 'EDIT')
bpy.ops.object.mode_set(mode = 'OBJECT')
bpy.context.tool_settings.mesh_select_mode = select_mode
# sort loops, so they are connected in the correct order when lofting
def bridge_sort_loops(mesh, loops, loft_loop):
# simplify loops to single points, and prepare for pathfinding
x, y, z = [[sum([mesh.vertices[i].co[j] for i in loop[0]]) / \
len(loop[0]) for loop in loops] for j in range(3)]
nodes = [mathutils.Vector([x[i], y[i], z[i]]) for i in range(len(loops))]
active_node = 0
open = [i for i in range(1, len(loops))]
path = [[0,0]]
# connect node to path, that is shortest to active_node
while len(open) > 0:
distances = [(nodes[active_node] - nodes[i]).length for i in open]
active_node = open[distances.index(min(distances))]
open.remove(active_node)
path.append([active_node, min(distances)])
# check if we didn't start in the middle of the path
for i in range(2, len(path)):
if (nodes[path[i][0]]-nodes[0]).length < path[i][1]:
temp = path[:i]
path.reverse()
path = path[:-i] + temp
break
# reorder loops
loops = [loops[i[0]] for i in path]
# if requested, duplicate first loop at last position, so loft can loop
if loft_loop:
loops = loops + [loops[0]]
return(loops)
##########################################
####### Circle functions #################
##########################################
# convert 3d coordinates to 2d coordinates on plane
def circle_3d_to_2d(mesh_mod, loop, com, normal):
# project vertices onto the plane
verts = [mesh_mod.vertices[v] for v in loop[0]]
verts_projected = [[mathutils.Vector(v.co[:]) - \
(mathutils.Vector(v.co[:])-com).dot(normal)*normal, v.index] \
for v in verts]
# calculate two vectors (p and q) along the plane
m = mathutils.Vector([normal[0]+1.0, normal[1], normal[2]])
p = m - (m.dot(normal) * normal)
if p.dot(p) == 0.0:
m = mathutils.Vector([normal[0], normal[1]+1.0, normal[2]])
p = m - (m.dot(normal) * normal)
q = p.cross(normal)
# change to 2d coordinates using perpendicular projection
locs_2d = []
for loc, vert in verts_projected:
vloc = loc - com
x = p.dot(vloc) / p.dot(p)
y = q.dot(vloc) / q.dot(q)
locs_2d.append([x, y, vert])
return(locs_2d, p, q)
# calculate a best-fit circle to the 2d locations on the plane
def circle_calculate_best_fit(locs_2d):
# initial guess
x0 = 0.0
y0 = 0.0
r = 1.0
# calculate center and radius (non-linear least squares solution)
for iter in range(500):
jmat = []
k = []
for v in locs_2d:
d = (v[0]**2-2.0*x0*v[0]+v[1]**2-2.0*y0*v[1]+x0**2+y0**2)**0.5
jmat.append([(x0-v[0])/d, (y0-v[1])/d, -1.0])
k.append(-(((v[0]-x0)**2+(v[1]-y0)**2)**0.5-r))
jmat2 = mathutils.Matrix([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], \
[0.0, 0.0, 0.0]])
k2 = mathutils.Vector([0.0, 0.0, 0.0])
for i in range(len(jmat)):
k2 += mathutils.Vector(jmat[i])*k[i]
jmat2[0][0] += jmat[i][0]**2
jmat2[0][1] += jmat[i][0]*jmat[i][1]
jmat2[0][2] += jmat[i][0]*jmat[i][2]
jmat2[1][1] += jmat[i][1]**2
jmat2[1][2] += jmat[i][1]*jmat[i][2]
jmat2[2][2] += jmat[i][2]**2
jmat2[1][0] = jmat2[0][1]
jmat2[2][0] = jmat2[0][2]
jmat2[2][1] = jmat2[1][2]
try:
jmat2.invert()
except:
pass
dx0, dy0, dr = k2 * jmat2
x0 += dx0
y0 += dy0
r += dr
# stop iterating if we're close enough to optimal solution
if abs(dx0)<1e-6 and abs(dy0)<1e-6 and abs(dr)<1e-6:
break
# return center of circle and radius
return(x0, y0, r)
# calculate circle so no vertices have to be moved away from the center
def circle_calculate_min_fit(locs_2d):
# center of circle
x0 = (min([i[0] for i in locs_2d])+max([i[0] for i in locs_2d]))/2.0
y0 = (min([i[1] for i in locs_2d])+max([i[1] for i in locs_2d]))/2.0
center = mathutils.Vector([x0, y0])
# radius of circle
r = min([(mathutils.Vector([i[0], i[1]])-center).length for i in locs_2d])
# return center of circle and radius
return(x0, y0, r)
# calculate the new locations of the vertices that need to be moved
def circle_calculate_verts(flatten, mesh_mod, locs_2d, com, p, q, normal):
# changing 2d coordinates back to 3d coordinates
locs_3d = []
for loc in locs_2d:
locs_3d.append([loc[2], loc[0]*p + loc[1]*q + com])
if flatten: # flat circle
return(locs_3d)
else: # project the locations on the existing mesh
vert_edges = dict_vert_edges(mesh_mod)
vert_faces = dict_vert_faces(mesh_mod)
faces = [f for f in mesh_mod.faces if not f.hide]
rays = [normal, -normal]
new_locs = []
for loc in locs_3d:
projection = False
if mesh_mod.vertices[loc[0]].co == loc[1]: # vertex hasn't moved
projection = loc[1]
else:
dif = normal.angle(loc[1]-mesh_mod.vertices[loc[0]].co)
if -1e-6 < dif < 1e-6 or math.pi-1e-6 < dif < math.pi+1e-6:
# original location is already along projection normal
projection = mesh_mod.vertices[loc[0]].co
else:
# quick search through adjacent faces
for face in vert_faces[loc[0]]:
verts = [mesh_mod.vertices[v].co for v in \
mesh_mod.faces[face].vertices]
if len(verts) == 3: # triangle
v1, v2, v3 = verts
v4 = False
else: # quad
v1, v2, v3, v4 = verts
for ray in rays:
intersect = mathutils.geometry.\
intersect_ray_tri(v1, v2, v3, ray, loc[1])
if intersect:
projection = intersect
break
elif v4:
intersect = mathutils.geometry.\
intersect_ray_tri(v1, v3, v4, ray, loc[1])
if intersect:
projection = intersect
break
if projection:
break
if not projection:
# check if projection is on adjacent edges
for edgekey in vert_edges[loc[0]]:
line1 = mesh_mod.vertices[edgekey[0]].co
line2 = mesh_mod.vertices[edgekey[1]].co
intersect, dist = mathutils.geometry.intersect_point_line(\
loc[1], line1, line2)
if 1e-6 < dist < 1 - 1e-6:
projection = intersect
break
if not projection:
# full search through the entire mesh
hits = []
for face in faces:
verts = [mesh_mod.vertices[v].co for v in face.vertices]
if len(verts) == 3: # triangle
v1, v2, v3 = verts
v4 = False
else: # quad
v1, v2, v3, v4 = verts
for ray in rays:
intersect = mathutils.geometry.intersect_ray_tri(\
v1, v2, v3, ray, loc[1])
if intersect:
hits.append([(loc[1] - intersect).length,
intersect])
break
elif v4:
intersect = mathutils.geometry.intersect_ray_tri(\
v1, v3, v4, ray, loc[1])
if intersect:
hits.append([(loc[1] - intersect).length,
intersect])
break
if len(hits) >= 1:
# if more than 1 hit with mesh, closest hit is new loc
hits.sort()
projection = hits[0][1]
if not projection:
# nothing to project on, remain at flat location
projection = loc[1]
new_locs.append([loc[0], projection])
# return new positions of projected circle
return(new_locs)
# check loops and only return valid ones
def circle_check_loops(single_loops, loops, mapping, mesh_mod):
valid_single_loops = {}
valid_loops = []
for i, [loop, circular] in enumerate(loops):
# loop needs to have at least 3 vertices
if len(loop) < 3:
continue
# loop needs at least 1 vertex in the original, non-mirrored mesh
if mapping:
all_virtual = True
for vert in loop:
if mapping[vert] > -1:
all_virtual = False
break
if all_virtual:
continue
# loop has to be non-collinear
collinear = True
loc0 = mathutils.Vector(mesh_mod.vertices[loop[0]].co[:])
loc1 = mathutils.Vector(mesh_mod.vertices[loop[1]].co[:])
for v in loop[2:]:
locn = mathutils.Vector(mesh_mod.vertices[v].co[:])
if loc0 == loc1 or loc1 == locn:
loc0 = loc1
loc1 = locn
continue
d1 = loc1-loc0
d2 = locn-loc1
if -1e-6 < d1.angle(d2, 0) < 1e-6:
loc0 = loc1
loc1 = locn
continue
collinear = False
break
if collinear:
continue
# passed all tests, loop is valid
valid_loops.append([loop, circular])
valid_single_loops[len(valid_loops)-1] = single_loops[i]
return(valid_single_loops, valid_loops)
