-
Bastien Montagne authoredBastien Montagne authored
add_mesh_pipe_joint.py 34.56 KiB
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
bl_info = {
"name": "Pipe Joints",
"author": "Buerbaum Martin (Pontiac)",
"version": (0, 10, 7),
"blender": (2, 6, 1),
"location": "View3D > Add > Mesh > Pipe Joints",
"description": "Add different types of pipe joints",
"warning": "",
"wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"\
"Scripts/Add_Mesh/Add_Pipe_Joints",
"tracker_url": "https://projects.blender.org/tracker/index.php?"\
"func=detail&aid=21443",
"category": "Add Mesh"}
import bpy
from math import *
from bpy.props import *
# Create a new mesh (object) from verts/edges/faces.
# verts/edges/faces ... List of vertices/edges/faces for the
# new mesh (as used in from_pydata).
# name ... Name of the new mesh (& object).
def create_mesh_object(context, verts, edges, faces, name):
# Create new mesh
mesh = bpy.data.meshes.new(name)
# Make a mesh from a list of verts/edges/faces.
mesh.from_pydata(verts, edges, faces)
# Update mesh geometry after adding stuff.
mesh.update()
from bpy_extras import object_utils
return object_utils.object_data_add(context, mesh, operator=None)
# A very simple "bridge" tool.
# Connects two equally long vertex rows with faces.
# Returns a list of the new faces (list of lists)
#
# vertIdx1 ... First vertex list (list of vertex indices).
# vertIdx2 ... Second vertex list (list of vertex indices).
# closed ... Creates a loop (first & last are closed).
# flipped ... Invert the normal of the face(s).
#
# Note: You can set vertIdx1 to a single vertex index to create
# a fan/star of faces.
# Note: If both vertex idx list are the same length they have
# to have at least 2 vertices.
def createFaces(vertIdx1, vertIdx2, closed=False, flipped=False):
faces = []
if not vertIdx1 or not vertIdx2:
return None
if len(vertIdx1) < 2 and len(vertIdx2) < 2:
return None
fan = False
if (len(vertIdx1) != len(vertIdx2)):
if (len(vertIdx1) == 1 and len(vertIdx2) > 1):
fan = True
else:
return None
total = len(vertIdx2)
if closed:
# Bridge the start with the end.
if flipped:
face = [
vertIdx1[0],
vertIdx2[0],
vertIdx2[total - 1]]
if not fan:
face.append(vertIdx1[total - 1])
faces.append(face)
else:
face = [vertIdx2[0], vertIdx1[0]]
if not fan:
face.append(vertIdx1[total - 1])
face.append(vertIdx2[total - 1])
faces.append(face)
# Bridge the rest of the faces.
for num in range(total - 1):
if flipped:
if fan:
face = [vertIdx2[num], vertIdx1[0], vertIdx2[num + 1]]
else:
face = [vertIdx2[num], vertIdx1[num],
vertIdx1[num + 1], vertIdx2[num + 1]]
faces.append(face)
else:
if fan:
face = [vertIdx1[0], vertIdx2[num], vertIdx2[num + 1]]
else:
face = [vertIdx1[num], vertIdx2[num],
vertIdx2[num + 1], vertIdx1[num + 1]]
faces.append(face)
return faces
class AddElbowJoint(bpy.types.Operator):
