io_import_scene_dxf.py 75.17 KiB
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
bl_info = {
"name": "Import Autocad DXF Format (.dxf)",
"author": "Thomas Larsson, Remigiusz Fiedler",
"version": (0, 1, 6),
"blender": (2, 63, 0),
"location": "File > Import > Autocad (.dxf)",
"description": "Import files in the Autocad DXF format (.dxf)",
"warning": "Under construction! Visit Wiki for details.",
"wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"
"Scripts/Import-Export/DXF_Importer",
"tracker_url": "https://developer.blender.org/T23480",
"support": "OFFICIAL",
"category": "Import-Export",
}
"""
Release note by migius (DXF support maintainer) 2011.01.02:
Script supports only a small part of DXF specification:
- imports LINE, ARC, CIRCLE, ELLIPSE, SOLID, TRACE, POLYLINE, LWPOLYLINE
- imports TEXT, MTEXT
- supports 3d-rotation of entities (210 group)
- supports THICKNESS for SOLID, TRACE, LINE, ARC, CIRCLE, ELLIPSE
- ignores WIDTH, THICKNESS, BULGE in POLYLINE/LWPOLYLINE
- ignores face-data in POLYFACE / POLYMESH
- ignores TEXT 2d-rotation
- ignores hierarchies (BLOCK, INSERT, GROUP)
- ignores LAYER
- ignores COLOR, LINEWIDTH, LINESTYLE
This script is a temporary solution.
No functionality improvements are planed for this version.
The advanced importer from 2.49 will replace it in the future.
Installation:
Place this file to Blender addons directory
(on Windows it is %Blender_directory%\2.53\scripts\addons\)
The script must be activated in "Addons" tab (user preferences).
Access it from File > Import menu.
History:
ver 0.1.6 - 2012.01.03 by migius and trumanblending for r.42615
- modified for recent changes to matrix indexing
ver 0.1.5 - 2011.02.05 by migius for r.34661
- changed support level to OFFICIAL
- fixed missing last point at building Mesh-ARCs (by pildanovak)
- fixed for changes in API and mathutils by campbell
ver 0.1.4 - 2011.01.13 by migius
- modified for latest API in rev.34300 (by Filiciss Muhgue)
ver 0.1.3 - 2011.01.02 by migius
- added draw curves as sequence for "Draw_as_Curve"
- added toggle "Draw as one" as user preset in UI
- added draw POINT as mesh-vertex
- added draw_THICKNESS for LINE, ARC, CIRCLE, ELLIPSE, LWPOLYLINE and POLYLINE
- added draw_THICKNESS for SOLID, TRACE
ver 0.1.2 - 2010.12.27 by migius
- added draw() for TRACE
- fixed wrong vertex order in SOLID
- added CIRCLE resolution as user preset in UI
- added closing segment for circular LWPOLYLINE and POLYLINE
- fixed registering for 2.55beta
ver 0.1.1 - 2010.09.07 by migius
- fixed dxf-file names recognition limited to ".dxf"
- fixed registering for 2.53beta
ver 0.1 - 2010.06.10 by Thomas Larsson
"""
__version__ = '.'.join([str(s) for s in bl_info['version']])
import os
import codecs
import math
from math import sin, cos, radians
import bpy
from mathutils import Vector, Matrix
#
# Global flags
#
T_Merge = 0x01
T_NewScene = 0x02
T_Curves = 0x04
T_DrawOne = 0x08
T_Debug = 0x10
T_Verbose = 0x20
T_ThicON = 0x40
toggle = T_Merge | T_NewScene | T_DrawOne | T_ThicON
theCircleRes = 32
theMergeLimit = 1e-4
#
# class CSection:
#
class CSection:
type = None
def __init__(self):
self.data = []