# calculate the location of single input vertices that need to be flattened
def circle_flatten_singles(mesh_mod, com, p, q, normal, single_loop):
new_locs = []
for vert in single_loop:
loc = mathutils.Vector(mesh_mod.vertices[vert].co[:])
new_locs.append([vert, loc - (loc-com).dot(normal)*normal])
return(new_locs)
# calculate input loops
def circle_get_input(object, mesh, scene):
# get mesh with modifiers applied
derived, mesh_mod = get_derived_mesh(object, mesh, scene)
# create list of edge-keys based on selection state
faces = False
for face in mesh.faces:
if face.select and not face.hide:
faces = True
break
if faces:
# get selected, non-hidden , non-internal edge-keys
eks_selected = [key for keys in [face.edge_keys for face in \
mesh_mod.faces if face.select and not face.hide] for key in keys]
edge_count = {}
for ek in eks_selected:
if ek in edge_count:
edge_count[ek] += 1
else:
edge_count[ek] = 1
edge_keys = [edge.key for edge in mesh_mod.edges if edge.select \
and not edge.hide and edge_count.get(edge.key, 1)==1]
else:
# no faces, so no internal edges either
edge_keys = [edge.key for edge in mesh_mod.edges if edge.select \
and not edge.hide]
# add edge-keys around single vertices
verts_connected = dict([[vert, 1] for edge in [edge for edge in \
mesh_mod.edges if edge.select and not edge.hide] for vert in edge.key])
single_vertices = [vert.index for vert in mesh_mod.vertices if \
vert.select and not vert.hide and not \
verts_connected.get(vert.index, False)]
if single_vertices and len(mesh.faces)>0:
vert_to_single = dict([[v.index, []] for v in mesh_mod.vertices \
if not v.hide])
for face in [face for face in mesh_mod.faces if not face.select \
and not face.hide]:
for vert in face.vertices:
if vert in single_vertices:
for ek in face.edge_keys:
if not vert in ek:
edge_keys.append(ek)
if vert not in vert_to_single[ek[0]]:
vert_to_single[ek[0]].append(vert)
if vert not in vert_to_single[ek[1]]:
vert_to_single[ek[1]].append(vert)
break
# sort edge-keys into loops
loops = get_connected_selections(edge_keys)
# find out to which loops the single vertices belong
single_loops = dict([[i, []] for i in range(len(loops))])
if single_vertices and len(mesh.faces)>0:
for i, [loop, circular] in enumerate(loops):
for vert in loop:
if vert_to_single[vert]:
for single in vert_to_single[vert]:
if single not in single_loops[i]:
single_loops[i].append(single)
return(derived, mesh_mod, single_vertices, single_loops, loops)
# recalculate positions based on the influence of the circle shape
def circle_influence_locs(locs_2d, new_locs_2d, influence):
for i in range(len(locs_2d)):
oldx, oldy, j = locs_2d[i]
newx, newy, k = new_locs_2d[i]
altx = newx*(influence/100)+ oldx*((100-influence)/100)
alty = newy*(influence/100)+ oldy*((100-influence)/100)
locs_2d[i] = [altx, alty, j]
return(locs_2d)
# project 2d locations on circle, respecting distance relations between verts
def circle_project_non_regular(locs_2d, x0, y0, r):
for i in range(len(locs_2d)):
x, y, j = locs_2d[i]
loc = mathutils.Vector([x-x0, y-y0])
loc.length = r
locs_2d[i] = [loc[0], loc[1], j]
return(locs_2d)
# project 2d locations on circle, with equal distance between all vertices
def circle_project_regular(locs_2d, x0, y0, r):
# find offset angle and circling direction
x, y, i = locs_2d[0]
loc = mathutils.Vector([x-x0, y-y0])
loc.length = r
offset_angle = loc.angle(mathutils.Vector([1.0, 0.0]), 0.0)
loca = mathutils.Vector([x-x0, y-y0, 0.0])
if loc[1] < -1e-6:
offset_angle *= -1
x, y, j = locs_2d[1]
locb = mathutils.Vector([x-x0, y-y0, 0.0])
if loca.cross(locb)[2] >= 0:
ccw = 1
else:
ccw = -1
# distribute vertices along the circle
for i in range(len(locs_2d)):
t = offset_angle + ccw * (i / len(locs_2d) * 2 * math.pi)
x = math.cos(t) * r
y = math.sin(t) * r
locs_2d[i] = [x, y, locs_2d[i][2]]
return(locs_2d)
# shift loop, so the first vertex is closest to the center
def circle_shift_loop(mesh_mod, loop, com):
verts, circular = loop
distances = [[(mesh_mod.vertices[vert].co - com).length, i] \
for i, vert in enumerate(verts)]
distances.sort()
shift = distances[0][1]
loop = [verts[shift:] + verts[:shift], circular]
return(loop)
##########################################
####### Curve functions ##################
##########################################
# create lists with knots and points, all correctly sorted
def curve_calculate_knots(loop, verts_selected):
knots = [v for v in loop[0] if v in verts_selected]
points = loop[0][:]
# circular loop, potential for weird splines
if loop[1]:
offset = int(len(loop[0]) / 4)
kpos = []
for k in knots:
kpos.append(loop[0].index(k))
kdif = []
for i in range(len(kpos) - 1):
kdif.append(kpos[i+1] - kpos[i])
kdif.append(len(loop[0]) - kpos[-1] + kpos[0])
kadd = []
for k in kdif:
if k > 2 * offset:
kadd.append([kdif.index(k), True])
# next 2 lines are optional, they insert
# an extra control point in small gaps
#elif k > offset:
# kadd.append([kdif.index(k), False])
kins = []
krot = False
for k in kadd: # extra knots to be added
if k[1]: # big gap (break circular spline)
kpos = loop[0].index(knots[k[0]]) + offset
if kpos > len(loop[0]) - 1:
kpos -= len(loop[0])
kins.append([knots[k[0]], loop[0][kpos]])
kpos2 = k[0] + 1
if kpos2 > len(knots)-1:
kpos2 -= len(knots)
kpos2 = loop[0].index(knots[kpos2]) - offset
if kpos2 < 0:
kpos2 += len(loop[0])
kins.append([loop[0][kpos], loop[0][kpos2]])
krot = loop[0][kpos2]
else: # small gap (keep circular spline)
k1 = loop[0].index(knots[k[0]])
k2 = k[0] + 1
if k2 > len(knots)-1:
k2 -= len(knots)
k2 = loop[0].index(knots[k2])
if k2 < k1:
dif = len(loop[0]) - 1 - k1 + k2
else:
dif = k2 - k1
kn = k1 + int(dif/2)
if kn > len(loop[0]) - 1:
kn -= len(loop[0])
kins.append([loop[0][k1], loop[0][kn]])
for j in kins: # insert new knots
knots.insert(knots.index(j[0]) + 1, j[1])
if not krot: # circular loop
knots.append(knots[0])
points = loop[0][loop[0].index(knots[0]):]
points += loop[0][0:loop[0].index(knots[0]) + 1]
else: # non-circular loop (broken by script)
krot = knots.index(krot)
knots = knots[krot:] + knots[0:krot]
if loop[0].index(knots[0]) > loop[0].index(knots[-1]):
points = loop[0][loop[0].index(knots[0]):]
points += loop[0][0:loop[0].index(knots[-1])+1]
else:
points = loop[0][loop[0].index(knots[0]):\
loop[0].index(knots[-1]) + 1]
# non-circular loop, add first and last point as knots
else:
if loop[0][0] not in knots:
knots.insert(0, loop[0][0])
if loop[0][-1] not in knots:
knots.append(loop[0][-1])
return(knots, points)
# calculate relative positions compared to first knot
def curve_calculate_t(mesh_mod, knots, points, pknots, regular, circular):
tpoints = []
loc_prev = False
len_total = 0
for p in points:
if p in knots:
loc = pknots[knots.index(p)] # use projected knot location
else:
loc = mathutils.Vector(mesh_mod.vertices[p].co[:])
if not loc_prev:
loc_prev = loc
len_total += (loc-loc_prev).length
tpoints.append(len_total)
loc_prev = loc
tknots = []
for p in points:
if p in knots:
tknots.append(tpoints[points.index(p)])
if circular:
tknots[-1] = tpoints[-1]
# regular option
if regular:
tpoints_average = tpoints[-1] / (len(tpoints) - 1)
for i in range(1, len(tpoints) - 1):
tpoints[i] = i * tpoints_average
for i in range(len(knots)):
tknots[i] = tpoints[points.index(knots[i])]
if circular:
tknots[-1] = tpoints[-1]
return(tknots, tpoints)
# change the location of non-selected points to their place on the spline
def curve_calculate_vertices(mesh_mod, knots, tknots, points, tpoints, splines,
interpolation, restriction):
newlocs = {}
move = []
for p in points:
if p in knots:
continue
m = tpoints[points.index(p)]
if m in tknots:
n = tknots.index(m)
else:
t = tknots[:]
t.append(m)
t.sort()
n = t.index(m) - 1
if n > len(splines) - 1:
n = len(splines) - 1
elif n < 0:
n = 0
if interpolation == 'cubic':
ax, bx, cx, dx, tx = splines[n][0]
x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
ay, by, cy, dy, ty = splines[n][1]
y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
az, bz, cz, dz, tz = splines[n][2]
z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
newloc = mathutils.Vector([x,y,z])
else: # interpolation == 'linear'
a, d, t, u = splines[n]
newloc = ((m-t)/u)*d + a
if restriction != 'none': # vertex movement is restricted
newlocs[p] = newloc
else: # set the vertex to its new location
move.append([p, newloc])
if restriction != 'none': # vertex movement is restricted
for p in points:
if p in newlocs:
newloc = newlocs[p]
else:
move.append([p, mesh_mod.vertices[p].co])
continue
oldloc = mesh_mod.vertices[p].co
normal = mesh_mod.vertices[p].normal
dloc = newloc - oldloc
if dloc.length < 1e-6:
move.append([p, newloc])
elif restriction == 'extrude': # only extrusions
if dloc.angle(normal, 0) < 0.5 * math.pi + 1e-6:
move.append([p, newloc])
else: # restriction == 'indent' only indentations
if dloc.angle(normal) > 0.5 * math.pi - 1e-6:
move.append([p, newloc])
return(move)
# trim loops to part between first and last selected vertices (including)
def curve_cut_boundaries(mesh_mod, loops):
cut_loops = []
for loop, circular in loops:
if circular:
# don't cut
cut_loops.append([loop, circular])
continue
selected = [mesh_mod.vertices[v].select for v in loop]
first = selected.index(True)
selected.reverse()
last = -selected.index(True)
if last == 0:
cut_loops.append([loop[first:], circular])
else:
cut_loops.append([loop[first:last], circular])
return(cut_loops)
# calculate input loops
def curve_get_input(object, mesh, boundaries, scene):
# get mesh with modifiers applied
derived, mesh_mod = get_derived_mesh(object, mesh, scene)
# vertices that still need a loop to run through it
verts_unsorted = [v.index for v in mesh_mod.vertices if \
v.select and not v.hide]
# necessary dictionaries
vert_edges = dict_vert_edges(mesh_mod)
edge_faces = dict_edge_faces(mesh_mod)
correct_loops = []
# find loops through each selected vertex
while len(verts_unsorted) > 0:
loops = curve_vertex_loops(mesh_mod, verts_unsorted[0], vert_edges,
edge_faces)
verts_unsorted.pop(0)
# check if loop is fully selected
search_perpendicular = False
i = -1
for loop, circular in loops:
i += 1
selected = [v for v in loop if mesh_mod.vertices[v].select]
if len(selected) < 2:
# only one selected vertex on loop, don't use
loops.pop(i)
continue
elif len(selected) == len(loop):
search_perpendicular = loop
break
# entire loop is selected, find perpendicular loops
if search_perpendicular:
for vert in loop:
if vert in verts_unsorted:
verts_unsorted.remove(vert)
perp_loops = curve_perpendicular_loops(mesh_mod, loop,
vert_edges, edge_faces)
for perp_loop in perp_loops:
correct_loops.append(perp_loop)
# normal input
else:
for loop, circular in loops:
correct_loops.append([loop, circular])
# boundaries option
if boundaries:
correct_loops = curve_cut_boundaries(mesh_mod, correct_loops)
return(derived, mesh_mod, correct_loops)
# return all loops that are perpendicular to the given one
def curve_perpendicular_loops(mesh_mod, start_loop, vert_edges, edge_faces):
# find perpendicular loops
perp_loops = []
for start_vert in start_loop:
loops = curve_vertex_loops(mesh_mod, start_vert, vert_edges,
edge_faces)
for loop, circular in loops:
selected = [v for v in loop if mesh_mod.vertices[v].select]
if len(selected) == len(loop):
continue
else:
perp_loops.append([loop, circular, loop.index(start_vert)])
# trim loops to same lengths
shortest = [[len(loop[0]), i] for i, loop in enumerate(perp_loops)\
if not loop[1]]
if not shortest:
# all loops are circular, not trimming
return([[loop[0], loop[1]] for loop in perp_loops])
else:
shortest = min(shortest)
shortest_start = perp_loops[shortest[1]][2]
before_start = shortest_start
after_start = shortest[0] - shortest_start - 1
bigger_before = before_start > after_start
trimmed_loops = []
for loop in perp_loops:
# have the loop face the same direction as the shortest one
if bigger_before:
if loop[2] < len(loop[0]) / 2:
loop[0].reverse()
loop[2] = len(loop[0]) - loop[2] - 1
else:
if loop[2] > len(loop[0]) / 2:
loop[0].reverse()
loop[2] = len(loop[0]) - loop[2] - 1
# circular loops can shift, to prevent wrong trimming
if loop[1]:
shift = shortest_start - loop[2]
if loop[2] + shift > 0 and loop[2] + shift < len(loop[0]):
loop[0] = loop[0][-shift:] + loop[0][:-shift]
loop[2] += shift
if loop[2] < 0:
loop[2] += len(loop[0])
elif loop[2] > len(loop[0]) -1:
loop[2] -= len(loop[0])
# trim
start = max(0, loop[2] - before_start)
end = min(len(loop[0]), loop[2] + after_start + 1)
trimmed_loops.append([loop[0][start:end], False])
return(trimmed_loops)
# project knots on non-selected geometry
def curve_project_knots(mesh_mod, verts_selected, knots, points, circular):
# function to project vertex on edge
def project(v1, v2, v3):
# v1 and v2 are part of a line
# v3 is projected onto it
v2 -= v1
v3 -= v1
p = v3.project(v2)
return(p + v1)
if circular: # project all knots
start = 0
end = len(knots)
pknots = []
else: # first and last knot shouldn't be projected
start = 1
end = -1
pknots = [mathutils.Vector(mesh_mod.vertices[knots[0]].co[:])]
for knot in knots[start:end]:
if knot in verts_selected:
knot_left = knot_right = False
for i in range(points.index(knot)-1, -1*len(points), -1):
if points[i] not in knots:
knot_left = points[i]
break
for i in range(points.index(knot)+1, 2*len(points)):
if i > len(points) - 1:
i -= len(points)
if points[i] not in knots:
knot_right = points[i]
break
if knot_left and knot_right and knot_left != knot_right:
knot_left = mathutils.Vector(\
mesh_mod.vertices[knot_left].co[:])
knot_right = mathutils.Vector(\
mesh_mod.vertices[knot_right].co[:])
knot = mathutils.Vector(mesh_mod.vertices[knot].co[:])
pknots.append(project(knot_left, knot_right, knot))
else:
pknots.append(mathutils.Vector(mesh_mod.vertices[knot].co[:]))
else: # knot isn't selected, so shouldn't be changed
pknots.append(mathutils.Vector(mesh_mod.vertices[knot].co[:]))
if not circular:
pknots.append(mathutils.Vector(mesh_mod.vertices[knots[-1]].co[:]))
return(pknots)
# find all loops through a given vertex
def curve_vertex_loops(mesh_mod, start_vert, vert_edges, edge_faces):
edges_used = []
loops = []
for edge in vert_edges[start_vert]:
if edge in edges_used:
continue
loop = []
circular = False
for vert in edge:
active_faces = edge_faces[edge]
new_vert = vert
growing = True
while growing:
growing = False
new_edges = vert_edges[new_vert]
loop.append(new_vert)
if len(loop) > 1:
edges_used.append(tuple(sorted([loop[-1], loop[-2]])))
if len(new_edges) < 3 or len(new_edges) > 4:
# pole
break
else:
# find next edge
for new_edge in new_edges:
if new_edge in edges_used:
continue
eliminate = False
for new_face in edge_faces[new_edge]:
if new_face in active_faces:
eliminate = True
break
if eliminate:
continue
# found correct new edge
active_faces = edge_faces[new_edge]
v1, v2 = new_edge
if v1 != new_vert:
new_vert = v1
else:
new_vert = v2
if new_vert == loop[0]:
circular = True
else:
growing = True
break
if circular:
break
loop.reverse()
loops.append([loop, circular])
return(loops)
##########################################