# Create the vertices and polygons for a simple elbow (bent pipe).
"""Add an Elbow pipe mesh"""
bl_idname = "mesh.primitive_elbow_joint_add"
bl_label = "Add Pipe Elbow"
bl_options = {'REGISTER', 'UNDO', 'PRESET'}
radius = FloatProperty(name="Radius",
description="The radius of the pipe",
default=1.0,
min=0.01,
max=100.0,
unit="LENGTH")
div = IntProperty(name="Divisions",
description="Number of vertices (divisions)",
default=32, min=3, max=256)
angle = FloatProperty(name="Angle",
description="The angle of the branching pipe (i.e. the 'arm' - " \
"Measured from the center line of the main pipe",
default=radians(45.0),
min=radians(-179.9),
max=radians(179.9),
unit="ROTATION")
startLength = FloatProperty(name="Length Start",
description="Length of the beginning of the pipe",
default=3.0,
min=0.01,
max=100.0,
unit="LENGTH")
endLength = FloatProperty(name="End Length",
description="Length of the end of the pipe",
default=3.0,
min=0.01,
max=100.0,
unit="LENGTH")
def execute(self, context):
radius = self.radius
div = self.div
angle = self.angle
startLength = self.startLength
endLength = self.endLength
verts = []
faces = []
loop1 = [] # The starting circle
loop2 = [] # The elbow circle
loop3 = [] # The end circle
# Create start circle
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
locX = sin(curVertAngle)
locY = cos(curVertAngle)
locZ = -startLength
loop1.append(len(verts))
verts.append([locX * radius, locY * radius, locZ])
# Create deformed joint circle
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
locX = sin(curVertAngle)
locY = cos(curVertAngle)
locZ = locX * tan(angle / 2.0)
loop2.append(len(verts))
verts.append([locX * radius, locY * radius, locZ * radius])
# Create end circle
baseEndLocX = -endLength * sin(angle)
baseEndLocZ = endLength * cos(angle)
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
# Create circle
locX = sin(curVertAngle) * radius
locY = cos(curVertAngle) * radius
locZ = 0.0
# Rotate circle
locZ = locX * cos(pi / 2.0 - angle)
locX = locX * sin(pi / 2.0 - angle)
loop3.append(len(verts))
# Translate and add circle vertices to the list.
verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ])
# Create faces
faces.extend(createFaces(loop1, loop2, closed=True))
faces.extend(createFaces(loop2, loop3, closed=True))
base = create_mesh_object(context, verts, [], faces, "Elbow Joint")
return {'FINISHED'}
class AddTeeJoint(bpy.types.Operator):
# Create the vertices and polygons for a simple tee (T) joint.
# The base arm of the T can be positioned in an angle if needed though.
"""Add a Tee-Joint mesh"""
bl_idname = "mesh.primitive_tee_joint_add"
bl_label = "Add Pipe Tee-Joint"
bl_options = {'REGISTER', 'UNDO', 'PRESET'}
radius = FloatProperty(name="Radius",
description="The radius of the pipe",
default=1.0,
min=0.01,
max=100.0,
unit="LENGTH")
div = IntProperty(name="Divisions",
description="Number of vertices (divisions)",
default=32,
min=4,
max=256)
angle = FloatProperty(name="Angle",
description="The angle of the branching pipe (i.e. the 'arm' - " \
"Measured from the center line of the main pipe",
default=radians(90.0),
min=radians(0.1),
max=radians(179.9),
unit="ROTATION")
startLength = FloatProperty(name="Length Start",
description="Length of the beginning of the" \
" main pipe (the straight one)",
default=3.0,
min=0.01,
max=100.0,
unit="LENGTH")
endLength = FloatProperty(name="End Length",
description="Length of the end of the" \
" main pipe (the straight one)",
default=3.0,
min=0.01,
max=100.0,
unit="LENGTH")
branchLength = FloatProperty(name="Arm Length",
description="Length of the arm pipe (the bent one)",
default=3.0,
min=0.01,
max=100.0,
unit="LENGTH")
def execute(self, context):
radius = self.radius
div = self.div
angle = self.angle
startLength = self.startLength
endLength = self.endLength
branchLength = self.branchLength
if (div % 2):
# Odd vertice number not supported (yet).
return {'CANCELLED'}
verts = []
faces = []
# List of vert indices of each cross section
loopMainStart = [] # Vert indices for the
# beginning of the main pipe.
loopJoint1 = [] # Vert indices for joint that is used
# to connect the joint & loopMainStart.
loopJoint2 = [] # Vert indices for joint that is used
# to connect the joint & loopArm.
loopJoint3 = [] # Vert index for joint that is used
# to connect the joint & loopMainEnd.
loopArm = [] # Vert indices for the end of the arm.