def display(self):
print("Section", self.type)
for datum in self.data:
datum.display()
#
# class CTable:
#
class CTable:
def __init__(self):
self.type = None
self.name = None
self.handle = None
self.owner = None
self.subclass = None
self.nEntries = 0
def display(self):
print("Table %s %s %s %s %s %d" % (self.type, self.name, self.handle, self.owner, self.subclass, self.nEntries))
#
# class CEntity:
#
class CEntity:
def __init__(self, typ, drawtype):
self.type = typ
self.drawtype = drawtype
self.handle = None
self.owner = None
self.subclass = None
self.layer = 0
self.color = 0
self.invisible = 0
self.linetype_name = ''
self.linetype_scale = 1.0
self.paperspace = 0
#self.normal = Vector((0,0,1))
def display(self):
print("Entity %s %s %s %s %s %s %x" %
(self.type, self.handle, self.owner, self.subclass, self.layer, self.color, self.invisible))
def build(self, vn=0):
global toggle
if toggle & T_Debug:
raise NameError("Warning: can not build - unsupported entity type: %s" % self.type)
return(([], [], [], vn))
def draw(self):
global toggle
if toggle & T_Debug:
raise NameError("Warning: can not draw - unsupported entity type: %s" % self.type)
return
DxfCommonAttributes = {
5 : 'handle',
6 : 'linetype_name',
8 : 'layer',
48 : 'linetype_scale',
60 : 'invisible',
62 : 'color',
67 : 'paperspace',
100 : 'subclass',
330 : 'owner',
360 : 'owner',
}
#
# class C3dFace(CEntity):
# 10 : 'point0.x', 20 : 'point0.y', 30 : 'point0.z',
# 11 : 'point1.x', 21 : 'point1.y', 31 : 'point1.z',
# 12 : 'point2.x', 22 : 'point2.y', 32 : 'point2.z',
# 13 : 'point3.x', 23 : 'point3.y', 33 : 'point3.z',
# 70 : 'flags',
#
class C3dFace(CEntity):
def __init__(self):
CEntity.__init__(self, '3DFACE', 'Mesh')
self.point0 = Vector()
self.point1 = Vector()
self.point2 = Vector()
self.point3 = Vector()
def display(self):
CEntity.display(self)
print(self.point0)
print(self.point1)
print(self.point2)
print(self.point3)
def build(self, vn=0):
verts = [self.point0, self.point1, self.point2]
if self.point3 == Vector((0,0,0)) or self.point2 == self.point3:
faces = [(vn+0, vn+1, vn+2)]
vn += 3
else:
verts.append( self.point3 )
faces = [(vn+0, vn+1, vn+2, vn+3)]
vn += 4
return((verts, [], faces, vn))
#
# class C3dSolid(CEntity):
# 1 : 'data', 3 : 'more', 70 : 'version',
#
class C3dSolid(CEntity):
def __init__(self):
CEntity.__init__(self, '3DSOLID', 'Mesh')
self.data = None
self.more = None
self.version = 0
#
# class CAcadProxyEntity(CEntity):
# 70 : 'format',
# 90 : 'id', 91 : 'class', 92 : 'graphics_size', 93 : 'entity_size', 95: 'format',
# 310 : 'data', 330 : 'id1', 340 : 'id2', 350 : 'id3', 360 : 'id4',
#
class CAcadProxyEntity(CEntity):
def __init__(self):
CEntity.__init__(self, 'ACAD_PROXY_ENTITY', None)
#
# class CArc(CEntity):
# 10 : 'center.x', 20 : 'center.y', 30 : 'center.z',
# 40 : 'radius',
# 50 : 'start_angle', 51 : 'end_angle'
#
class CArc(CEntity):
def __init__(self):
CEntity.__init__(self, 'ARC', 'Mesh')
self.center = Vector()
self.radius = 0.0
self.start_angle = 0.0
self.end_angle = 0.0
self.thickness = 0.0
self.normal = Vector((0,0,1))
def display(self):
CEntity.display(self)
print(self.center)