####### Flatten functions ################
##########################################
# sort input into loops
def flatten_get_input(mesh):
vert_verts = dict_vert_verts([edge.key for edge in mesh.edges \
if edge.select and not edge.hide])
verts = [v.index for v in mesh.vertices if v.select and not v.hide]
# no connected verts, consider all selected verts as a single input
if not vert_verts:
return([[verts, False]])
loops = []
while len(verts) > 0:
# start of loop
loop = [verts[0]]
verts.pop(0)
if loop[-1] in vert_verts:
to_grow = vert_verts[loop[-1]]
else:
to_grow = []
# grow loop
while len(to_grow) > 0:
new_vert = to_grow[0]
to_grow.pop(0)
if new_vert in loop:
continue
loop.append(new_vert)
verts.remove(new_vert)
to_grow += vert_verts[new_vert]
# add loop to loops
loops.append([loop, False])
return(loops)
# calculate position of vertex projections on plane
def flatten_project(mesh, loop, com, normal):
verts = [mesh.vertices[v] for v in loop[0]]
verts_projected = [[v.index, mathutils.Vector(v.co[:]) - \
(mathutils.Vector(v.co[:])-com).dot(normal)*normal] for v in verts]
return(verts_projected)
##########################################
####### Relax functions ##################
##########################################
# create lists with knots and points, all correctly sorted
def relax_calculate_knots(loops):
all_knots = []
all_points = []
for loop, circular in loops:
knots = [[], []]
points = [[], []]
if circular:
if len(loop)%2 == 1: # odd
extend = [False, True, 0, 1, 0, 1]
else: # even
extend = [True, False, 0, 1, 1, 2]
else:
if len(loop)%2 == 1: # odd
extend = [False, False, 0, 1, 1, 2]
else: # even
extend = [False, False, 0, 1, 1, 2]
for j in range(2):
if extend[j]:
loop = [loop[-1]] + loop + [loop[0]]
for i in range(extend[2+2*j], len(loop), 2):
knots[j].append(loop[i])
for i in range(extend[3+2*j], len(loop), 2):
if loop[i] == loop[-1] and not circular:
continue
if len(points[j]) == 0:
points[j].append(loop[i])
elif loop[i] != points[j][0]:
points[j].append(loop[i])
if circular:
if knots[j][0] != knots[j][-1]:
knots[j].append(knots[j][0])
if len(points[1]) == 0:
knots.pop(1)
points.pop(1)
for k in knots:
all_knots.append(k)
for p in points:
all_points.append(p)
return(all_knots, all_points)
# calculate relative positions compared to first knot
def relax_calculate_t(mesh_mod, knots, points, regular):
all_tknots = []
all_tpoints = []
for i in range(len(knots)):
amount = len(knots[i]) + len(points[i])
mix = []
for j in range(amount):
if j%2 == 0:
mix.append([True, knots[i][round(j/2)]])
elif j == amount-1:
mix.append([True, knots[i][-1]])
else:
mix.append([False, points[i][int(j/2)]])
len_total = 0
loc_prev = False
tknots = []
tpoints = []
for m in mix:
loc = mathutils.Vector(mesh_mod.vertices[m[1]].co[:])
if not loc_prev:
loc_prev = loc
len_total += (loc - loc_prev).length
if m[0]:
tknots.append(len_total)
else:
tpoints.append(len_total)
loc_prev = loc
if regular:
tpoints = []
for p in range(len(points[i])):
tpoints.append((tknots[p] + tknots[p+1]) / 2)
all_tknots.append(tknots)
all_tpoints.append(tpoints)
return(all_tknots, all_tpoints)
# change the location of the points to their place on the spline
def relax_calculate_verts(mesh_mod, interpolation, tknots, knots, tpoints,
points, splines):
change = []
move = []
for i in range(len(knots)):
for p in points[i]:
m = tpoints[i][points[i].index(p)]
if m in tknots[i]:
n = tknots[i].index(m)
else:
t = tknots[i][:]
t.append(m)
t.sort()
n = t.index(m)-1
if n > len(splines[i]) - 1:
n = len(splines[i]) - 1
elif n < 0:
n = 0
if interpolation == 'cubic':
ax, bx, cx, dx, tx = splines[i][n][0]
x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
ay, by, cy, dy, ty = splines[i][n][1]
y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
az, bz, cz, dz, tz = splines[i][n][2]
z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
change.append([p, mathutils.Vector([x,y,z])])
else: # interpolation == 'linear'
a, d, t, u = splines[i][n]
if u == 0:
u = 1e-8
change.append([p, ((m-t)/u)*d + a])
for c in change:
move.append([c[0], (mesh_mod.vertices[c[0]].co + c[1]) / 2])
return(move)
##########################################
####### Space functions ##################
##########################################
# calculate relative positions compared to first knot
def space_calculate_t(mesh_mod, knots):
tknots = []
loc_prev = False
len_total = 0
for k in knots:
loc = mathutils.Vector(mesh_mod.vertices[k].co[:])
if not loc_prev:
loc_prev = loc
len_total += (loc - loc_prev).length
tknots.append(len_total)
loc_prev = loc
amount = len(knots)
t_per_segment = len_total / (amount - 1)
tpoints = [i * t_per_segment for i in range(amount)]
return(tknots, tpoints)
# change the location of the points to their place on the spline
def space_calculate_verts(mesh_mod, interpolation, tknots, tpoints, points,
splines):
move = []
for p in points:
m = tpoints[points.index(p)]
if m in tknots:
n = tknots.index(m)
else:
t = tknots[:]
t.append(m)
t.sort()
n = t.index(m) - 1
if n > len(splines) - 1:
n = len(splines) - 1
elif n < 0:
n = 0
if interpolation == 'cubic':
ax, bx, cx, dx, tx = splines[n][0]
x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
ay, by, cy, dy, ty = splines[n][1]
y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
az, bz, cz, dz, tz = splines[n][2]
z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
move.append([p, mathutils.Vector([x,y,z])])
else: # interpolation == 'linear'
a, d, t, u = splines[n]
move.append([p, ((m-t)/u)*d + a])
return(move)
##########################################
####### Operators ########################
##########################################
# bridge operator
class Bridge(bpy.types.Operator):
bl_idname = 'mesh.looptools_bridge'
bl_label = "Bridge / Loft"
bl_description = "Bridge two, or loft several, loops of vertices"
bl_options = {'REGISTER', 'UNDO'}
cubic_strength = bpy.props.FloatProperty(name = "Strength",
description = "Higher strength results in more fluid curves",
default = 1.0,
soft_min = -3.0,
soft_max = 3.0)
interpolation = bpy.props.EnumProperty(name = "Interpolation mode",
items = (('cubic', "Cubic", "Gives curved results"),
('linear', "Linear", "Basic, fast, straight interpolation")),
description = "Interpolation mode: algorithm used when creating "\
"segments",
default = 'cubic')
loft = bpy.props.BoolProperty(name = "Loft",
description = "Loft multiple loops, instead of considering them as "\
"a multi-input for bridging",
default = False)
loft_loop = bpy.props.BoolProperty(name = "Loop",
description = "Connect the first and the last loop with each other",
default = False)
min_width = bpy.props.IntProperty(name = "Minimum width",
description = "Segments with an edge smaller than this are merged "\
"(compared to base edge)",
default = 0,
min = 0,
max = 100,
subtype = 'PERCENTAGE')
mode = bpy.props.EnumProperty(name = "Mode",
items = (('basic', "Basic", "Fast algorithm"), ('shortest',
"Shortest edge", "Slower algorithm with better vertex matching")),
description = "Algorithm used for bridging",
default = 'shortest')
remove_faces = bpy.props.BoolProperty(name = "Remove faces",
description = "Remove faces that are internal after bridging",
default = True)
reverse = bpy.props.BoolProperty(name = "Reverse",
description = "Manually override the direction in which the loops "\
"are bridged. Only use if the tool gives the wrong result.",
default = False)
segments = bpy.props.IntProperty(name = "Segments",
description = "Number of segments used to bridge the gap "\