loopMainEnd = [] # Vert indices for the
# end of the main pipe.
# Create start circle (main pipe)
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
locX = sin(curVertAngle)
locY = cos(curVertAngle)
locZ = -startLength
loopMainStart.append(len(verts))
verts.append([locX * radius, locY * radius, locZ])
# Create deformed joint circle
vertTemp1 = None
vertTemp2 = None
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
locX = sin(curVertAngle)
locY = cos(curVertAngle)
if vertIdx == 0:
vertTemp1 = len(verts)
if vertIdx == div / 2:
# @todo: This will possibly break if we
# ever support odd divisions.
vertTemp2 = len(verts)
loopJoint1.append(len(verts))
if (vertIdx < div / 2):
# Straight side of main pipe.
locZ = 0
loopJoint3.append(len(verts))
else:
# Branching side
locZ = locX * tan(angle / 2.0)
loopJoint2.append(len(verts))
verts.append([locX * radius, locY * radius, locZ * radius])
# Create 2. deformed joint (half-)circle
loopTemp = []
for vertIdx in range(div):
if (vertIdx > div / 2):
curVertAngle = vertIdx * (2.0 * pi / div)
locX = sin(curVertAngle)
locY = -cos(curVertAngle)
locZ = -(radius * locX * tan((pi - angle) / 2.0))
loopTemp.append(len(verts))
verts.append([locX * radius, locY * radius, locZ])
loopTemp2 = loopTemp[:]
# Finalise 2. loop
loopTemp.reverse()
loopTemp.append(vertTemp1)
loopJoint2.reverse()
loopJoint2.extend(loopTemp)
loopJoint2.reverse()
# Finalise 3. loop
loopTemp2.append(vertTemp2)
loopTemp2.reverse()
loopJoint3.extend(loopTemp2)
# Create end circle (branching pipe)
baseEndLocX = -branchLength * sin(angle)
baseEndLocZ = branchLength * cos(angle)
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
# Create circle
locX = sin(curVertAngle) * radius
locY = cos(curVertAngle) * radius
locZ = 0.0
# Rotate circle
locZ = locX * cos(pi / 2.0 - angle)
locX = locX * sin(pi / 2.0 - angle)
loopArm.append(len(verts))
# Add translated circle.
verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ])
# Create end circle (main pipe)
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
locX = sin(curVertAngle)
locY = cos(curVertAngle)
locZ = endLength
loopMainEnd.append(len(verts))
verts.append([locX * radius, locY * radius, locZ])
# Create faces
faces.extend(createFaces(loopMainStart, loopJoint1, closed=True))
faces.extend(createFaces(loopJoint2, loopArm, closed=True))
faces.extend(createFaces(loopJoint3, loopMainEnd, closed=True))
base = create_mesh_object(context, verts, [], faces, "Tee Joint")
return {'FINISHED'}
class AddWyeJoint(bpy.types.Operator):
"""Add a Wye-Joint mesh"""
bl_idname = "mesh.primitive_wye_joint_add"
bl_label = "Add Pipe Wye-Joint"
bl_options = {'REGISTER', 'UNDO', 'PRESET'}
radius = FloatProperty(name="Radius",
description="The radius of the pipe",
default=1.0,
min=0.01,
max=100.0,
unit="LENGTH")
div = IntProperty(name="Divisions",
description="Number of vertices (divisions)",
default=32,
min=4,
max=256)
angle1 = FloatProperty(name="Angle 1",
description="The angle of the 1. branching pipe " \
"(measured from the center line of the main pipe)",
default=radians(45.0),
min=radians(-179.9),
max=radians(179.9),
unit="ROTATION")
angle2 = FloatProperty(name="Angle 2",
description="The angle of the 2. branching pipe " \
"(measured from the center line of the main pipe) ",
default=radians(45.0),
min=radians(-179.9),
max=radians(179.9),
unit="ROTATION")
startLength = FloatProperty(name="Length Start",
description="Length of the beginning of the" \
" main pipe (the straight one)",
default=3.0,
min=0.01,
max=100.0,
unit="LENGTH")
branch1Length = FloatProperty(name="Length Arm 1",
description="Length of the 1. arm",
default=3.0,
min=0.01,
max=100.0,
unit="LENGTH")
branch2Length = FloatProperty(name="Length Arm 2",
description="Length of the 2. arm",
default=3.0,
min=0.01,
max=100.0,
unit="LENGTH")
def execute(self, context):
radius = self.radius
div = self.div
angle1 = self.angle1
angle2 = self.angle2
startLength = self.startLength
branch1Length = self.branch1Length
branch2Length = self.branch2Length
if (div % 2):
# Odd vertice number not supported (yet).
return {'CANCELLED'}
verts = []
faces = []
# List of vert indices of each cross section
loopMainStart = [] # Vert indices for
# the beginning of the main pipe.
loopJoint1 = [] # Vert index for joint that is used
# to connect the joint & loopMainStart.
loopJoint2 = [] # Vert index for joint that
# is used to connect the joint & loopArm1.
loopJoint3 = [] # Vert index for joint that is
# used to connect the joint & loopArm2.
loopArm1 = [] # Vert idxs for end of the 1. arm.