print("%.4f %.4f %.4f " % (self.radius, self.start_angle, self.end_angle))
def build(self, vn=0):
start, end = self.start_angle, self.end_angle
if end > 360: end = end % 360.0
if end < start: end +=360.0
# angle = end - start # UNUSED
deg2rad = math.pi/180.0
start *= deg2rad
end *= deg2rad
dphi = end - start
phi0 = start
w = dphi/theCircleRes
r = self.radius
center = self.center
v0 = vn
points = []
edges, faces = [], []
for n in range(theCircleRes + 1):
s = math.sin(n*w + phi0)
c = math.cos(n*w + phi0)
v = center + Vector((r*c, r*s, 0.0))
points.append(v)
pn = len(points)
thic = self.thickness
t_vector = Vector((0, 0, thic))
if thic != 0 and (toggle & T_ThicON):
thic_points = [v + t_vector for v in points]
if thic < 0.0:
thic_points.extend(points)
points = thic_points
else:
points.extend(thic_points)
faces = [(v0+nr+0,v0+nr+1,v0+pn+nr+1,v0+pn+nr+0) for nr in range(pn)]
faces.pop()
self.drawtype = 'Mesh'
vn += 2*pn
else:
edges = [(v0+nr+0,v0+nr+1) for nr in range(pn)]
edges.pop()
vn += pn
if self.normal!=Vector((0,0,1)):
ma = getOCS(self.normal)
if ma:
#ma.invert()
points = [ma * v for v in points]
#print ('arc vn=', vn)
#print ('faces=', len(faces))
return ((points, edges, faces, vn))
#
# class CArcAlignedText(CEntity):
# 1 : 'text', 2 : 'font', 3 : 'bigfont', 7 : 'style',
# 10 : 'center.x', 20 : 'center.y', 30 : 'center.z',
# 40 : 'radius', 41 : 'width', 42 : 'height', 43 : 'spacing',
# 44 : 'offset', 45 : 'right_offset', 46 : 'left_offset',
# 50 : 'start_angle', 51 : 'end_angle',
# 70 : 'order', 71 : 'direction', 72 : 'alignment', 73 : 'side',
# 74 : 'bold', 75 : 'italic', 76 : 'underline',
# 77 : 'character_set', 78 : 'pitch', 79 'fonttype',
# 90 : 'color',
# 280 : 'wizard', 330 : 'id'
#
class CArcAlignedText(CEntity):
def __init__(self):
CEntity.__init__(self, 'ARCALIGNEDTEXT', 'Mesh')
self.text = ""
self.style = ""
self.center = Vector()
self.radius = 0.0
self.width = 1.0
self.height = 1.0
self.spacing = 1.0
self.offset = 0.0
self.right_offset = 0.0
self.left_offset = 0.0
self.start_angle = 0.0
self.end_angle = 0.0
self.order = 0
self.directions = 0
self.alignment = 0
self.side = 0
self.bold = 0
self.italic = 0
self.underline = 0
self.character_set = 0
self.pitch = 0
self.fonttype = 0
self.color = 0
self.wizard = None
self.id = None
self.normal = Vector((0,0,1))
#
# class CAttdef(CEntity):
# 1 : 'text', 2 : 'tag', 3 : 'prompt', 7 : 'style',
# 10 : 'insertion_point.x', 20 : 'insertion_point.y', 30 : 'insertion_point.z',
# 11 : 'alignment_point.x', 21 : 'alignment_point.y', 31 : 'alignment_point.z',
# 40 : 'height', 41 : 'x_scale',
# 50 : 'rotation_angle', 51 : 'oblique_angle',
# 70 : 'flags', 71 : 'text_generation_flags',
# 72 : 'horizontal_justification', 74 : 'vertical_justification',
#
class CAttdef(CEntity):
def __init__(self):
CEntity.__init__(self, 'ATTDEF', None)
self.value = ""
self.tag = ""
self.prompt = ""
self.style = ""
self.insertion_point = Vector()
self.alignment_point = Vector()
self.height = 1.0
self.x_scale = 1.0
self.rotation_angle = 0.0
self.oblique_angle = 0.0
self.flags = 0
self.text_generation_flags = 0
self.horizontal_justification = 0.0