"(0 = automatic)",
default = 1,
min = 0,
soft_max = 20)
twist = bpy.props.IntProperty(name = "Twist",
description = "Twist what vertices are connected to each other",
default = 0)
@classmethod
def poll(cls, context):
ob = context.active_object
return (ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
#layout.prop(self, "mode") # no cases yet where 'basic' mode is needed
# top row
col_top = layout.column(align=True)
row = col_top.row(align=True)
col_left = row.column(align=True)
col_right = row.column(align=True)
col_right.active = self.segments != 1
col_left.prop(self, "segments")
col_right.prop(self, "min_width", text="")
# bottom row
bottom_left = col_left.row()
bottom_left.active = self.segments != 1
bottom_left.prop(self, "interpolation", text="")
bottom_right = col_right.row()
bottom_right.active = self.interpolation == 'cubic'
bottom_right.prop(self, "cubic_strength")
# boolean properties
col_top.prop(self, "remove_faces")
if self.loft:
col_top.prop(self, "loft_loop")
# override properties
col_top.separator()
row = layout.row(align = True)
row.prop(self, "twist")
row.prop(self, "reverse")
def invoke(self, context, event):
# load custom settings
context.window_manager.looptools.bridge_loft = self.loft
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, mesh = initialise()
edge_faces, edgekey_to_edge, old_selected_faces, smooth = \
bridge_initialise(mesh, self.interpolation)
settings_write(self)
# check cache to see if we can save time
input_method = bridge_input_method(self.loft, self.loft_loop)
cached, single_loops, loops, derived, mapping = cache_read("Bridge",
object, mesh, input_method, False)
if not cached:
# get loops
loops = bridge_get_input(mesh)
if loops:
# reorder loops if there are more than 2
if len(loops) > 2:
if self.loft:
loops = bridge_sort_loops(mesh, loops, self.loft_loop)
else:
loops = bridge_match_loops(mesh, loops)
# saving cache for faster execution next time
if not cached:
cache_write("Bridge", object, mesh, input_method, False, False,
loops, False, False)
if loops:
# calculate new geometry
vertices = []
faces = []
max_vert_index = len(mesh.vertices)-1
for i in range(1, len(loops)):
if not self.loft and i%2 == 0:
continue
lines = bridge_calculate_lines(mesh, loops[i-1:i+1],
self.mode, self.twist, self.reverse)
vertex_normals = bridge_calculate_virtual_vertex_normals(mesh,
lines, loops[i-1:i+1], edge_faces, edgekey_to_edge)
segments = bridge_calculate_segments(mesh, lines,
loops[i-1:i+1], self.segments)
new_verts, new_faces, max_vert_index = \
bridge_calculate_geometry(mesh, lines, vertex_normals,
segments, self.interpolation, self.cubic_strength,
self.min_width, max_vert_index)
if new_verts:
vertices += new_verts
if new_faces:
faces += new_faces
# make sure faces in loops that aren't used, aren't removed
if self.remove_faces and old_selected_faces:
bridge_save_unused_faces(mesh, old_selected_faces, loops)
# create vertices
if vertices:
bridge_create_vertices(mesh, vertices)
# create faces
if faces:
bridge_create_faces(mesh, faces, self.twist)
bridge_select_new_faces(mesh, len(faces), smooth)
# edge-data could have changed, can't use cache next run
if faces and not vertices:
cache_delete("Bridge")
# delete internal faces
if self.remove_faces and old_selected_faces:
bridge_remove_internal_faces(mesh, old_selected_faces)
# make sure normals are facing outside
bridge_recalculate_normals()
terminate(global_undo)
return{'FINISHED'}
# circle operator
class Circle(bpy.types.Operator):
bl_idname = "mesh.looptools_circle"
bl_label = "Circle"
bl_description = "Move selected vertices into a circle shape"
bl_options = {'REGISTER', 'UNDO'}
custom_radius = bpy.props.BoolProperty(name = "Radius",
description = "Force a custom radius",
default = False)
fit = bpy.props.EnumProperty(name = "Method",
items = (("best", "Best fit", "Non-linear least squares"),
("inside", "Fit inside","Only move vertices towards the center")),
description = "Method used for fitting a circle to the vertices",
default = 'best')
flatten = bpy.props.BoolProperty(name = "Flatten",
description = "Flatten the circle, instead of projecting it on the " \
"mesh",
default = True)
influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
radius = bpy.props.FloatProperty(name = "Radius",
description = "Custom radius for circle",
default = 1.0,
min = 0.0,
soft_max = 1000.0)
regular = bpy.props.BoolProperty(name = "Regular",
description = "Distribute vertices at constant distances along the " \
"circle",
default = True)
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
col = layout.column()
col.prop(self, "fit")
col.separator()
col.prop(self, "flatten")
row = col.row(align=True)
row.prop(self, "custom_radius")
row_right = row.row(align=True)
row_right.active = self.custom_radius
row_right.prop(self, "radius", text="")
col.prop(self, "regular")
col.separator()
col.prop(self, "influence")
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, mesh = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Circle",
object, mesh, False, False)
if cached:
derived, mesh_mod = get_derived_mesh(object, mesh, context.scene)
else:
# find loops
derived, mesh_mod, single_vertices, single_loops, loops = \
circle_get_input(object, mesh, context.scene)
mapping = get_mapping(derived, mesh, mesh_mod, single_vertices,
False, loops)
single_loops, loops = circle_check_loops(single_loops, loops,
mapping, mesh_mod)
# saving cache for faster execution next time
if not cached:
cache_write("Circle", object, mesh, False, False, single_loops,
loops, derived, mapping)
move = []
for i, loop in enumerate(loops):
# best fitting flat plane
com, normal = calculate_plane(mesh_mod, loop)
# if circular, shift loop so we get a good starting vertex
if loop[1]:
loop = circle_shift_loop(mesh_mod, loop, com)
# flatten vertices on plane
locs_2d, p, q = circle_3d_to_2d(mesh_mod, loop, com, normal)
# calculate circle
if self.fit == 'best':
x0, y0, r = circle_calculate_best_fit(locs_2d)
else: # self.fit == 'inside'
x0, y0, r = circle_calculate_min_fit(locs_2d)
# radius override
if self.custom_radius:
r = self.radius / p.length
# calculate positions on circle
if self.regular:
new_locs_2d = circle_project_regular(locs_2d[:], x0, y0, r)
else:
new_locs_2d = circle_project_non_regular(locs_2d[:], x0, y0, r)
# take influence into account
locs_2d = circle_influence_locs(locs_2d, new_locs_2d,
self.influence)
# calculate 3d positions of the created 2d input
move.append(circle_calculate_verts(self.flatten, mesh_mod,
locs_2d, com, p, q, normal))
# flatten single input vertices on plane defined by loop
if self.flatten and single_loops:
move.append(circle_flatten_singles(mesh_mod, com, p, q,
normal, single_loops[i]))
# move vertices to new locations
move_verts(mesh, mapping, move, -1)
# cleaning up
if derived:
bpy.context.blend_data.meshes.remove(mesh_mod)
terminate(global_undo)
return{'FINISHED'}
# curve operator
class Curve(bpy.types.Operator):
bl_idname = "mesh.looptools_curve"
bl_label = "Curve"
bl_description = "Turn a loop into a smooth curve"
bl_options = {'REGISTER', 'UNDO'}
boundaries = bpy.props.BoolProperty(name = "Boundaries",
description = "Limit the tool to work within the boundaries of the "\
"selected vertices",
default = False)
influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
interpolation = bpy.props.EnumProperty(name = "Interpolation",
items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Simple and fast linear algorithm")),