loopArm2 = [] # Vert idxs for end of the 2. arm.
# Create start circle
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
locX = sin(curVertAngle)
locY = cos(curVertAngle)
locZ = -startLength
loopMainStart.append(len(verts))
verts.append([locX * radius, locY * radius, locZ])
# Create deformed joint circle
vertTemp1 = None
vertTemp2 = None
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
locX = sin(curVertAngle)
locY = cos(curVertAngle)
if vertIdx == 0:
vertTemp2 = len(verts)
if vertIdx == div / 2:
# @todo: This will possibly break if we
# ever support odd divisions.
vertTemp1 = len(verts)
loopJoint1.append(len(verts))
if (vertIdx > div / 2):
locZ = locX * tan(angle1 / 2.0)
loopJoint2.append(len(verts))
else:
locZ = locX * tan(-angle2 / 2.0)
loopJoint3.append(len(verts))
verts.append([locX * radius, locY * radius, locZ * radius])
# Create 2. deformed joint (half-)circle
loopTemp = []
angleJoint = (angle2 - angle1) / 2.0
for vertIdx in range(div):
if (vertIdx > div / 2):
curVertAngle = vertIdx * (2.0 * pi / div)
locX = (-sin(curVertAngle) * sin(angleJoint)
/ sin(angle2 - angleJoint))
locY = -cos(curVertAngle)
locZ = (-(sin(curVertAngle) * cos(angleJoint)
/ sin(angle2 - angleJoint)))
loopTemp.append(len(verts))
verts.append([locX * radius, locY * radius, locZ * radius])
loopTemp2 = loopTemp[:]
# Finalise 2. loop
loopTemp.append(vertTemp1)
loopTemp.reverse()
loopTemp.append(vertTemp2)
loopJoint2.reverse()
loopJoint2.extend(loopTemp)
loopJoint2.reverse()
# Finalise 3. loop
loopTemp2.reverse()
loopJoint3.extend(loopTemp2)
# Create end circle (1. branching pipe)
baseEndLocX = -branch1Length * sin(angle1)
baseEndLocZ = branch1Length * cos(angle1)
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
# Create circle
locX = sin(curVertAngle) * radius
locY = cos(curVertAngle) * radius
locZ = 0.0
# Rotate circle
locZ = locX * cos(pi / 2.0 - angle1)
locX = locX * sin(pi / 2.0 - angle1)
loopArm1.append(len(verts))
# Add translated circle.
verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ])
# Create end circle (2. branching pipe)
baseEndLocX = branch2Length * sin(angle2)
baseEndLocZ = branch2Length * cos(angle2)
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
# Create circle
locX = sin(curVertAngle) * radius
locY = cos(curVertAngle) * radius
locZ = 0.0
# Rotate circle
locZ = locX * cos(pi / 2.0 + angle2)
locX = locX * sin(pi / 2.0 + angle2)
loopArm2.append(len(verts))
# Add translated circle
verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ])
# Create faces
faces.extend(createFaces(loopMainStart, loopJoint1, closed=True))
faces.extend(createFaces(loopJoint2, loopArm1, closed=True))
faces.extend(createFaces(loopJoint3, loopArm2, closed=True))
base = create_mesh_object(context, verts, [], faces, "Wye Joint")
return {'FINISHED'}
class AddCrossJoint(bpy.types.Operator):
"""Add a Cross-Joint mesh"""
