-
Campbell Barton authoredCampbell Barton authored
fracture_cell_calc.py 4.31 KiB
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
# Script copyright (C) Blender Foundation 2012
def points_as_bmesh_cells(verts,
points,
points_scale=None,
margin_bounds=0.05,
margin_cell=0.0):
from math import sqrt
import mathutils
from mathutils import Vector
cells = []
'''
if points_scale:
points_scale = (1.0 / points_scale[0],
1.0 / points_scale[1],
1.0 / points_scale[2],
)
'''
points_sorted_current = [p for p in points]
plane_indices = []
vertices = []
# there are many ways we could get planes - convex hull for eg
# but it ends up fastest if we just use bounding box
if 1:
xa = [v[0] for v in verts]
ya = [v[1] for v in verts]
za = [v[2] for v in verts]
xmin, xmax = min(xa) - margin_bounds, max(xa) + margin_bounds
ymin, ymax = min(ya) - margin_bounds, max(ya) + margin_bounds
zmin, zmax = min(za) - margin_bounds, max(za) + margin_bounds
convexPlanes = [
Vector((+1.0, 0.0, 0.0, -abs(xmax))),
Vector((-1.0, 0.0, 0.0, -abs(xmin))),
Vector((0.0, +1.0, 0.0, -abs(ymax))),
Vector((0.0, -1.0, 0.0, -abs(ymin))),
Vector((0.0, 0.0, +1.0, -abs(zmax))),
Vector((0.0, 0.0, -1.0, -abs(zmin))),
]
for i, point_cell_current in enumerate(points):
planes = [None] * len(convexPlanes)
for j in range(len(convexPlanes)):
planes[j] = convexPlanes[j].copy()
planes[j][3] += planes[j].xyz.dot(point_cell_current)
distance_max = 10000000000.0 # a big value!
points_sorted_current.sort(key=lambda p: (p - point_cell_current).length_squared)
for j in range(1, len(points)):
normal = points_sorted_current[j] - point_cell_current
nlength = normal.length
if points_scale is not None:
normal_alt = normal.copy()
normal_alt.x *= points_scale[0]
normal_alt.y *= points_scale[1]
normal_alt.z *= points_scale[2]
# rotate plane to new distance
# should always be positive!! - but abs incase
scalar = normal_alt.normalized().dot(normal.normalized())
# assert(scalar >= 0.0)
nlength *= scalar
normal = normal_alt
if nlength > distance_max:
break
plane = normal.normalized()
plane.resize_4d()
plane[3] = (-nlength / 2.0) + margin_cell
planes.append(plane)
vertices[:], plane_indices[:] = mathutils.geometry.points_in_planes(planes)
if len(vertices) == 0:
break
if len(plane_indices) != len(planes):
planes[:] = [planes[k] for k in plane_indices]
# for comparisons use length_squared and delay
# converting to a real length until the end.
distance_max = 10000000000.0 # a big value!
for v in vertices:
distance = v.length_squared
if distance_max < distance:
distance_max = distance
distance_max = sqrt(distance_max) # make real length
distance_max *= 2.0
if len(vertices) == 0:
continue
cells.append((point_cell_current, vertices[:]))
vertices[:] = []
return cells