description = "Algorithm used for interpolation",
default = 'cubic')
regular = bpy.props.BoolProperty(name = "Regular",
description = "Distribute vertices at constant distances along the" \
"curve",
default = True)
restriction = bpy.props.EnumProperty(name = "Restriction",
items = (("none", "None", "No restrictions on vertex movement"),
("extrude", "Extrude only","Only allow extrusions (no "\
"indentations)"),
("indent", "Indent only", "Only allow indentation (no "\
"extrusions)")),
description = "Restrictions on how the vertices can be moved",
default = 'none')
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
col = layout.column()
col.prop(self, "interpolation")
col.prop(self, "restriction")
col.prop(self, "boundaries")
col.prop(self, "regular")
col.separator()
col.prop(self, "influence")
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, mesh = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Curve",
object, mesh, False, self.boundaries)
if cached:
derived, mesh_mod = get_derived_mesh(object, mesh, context.scene)
else:
# find loops
derived, mesh_mod, loops = curve_get_input(object, mesh,
self.boundaries, context.scene)
mapping = get_mapping(derived, mesh, mesh_mod, False, True, loops)
loops = check_loops(loops, mapping, mesh_mod)
verts_selected = [v.index for v in mesh_mod.vertices if v.select \
and not v.hide]
# saving cache for faster execution next time
if not cached:
cache_write("Curve", object, mesh, False, self.boundaries, False,
loops, derived, mapping)
move = []
for loop in loops:
knots, points = curve_calculate_knots(loop, verts_selected)
pknots = curve_project_knots(mesh_mod, verts_selected, knots,
points, loop[1])
tknots, tpoints = curve_calculate_t(mesh_mod, knots, points,
pknots, self.regular, loop[1])
splines = calculate_splines(self.interpolation, mesh_mod,
tknots, knots)
move.append(curve_calculate_vertices(mesh_mod, knots, tknots,
points, tpoints, splines, self.interpolation,
self.restriction))
# move vertices to new locations
move_verts(mesh, mapping, move, self.influence)
# cleaning up
if derived:
bpy.context.blend_data.meshes.remove(mesh_mod)
terminate(global_undo)
return{'FINISHED'}
# flatten operator
class Flatten(bpy.types.Operator):
bl_idname = "mesh.looptools_flatten"
bl_label = "Flatten"
bl_description = "Flatten vertices on a best-fitting plane"
bl_options = {'REGISTER', 'UNDO'}
influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
plane = bpy.props.EnumProperty(name = "Plane",
items = (("best_fit", "Best fit", "Calculate a best fitting plane"),
("normal", "Normal", "Derive plane from averaging vertex "\
"normals"),
("view", "View", "Flatten on a plane perpendicular to the "\
"viewing angle")),
description = "Plane on which vertices are flattened",
default = 'best_fit')
restriction = bpy.props.EnumProperty(name = "Restriction",
items = (("none", "None", "No restrictions on vertex movement"),
("bounding_box", "Bounding box", "Vertices are restricted to "\
"movement inside the bounding box of the selection")),
description = "Restrictions on how the vertices can be moved",
default = 'none')
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
col = layout.column()
col.prop(self, "plane")
#col.prop(self, "restriction")
col.separator()
col.prop(self, "influence")
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, mesh = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Flatten",
object, mesh, False, False)
if not cached:
# order input into virtual loops
loops = flatten_get_input(mesh)
loops = check_loops(loops, mapping, mesh)
# saving cache for faster execution next time
if not cached:
cache_write("Flatten", object, mesh, False, False, False, loops,
False, False)
move = []
for loop in loops:
# calculate plane and position of vertices on them
com, normal = calculate_plane(mesh, loop, method=self.plane,
object=object)
to_move = flatten_project(mesh, loop, com, normal)
if self.restriction == 'none':
move.append(to_move)
else:
move.append(to_move)
move_verts(mesh, False, move, self.influence)
terminate(global_undo)
return{'FINISHED'}
# relax operator
class Relax(bpy.types.Operator):
bl_idname = "mesh.looptools_relax"
bl_label = "Relax"
bl_description = "Relax the loop, so it is smoother"
bl_options = {'REGISTER', 'UNDO'}
input = bpy.props.EnumProperty(name = "Input",
items = (("all", "Parallel (all)", "Also use non-selected "\
"parallel loops as input"),
("selected", "Selection","Only use selected vertices as input")),
description = "Loops that are relaxed",
default = 'selected')
interpolation = bpy.props.EnumProperty(name = "Interpolation",
items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Simple and fast linear algorithm")),
description = "Algorithm used for interpolation",
default = 'cubic')
iterations = bpy.props.EnumProperty(name = "Iterations",
items = (("1", "1", "One"),
("3", "3", "Three"),
("5", "5", "Five"),
("10", "10", "Ten"),
("25", "25", "Twenty-five")),
description = "Number of times the loop is relaxed",
default = "1")
regular = bpy.props.BoolProperty(name = "Regular",
description = "Distribute vertices at constant distances along the" \
"loop",
default = True)
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
col = layout.column()
col.prop(self, "interpolation")
col.prop(self, "input")
col.prop(self, "iterations")
col.prop(self, "regular")
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, mesh = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Relax",
object, mesh, self.input, False)
if cached:
derived, mesh_mod = get_derived_mesh(object, mesh, context.scene)
else:
# find loops
derived, mesh_mod, loops = get_connected_input(object, mesh,
context.scene, self.input)
mapping = get_mapping(derived, mesh, mesh_mod, False, False, loops)
loops = check_loops(loops, mapping, mesh_mod)
knots, points = relax_calculate_knots(loops)
# saving cache for faster execution next time
if not cached:
cache_write("Relax", object, mesh, self.input, False, False, loops,
derived, mapping)
for iteration in range(int(self.iterations)):
# calculate splines and new positions
tknots, tpoints = relax_calculate_t(mesh_mod, knots, points,
self.regular)
splines = []
for i in range(len(knots)):
splines.append(calculate_splines(self.interpolation, mesh_mod,
tknots[i], knots[i]))
move = [relax_calculate_verts(mesh_mod, self.interpolation,
tknots, knots, tpoints, points, splines)]
move_verts(mesh, mapping, move, -1)
# cleaning up
if derived:
bpy.context.blend_data.meshes.remove(mesh_mod)
terminate(global_undo)
return{'FINISHED'}
# space operator
class Space(bpy.types.Operator):
bl_idname = "mesh.looptools_space"
bl_label = "Space"
bl_description = "Space the vertices in a regular distrubtion on the loop"
bl_options = {'REGISTER', 'UNDO'}
influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
input = bpy.props.EnumProperty(name = "Input",
items = (("all", "Parallel (all)", "Also use non-selected "\
"parallel loops as input"),
("selected", "Selection","Only use selected vertices as input")),
description = "Loops that are spaced",
default = 'selected')
interpolation = bpy.props.EnumProperty(name = "Interpolation",
items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Vertices are projected on existing edges")),
description = "Algorithm used for interpolation",
default = 'cubic')
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
col = layout.column()
col.prop(self, "interpolation")
col.prop(self, "input")
col.separator()
col.prop(self, "influence")