# Create the vertices and polygons for a coss (+ or X) pipe joint.
bl_idname = "mesh.primitive_cross_joint_add"
bl_label = "Add Pipe Cross-Joint"
bl_options = {'REGISTER', 'UNDO', 'PRESET'}
radius = FloatProperty(name="Radius",
description="The radius of the pipe",
default=1.0,
min=0.01,
max=100.0,
unit="LENGTH")
div = IntProperty(name="Divisions",
description="Number of vertices (divisions)",
default=32,
min=4,
max=256)
angle1 = FloatProperty(name="Angle 1",
description="The angle of the 1. arm (from the main axis)",
default=radians(90.0),
min=radians(-179.9),
max=radians(179.9),
unit="ROTATION")
angle2 = FloatProperty(name="Angle 2",
description="The angle of the 2. arm (from the main axis)",
default=radians(90.0),
min=radians(-179.9),
max=radians(179.9),
unit="ROTATION")
angle3 = FloatProperty(name="Angle 3 (center)",
description="The angle of the center arm (from the main axis)",
default=radians(0.0),
min=radians(-179.9),
max=radians(179.9),
unit="ROTATION")
startLength = FloatProperty(name="Length Start",
description="Length of the beginning of the " \
"main pipe (the straight one)",
default=3.0,
min=0.01,
max=100.0,
unit="LENGTH")
branch1Length = FloatProperty(name="Length Arm 1",
description="Length of the 1. arm",
default=3.0,
min=0.01,
max=100.0,
unit="LENGTH")
branch2Length = FloatProperty(name="Length Arm 2",
description="Length of the 2. arm",
default=3.0,
min=0.01,
max=100.0,
unit="LENGTH")
branch3Length = FloatProperty(name="Length Arm 3 (center)",
description="Length of the center arm",
default=3.0,
min=0.01,
max=100.0,
unit="LENGTH")
def execute(self, context):
radius = self.radius
div = self.div
angle1 = self.angle1
angle2 = self.angle2
angle3 = self.angle3
startLength = self.startLength
branch1Length = self.branch1Length
branch2Length = self.branch2Length
branch3Length = self.branch3Length
if (div % 2):
# Odd vertice number not supported (yet).
return {'CANCELLED'}
verts = []
faces = []
# List of vert indices of each cross section
loopMainStart = [] # Vert indices for the
# beginning of the main pipe.
loopJoint1 = [] # Vert index for joint that is used
# to connect the joint & loopMainStart.
loopJoint2 = [] # Vert index for joint that is used
# to connect the joint & loopArm1.
loopJoint3 = [] # Vert index for joint that is used
# to connect the joint & loopArm2.
loopJoint4 = [] # Vert index for joint that is used
# to connect the joint & loopArm3.
loopArm1 = [] # Vert idxs for the end of the 1. arm.
loopArm2 = [] # Vert idxs for the end of the 2. arm.
loopArm3 = [] # Vert idxs for the center arm end.
# Create start circle
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
locX = sin(curVertAngle)
locY = cos(curVertAngle)
locZ = -startLength
loopMainStart.append(len(verts))
verts.append([locX * radius, locY * radius, locZ])
# Create 1. deformed joint circle
vertTemp1 = None
vertTemp2 = None
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
locX = sin(curVertAngle)
locY = cos(curVertAngle)
if vertIdx == 0:
vertTemp2 = len(verts)
if vertIdx == div / 2:
# @todo: This will possibly break if we
# ever support odd divisions.
vertTemp1 = len(verts)
loopJoint1.append(len(verts))
if (vertIdx > div / 2):
locZ = locX * tan(angle1 / 2.0)
loopJoint2.append(len(verts))
else:
locZ = locX * tan(-angle2 / 2.0)
loopJoint3.append(len(verts))
verts.append([locX * radius, locY * radius, locZ * radius])
# loopTemp2 = loopJoint2[:] # UNUSED
# Create 2. deformed joint circle
loopTempA = []
loopTempB = []