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, mesh = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Space",
object, mesh, self.input, False)
if cached:
derived, mesh_mod = get_derived_mesh(object, mesh, context.scene)
else:
# find loops
derived, mesh_mod, loops = get_connected_input(object, mesh,
context.scene, self.input)
mapping = get_mapping(derived, mesh, mesh_mod, False, False, loops)
loops = check_loops(loops, mapping, mesh_mod)
# saving cache for faster execution next time
if not cached:
cache_write("Space", object, mesh, self.input, False, False, loops,
derived, mapping)
move = []
for loop in loops:
# calculate splines and new positions
if loop[1]: # circular
loop[0].append(loop[0][0])
tknots, tpoints = space_calculate_t(mesh_mod, loop[0][:])
splines = calculate_splines(self.interpolation, mesh_mod,
tknots, loop[0][:])
move.append(space_calculate_verts(mesh_mod, self.interpolation,
tknots, tpoints, loop[0][:-1], splines))
# move vertices to new locations
move_verts(mesh, mapping, move, self.influence)
# cleaning up
if derived:
bpy.context.blend_data.meshes.remove(mesh_mod)
terminate(global_undo)
return{'FINISHED'}
##########################################
####### GUI and registration #############
##########################################
# menu containing all tools
class VIEW3D_MT_edit_mesh_looptools(bpy.types.Menu):
bl_label = "LoopTools"
def draw(self, context):
layout = self.layout
layout.operator("mesh.looptools_bridge", text="Bridge").loft = False
layout.operator("mesh.looptools_circle")
layout.operator("mesh.looptools_curve")
layout.operator("mesh.looptools_flatten")
layout.operator("mesh.looptools_bridge", text="Loft").loft = True
layout.operator("mesh.looptools_relax")
layout.operator("mesh.looptools_space")
# panel containing all tools
class VIEW3D_PT_tools_looptools(bpy.types.Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'TOOLS'
bl_context = "mesh_edit"
bl_label = "LoopTools"
def draw(self, context):
layout = self.layout
col = layout.column(align=True)
lt = context.window_manager.looptools
# bridge - first line
split = col.split(percentage=0.15)
if lt.display_bridge:
split.prop(lt, "display_bridge", text="", icon='DOWNARROW_HLT')
else:
split.prop(lt, "display_bridge", text="", icon='RIGHTARROW')
split.operator("mesh.looptools_bridge", text="Bridge").loft = False
# bridge - settings
if lt.display_bridge:
box = col.column(align=True).box().column()
#box.prop(self, "mode")
# top row
col_top = box.column(align=True)
row = col_top.row(align=True)
col_left = row.column(align=True)
col_right = row.column(align=True)
col_right.active = lt.bridge_segments != 1
col_left.prop(lt, "bridge_segments")
col_right.prop(lt, "bridge_min_width", text="")
# bottom row
bottom_left = col_left.row()
bottom_left.active = lt.bridge_segments != 1
bottom_left.prop(lt, "bridge_interpolation", text="")
bottom_right = col_right.row()
bottom_right.active = lt.bridge_interpolation == 'cubic'
bottom_right.prop(lt, "bridge_cubic_strength")
# boolean properties
col_top.prop(lt, "bridge_remove_faces")
# override properties
col_top.separator()
row = box.row(align = True)
row.prop(lt, "bridge_twist")
row.prop(lt, "bridge_reverse")
# circle - first line
split = col.split(percentage=0.15)
if lt.display_circle:
split.prop(lt, "display_circle", text="", icon='DOWNARROW_HLT')
else:
split.prop(lt, "display_circle", text="", icon='RIGHTARROW')
split.operator("mesh.looptools_circle")
# circle - settings
if lt.display_circle:
box = col.column(align=True).box().column()
box.prop(lt, "circle_fit")
box.separator()
box.prop(lt, "circle_flatten")
row = box.row(align=True)
row.prop(lt, "circle_custom_radius")
row_right = row.row(align=True)
row_right.active = lt.circle_custom_radius
row_right.prop(lt, "circle_radius", text="")
box.prop(lt, "circle_regular")
box.separator()
box.prop(lt, "circle_influence")
# curve - first line
split = col.split(percentage=0.15)
if lt.display_curve:
split.prop(lt, "display_curve", text="", icon='DOWNARROW_HLT')
else:
split.prop(lt, "display_curve", text="", icon='RIGHTARROW')
split.operator("mesh.looptools_curve")
# curve - settings
if lt.display_curve:
box = col.column(align=True).box().column()
box.prop(lt, "curve_interpolation")
box.prop(lt, "curve_restriction")
box.prop(lt, "curve_boundaries")
box.prop(lt, "curve_regular")
box.separator()
box.prop(lt, "curve_influence")
# flatten - first line
split = col.split(percentage=0.15)
if lt.display_flatten:
split.prop(lt, "display_flatten", text="", icon='DOWNARROW_HLT')
else:
split.prop(lt, "display_flatten", text="", icon='RIGHTARROW')
split.operator("mesh.looptools_flatten")
# flatten - settings
if lt.display_flatten:
box = col.column(align=True).box().column()
box.prop(lt, "flatten_plane")
#box.prop(lt, "flatten_restriction")
box.separator()
box.prop(lt, "flatten_influence")
# loft - first line
split = col.split(percentage=0.15)
if lt.display_loft:
split.prop(lt, "display_loft", text="", icon='DOWNARROW_HLT')
else:
split.prop(lt, "display_loft", text="", icon='RIGHTARROW')
split.operator("mesh.looptools_bridge", text="Loft").loft = True
# loft - settings
if lt.display_loft:
box = col.column(align=True).box().column()
#box.prop(self, "mode")
# top row
col_top = box.column(align=True)
row = col_top.row(align=True)
col_left = row.column(align=True)
col_right = row.column(align=True)
col_right.active = lt.bridge_segments != 1
col_left.prop(lt, "bridge_segments")
col_right.prop(lt, "bridge_min_width", text="")
# bottom row
bottom_left = col_left.row()
bottom_left.active = lt.bridge_segments != 1
bottom_left.prop(lt, "bridge_interpolation", text="")
bottom_right = col_right.row()
bottom_right.active = lt.bridge_interpolation == 'cubic'
bottom_right.prop(lt, "bridge_cubic_strength")
# boolean properties
col_top.prop(lt, "bridge_remove_faces")
col_top.prop(lt, "bridge_loft_loop")
# override properties
col_top.separator()
row = box.row(align = True)
row.prop(lt, "bridge_twist")
row.prop(lt, "bridge_reverse")
# relax - first line
split = col.split(percentage=0.15)
if lt.display_relax:
split.prop(lt, "display_relax", text="", icon='DOWNARROW_HLT')
else:
split.prop(lt, "display_relax", text="", icon='RIGHTARROW')
split.operator("mesh.looptools_relax")
# relax - settings
if lt.display_relax:
box = col.column(align=True).box().column()
box.prop(lt, "relax_interpolation")
box.prop(lt, "relax_input")
box.prop(lt, "relax_iterations")
box.prop(lt, "relax_regular")
# space - first line
split = col.split(percentage=0.15)
if lt.display_space:
split.prop(lt, "display_space", text="", icon='DOWNARROW_HLT')
else:
split.prop(lt, "display_space", text="", icon='RIGHTARROW')
split.operator("mesh.looptools_space")
# space - settings
if lt.display_space:
box = col.column(align=True).box().column()
box.prop(lt, "space_interpolation")
box.prop(lt, "space_input")
box.separator()
box.prop(lt, "space_influence")
# property group containing all properties for the gui in the panel
class LoopToolsProps(bpy.types.PropertyGroup):
"""
Fake module like class
bpy.context.window_manager.looptools
"""
# general display properties
display_bridge = bpy.props.BoolProperty(name = "Bridge settings",
description = "Display settings of the Bridge tool",
default = False)
display_circle = bpy.props.BoolProperty(name = "Circle settings",
description = "Display settings of the Circle tool",
default = False)
display_curve = bpy.props.BoolProperty(name = "Curve settings",
description = "Display settings of the Curve tool",
default = False)
display_flatten = bpy.props.BoolProperty(name = "Flatten settings",
description = "Display settings of the Flatten tool",
default = False)
display_loft = bpy.props.BoolProperty(name = "Loft settings",
description = "Display settings of the Loft tool",
default = False)
display_relax = bpy.props.BoolProperty(name = "Relax settings",
description = "Display settings of the Relax tool",
default = False)
display_space = bpy.props.BoolProperty(name = "Space settings",
description = "Display settings of the Space tool",
default = False)
# bridge properties
bridge_cubic_strength = bpy.props.FloatProperty(name = "Strength",
description = "Higher strength results in more fluid curves",
default = 1.0,
soft_min = -3.0,
soft_max = 3.0)
bridge_interpolation = bpy.props.EnumProperty(name = "Interpolation mode",
items = (('cubic', "Cubic", "Gives curved results"),
('linear', "Linear", "Basic, fast, straight interpolation")),
description = "Interpolation mode: algorithm used when creating "\
"segments",
default = 'cubic')
bridge_loft = bpy.props.BoolProperty(name = "Loft",
description = "Loft multiple loops, instead of considering them as "\
"a multi-input for bridging",
default = False)
bridge_loft_loop = bpy.props.BoolProperty(name = "Loop",
description = "Connect the first and the last loop with each other",
default = False)
bridge_min_width = bpy.props.IntProperty(name = "Minimum width",
description = "Segments with an edge smaller than this are merged "\
"(compared to base edge)",
default = 0,
min = 0,
max = 100,
subtype = 'PERCENTAGE')
bridge_mode = bpy.props.EnumProperty(name = "Mode",
items = (('basic', "Basic", "Fast algorithm"), ('shortest',
"Shortest edge", "Slower algorithm with better vertex matching")),
description = "Algorithm used for bridging",
default = 'shortest')
bridge_remove_faces = bpy.props.BoolProperty(name = "Remove faces",
description = "Remove faces that are internal after bridging",
default = True)
bridge_reverse = bpy.props.BoolProperty(name = "Reverse",
description = "Manually override the direction in which the loops "\
"are bridged. Only use if the tool gives the wrong result.",
default = False)
bridge_segments = bpy.props.IntProperty(name = "Segments",
description = "Number of segments used to bridge the gap "\
"(0 = automatic)",
default = 1,
min = 0,
soft_max = 20)
bridge_twist = bpy.props.IntProperty(name = "Twist",
description = "Twist what vertices are connected to each other",
default = 0)
# circle properties
circle_custom_radius = bpy.props.BoolProperty(name = "Radius",
description = "Force a custom radius",
default = False)
circle_fit = bpy.props.EnumProperty(name = "Method",
items = (("best", "Best fit", "Non-linear least squares"),
("inside", "Fit inside","Only move vertices towards the center")),
description = "Method used for fitting a circle to the vertices",
default = 'best')
circle_flatten = bpy.props.BoolProperty(name = "Flatten",
description = "Flatten the circle, instead of projecting it on the " \
"mesh",
default = True)
circle_influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
circle_radius = bpy.props.FloatProperty(name = "Radius",
description = "Custom radius for circle",
default = 1.0,
min = 0.0,
soft_max = 1000.0)
circle_regular = bpy.props.BoolProperty(name = "Regular",
description = "Distribute vertices at constant distances along the " \
"circle",
default = True)
# curve properties
curve_boundaries = bpy.props.BoolProperty(name = "Boundaries",
description = "Limit the tool to work within the boundaries of the "\
"selected vertices",
default = False)
curve_influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
curve_interpolation = bpy.props.EnumProperty(name = "Interpolation",
items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Simple and fast linear algorithm")),
description = "Algorithm used for interpolation",
default = 'cubic')
curve_regular = bpy.props.BoolProperty(name = "Regular",
description = "Distribute vertices at constant distances along the" \
"curve",
default = True)
curve_restriction = bpy.props.EnumProperty(name = "Restriction",
items = (("none", "None", "No restrictions on vertex movement"),
("extrude", "Extrude only","Only allow extrusions (no "\
"indentations)"),
("indent", "Indent only", "Only allow indentation (no "\
"extrusions)")),
description = "Restrictions on how the vertices can be moved",
default = 'none')
# flatten properties
flatten_influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
flatten_plane = bpy.props.EnumProperty(name = "Plane",
items = (("best_fit", "Best fit", "Calculate a best fitting plane"),
("normal", "Normal", "Derive plane from averaging vertex "\
"normals"),
("view", "View", "Flatten on a plane perpendicular to the "\
"viewing angle")),
description = "Plane on which vertices are flattened",
default = 'best_fit')
flatten_restriction = bpy.props.EnumProperty(name = "Restriction",
items = (("none", "None", "No restrictions on vertex movement"),
("bounding_box", "Bounding box", "Vertices are restricted to "\
"movement inside the bounding box of the selection")),
description = "Restrictions on how the vertices can be moved",
default = 'none')
# relax properties
relax_input = bpy.props.EnumProperty(name = "Input",
items = (("all", "Parallel (all)", "Also use non-selected "\
"parallel loops as input"),
("selected", "Selection","Only use selected vertices as input")),
description = "Loops that are relaxed",
default = 'selected')
relax_interpolation = bpy.props.EnumProperty(name = "Interpolation",
items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Simple and fast linear algorithm")),
description = "Algorithm used for interpolation",
default = 'cubic')
relax_iterations = bpy.props.EnumProperty(name = "Iterations",
items = (("1", "1", "One"),
("3", "3", "Three"),
("5", "5", "Five"),
("10", "10", "Ten"),
("25", "25", "Twenty-five")),
description = "Number of times the loop is relaxed",
default = "1")
relax_regular = bpy.props.BoolProperty(name = "Regular",
description = "Distribute vertices at constant distances along the" \
"loop",
default = True)
# space properties
space_influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
space_input = bpy.props.EnumProperty(name = "Input",
items = (("all", "Parallel (all)", "Also use non-selected "\
"parallel loops as input"),
("selected", "Selection","Only use selected vertices as input")),
description = "Loops that are spaced",
default = 'selected')
space_interpolation = bpy.props.EnumProperty(name = "Interpolation",
items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Vertices are projected on existing edges")),
description = "Algorithm used for interpolation",
default = 'cubic')
# draw function for integration in menus
def menu_func(self, context):
self.layout.menu("VIEW3D_MT_edit_mesh_looptools")
self.layout.separator()
# define classes for registration
classes = [VIEW3D_MT_edit_mesh_looptools,
VIEW3D_PT_tools_looptools,
LoopToolsProps,
Bridge,
Circle,
Curve,
Flatten,
Relax,
Space]
# registering and menu integration
def register():
for c in classes:
bpy.utils.register_class(c)
bpy.types.VIEW3D_MT_edit_mesh_specials.prepend(menu_func)
bpy.types.WindowManager.looptools = bpy.props.PointerProperty(\
type = LoopToolsProps)
# unregistering and removing menus
def unregister():
for c in classes:
bpy.utils.unregister_class(c)
bpy.types.VIEW3D_MT_edit_mesh_specials.remove(menu_func)
try:
del bpy.types.WindowManager.looptools
except:
pass
if __name__ == "__main__":
register()