angleJoint1 = (angle1 - angle3) / 2.0
angleJoint2 = (angle2 + angle3) / 2.0
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
# Skip pole vertices
# @todo: This will possibly break if
# we ever support odd divisions.
if not (vertIdx == 0) and not (vertIdx == div / 2):
if (vertIdx > div / 2):
angleJoint = angleJoint1
angle = angle1
Z = -1.0
loopTempA.append(len(verts))
else:
angleJoint = angleJoint2
angle = angle2
Z = 1.0
loopTempB.append(len(verts))
locX = (sin(curVertAngle) * sin(angleJoint)
/ sin(angle - angleJoint))
locY = -cos(curVertAngle)
locZ = (Z * (sin(curVertAngle) * cos(angleJoint)
/ sin(angle - angleJoint)))
verts.append([locX * radius, locY * radius, locZ * radius])
loopTempA2 = loopTempA[:]
loopTempB2 = loopTempB[:]
loopTempB3 = loopTempB[:]
# Finalise 2. loop
loopTempA.append(vertTemp1)
loopTempA.reverse()
loopTempA.append(vertTemp2)
loopJoint2.reverse()
loopJoint2.extend(loopTempA)
loopJoint2.reverse()
# Finalise 3. loop
loopJoint3.extend(loopTempB3)
# Finalise 4. loop
loopTempA2.append(vertTemp1)
loopTempA2.reverse()
loopTempB2.append(vertTemp2)
loopJoint4.extend(reversed(loopTempB2))
loopJoint4.extend(loopTempA2)
# Create end circle (1. branching pipe)
baseEndLocX = -branch1Length * sin(angle1)
baseEndLocZ = branch1Length * cos(angle1)
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
# Create circle
locX = sin(curVertAngle) * radius
locY = cos(curVertAngle) * radius
locZ = 0.0
# Rotate circle
locZ = locX * cos(pi / 2.0 - angle1)
locX = locX * sin(pi / 2.0 - angle1)
loopArm1.append(len(verts))
# Add translated circle.
verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ])
# Create end circle (2. branching pipe)
baseEndLocX = branch2Length * sin(angle2)
baseEndLocZ = branch2Length * cos(angle2)
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
# Create circle
locX = sin(curVertAngle) * radius
locY = cos(curVertAngle) * radius
locZ = 0.0
# Rotate circle
locZ = locX * cos(pi / 2.0 + angle2)
locX = locX * sin(pi / 2.0 + angle2)
loopArm2.append(len(verts))
# Add translated circle
verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ])
# Create end circle (center pipe)
baseEndLocX = branch3Length * sin(angle3)
baseEndLocZ = branch3Length * cos(angle3)
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
# Create circle
locX = sin(curVertAngle) * radius
locY = cos(curVertAngle) * radius
locZ = 0.0
# Rotate circle
locZ = locX * cos(pi / 2.0 + angle3)
locX = locX * sin(pi / 2.0 + angle3)
loopArm3.append(len(verts))
# Add translated circle
verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ])
# Create faces
faces.extend(createFaces(loopMainStart, loopJoint1, closed=True))
faces.extend(createFaces(loopJoint2, loopArm1, closed=True))
faces.extend(createFaces(loopJoint3, loopArm2, closed=True))
faces.extend(createFaces(loopJoint4, loopArm3, closed=True))
base = create_mesh_object(context, verts, [], faces, "Cross Joint")
return {'FINISHED'}
class AddNJoint(bpy.types.Operator):
"""Add a N-Joint mesh"""
# Create the vertices and polygons for a regular n-joint.
bl_idname = "mesh.primitive_n_joint_add"
bl_label = "Add Pipe N-Joint"
bl_options = {'REGISTER', 'UNDO', 'PRESET'}
radius = FloatProperty(name="Radius",
description="The radius of the pipe",
default=1.0,
min=0.01,
max=100.0,
unit="LENGTH")
div = IntProperty(name="Divisions",
description="Number of vertices (divisions)",
default=32,
min=4,
max=256)
number = IntProperty(name="Arms/Joints",
description="Number of joints/arms",
default=5,
min=2,
max=99999)
length = FloatProperty(name="Length",
description="Length of each joint/arm",
default=3.0,
min=0.01,
max=100.0,
unit="LENGTH")
def execute(self, context):
radius = self.radius
div = self.div
number = self.number
length = self.length
if (div % 2):
# Odd vertice number not supported (yet).
return {'CANCELLED'}
if (number < 2):
return {'CANCELLED'}
verts = []
faces = []
loopsEndCircles = []
loopsJointsTemp = []
loopsJoints = []
vertTemp1 = None
vertTemp2 = None
angleDiv = (2.0 * pi / number)
# Create vertices for the end circles.
for num in range(number):
circle = []
# Create start circle
angle = num * angleDiv
baseEndLocX = length * sin(angle)
baseEndLocZ = length * cos(angle)
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
# Create circle
locX = sin(curVertAngle) * radius
locY = cos(curVertAngle) * radius
locZ = 0.0
# Rotate circle
locZ = locX * cos(pi / 2.0 + angle)
locX = locX * sin(pi / 2.0 + angle)
circle.append(len(verts))
# Add translated circle
verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ])
loopsEndCircles.append(circle)
# Create vertices for the joint circles.
loopJoint = []
for vertIdx in range(div):
curVertAngle = vertIdx * (2.0 * pi / div)
locX = sin(curVertAngle)
locY = cos(curVertAngle)
skipVert = False
# Store pole vertices
if vertIdx == 0:
if (num == 0):
vertTemp2 = len(verts)
else:
skipVert = True
elif vertIdx == div / 2:
# @todo: This will possibly break if we
# ever support odd divisions.
if (num == 0):
vertTemp1 = len(verts)
else:
skipVert = True
if not skipVert:
if (vertIdx > div / 2):
locZ = -locX * tan((pi - angleDiv) / 2.0)
loopJoint.append(len(verts))
# Rotate the vert
cosAng = cos(-angle)
sinAng = sin(-angle)
LocXnew = locX * cosAng - locZ * sinAng
LocZnew = locZ * cosAng + locX * sinAng
locZ = LocZnew
locX = LocXnew
verts.append([
locX * radius,
locY * radius,
locZ * radius])
else:
# These two vertices will only be
# added the very first time.
if vertIdx == 0 or vertIdx == div / 2:
verts.append([locX * radius, locY * radius, locZ])
loopsJointsTemp.append(loopJoint)
# Create complete loops (loopsJoints) out of the
# double number of half loops in loopsJointsTemp.
for halfLoopIdx in range(len(loopsJointsTemp)):
if (halfLoopIdx == len(loopsJointsTemp) - 1):
idx1 = halfLoopIdx
idx2 = 0
else:
idx1 = halfLoopIdx
idx2 = halfLoopIdx + 1
loopJoint = []
loopJoint.append(vertTemp2)
loopJoint.extend(reversed(loopsJointsTemp[idx2]))
loopJoint.append(vertTemp1)
loopJoint.extend(loopsJointsTemp[idx1])
loopsJoints.append(loopJoint)
# Create faces from the two
# loop arrays (loopsJoints -> loopsEndCircles).
for loopIdx in range(len(loopsEndCircles)):
faces.extend(
createFaces(loopsJoints[loopIdx],
loopsEndCircles[loopIdx], closed=True))
base = create_mesh_object(context, verts, [], faces, "N Joint")
return {'FINISHED'}
class INFO_MT_mesh_pipe_joints_add(bpy.types.Menu):
# Define the "Pipe Joints" menu
bl_idname = "INFO_MT_mesh_pipe_joints_add"
bl_label = "Pipe Joints"
def draw(self, context):
layout = self.layout
layout.operator_context = 'INVOKE_REGION_WIN'
layout.operator("mesh.primitive_elbow_joint_add",
text="Pipe Elbow")
layout.operator("mesh.primitive_tee_joint_add",
text="Pipe T-Joint")
layout.operator("mesh.primitive_wye_joint_add",
text="Pipe Y-Joint")
layout.operator("mesh.primitive_cross_joint_add",
text="Pipe Cross-Joint")
layout.operator("mesh.primitive_n_joint_add",
text="Pipe N-Joint")
################################
# Define "Pipe Joints" menu
def menu_func(self, context):
self.layout.menu("INFO_MT_mesh_pipe_joints_add", icon="PLUGIN")
def register():
bpy.utils.register_module(__name__)
# Add "Pipe Joints" menu to the "Add Mesh" menu
bpy.types.INFO_MT_mesh_add.append(menu_func)
def unregister():
bpy.utils.unregister_module(__name__)
# Remove "Pipe Joints" menu from the "Add Mesh" menu.
bpy.types.INFO_MT_mesh_add.remove(menu_func)
if __name__ == "__main__":
register()