self.vertical_justification = 0.0
self.normal = Vector((0,0,1))
def draw(self):
drawText(self.text, self.insertion_point, self.height, self.x_scale, self.rotation_angle, self.oblique_angle, self.normal)
return
#
# class CAttrib(CEntity):
# 1 : 'text', 2 : 'tag', 3 : 'prompt', 7 : 'style',
# 10 : 'insertion_point.x', 20 : 'insertion_point.y', 30 : 'insertion_point.z',
# 11 : 'alignment_point.x', 21 : 'alignment_point.y', 31 : 'alignment_point.z',
# 40 : 'height', 41 : 'x_scale',
# 50 : 'rotation_angle', 51 : 'oblique_angle',
# 70 : 'flags', 73 : 'length',
# 71 : 'text_generation_flags', 72 : 'horizontal_justification', 74 : 'vertical_justification',
#
class CAttrib(CEntity):
def __init__(self):
CEntity.__init__(self, 'ATTRIB', None)
self.text = ""
self.tag = ""
self.prompt = ""
self.style = ""
self.insertion_point = Vector()
self.alignment_point = Vector()
self.height = 1.0
self.x_scale = 1.0
self.rotation_angle = 0.0
self.oblique_angle = 0.0
self.flags = 0
self.length = 1.0
self.text_generation_flags = 0
self.horizontal_justification = 0.0
self.vertical_justification = 0.0
self.normal = Vector((0,0,1))
def draw(self):
drawText(self.text, self.insertion_point, self.height, self.x_scale, self.rotation_angle, self.oblique_angle, self.normal)
return
#
# class CBlock(CEntity):
# 1 : 'xref', 2 : 'name', 3 : 'also_name',
# 10 : 'base_point.x', 20 : 'base_point.y', 30 : 'base_point.z',
# 40 : 'size', 41 : 'x_scale',
# 50 : 'rotation_angle', 51 : 'oblique_angle',
# 70 : 'flags',
#
class CBlock(CEntity):
def __init__(self):
CEntity.__init__(self, 'BLOCK', None)
self.xref = ""
self.name = ""
self.also_name = ""
self.base_point = Vector()
self.size = 1.0
self.x_scale = 1.0
self.rotation_angle = 0.0
self.oblique_angle = 0.0
self.flags = 0
self.normal = Vector((0,0,1))
def display(self):
CEntity.display(self)
print("%s %s %s " % (self.xref, self.name, self.also_name))
print(self.base_point)
def draw(self):
# Todo
return
#
# class CCircle(CEntity):
# 10 : 'center.x', 20 : 'center.y', 30 : 'center.z',
# 40 : 'radius'
#
class CCircle(CEntity):
def __init__(self):
CEntity.__init__(self, 'CIRCLE', 'Mesh')
self.center = Vector()
self.radius = 0.0
self.thickness = 0.0
self.normal = Vector((0,0,1))
def display(self):
CEntity.display(self)
print(self.center)
print("%.4f" % self.radius)
def build(self, vn=0):
w = 2*math.pi/theCircleRes
r = self.radius
center = self.center
points = []
edges, faces = [], []
v0 = vn
for n in range(theCircleRes):
s = math.sin(n*w)
c = math.cos(n*w)
v = center + Vector((r*c, r*s, 0))
points.append(v)
pn = len(points)
thic = self.thickness
t_vector = Vector((0, 0, thic))
if thic != 0 and (toggle & T_ThicON):
thic_points = [v + t_vector for v in points]
if thic < 0.0:
thic_points.extend(points)
points = thic_points
else:
points.extend(thic_points)
faces = [(v0+nr,v0+nr+1,pn+v0+nr+1,pn+v0+nr) for nr in range(pn)]
nr = pn -1
faces[-1] = (v0+nr,v0,pn+v0,pn+v0+nr)
self.drawtype = 'Mesh'
vn += 2*pn
else:
edges = [(v0+nr,v0+nr+1) for nr in range(pn)]
nr = pn -1
edges[-1] = (v0+nr,v0)
vn += pn
if self.normal!=Vector((0,0,1)):
ma = getOCS(self.normal)
if ma:
#ma.invert()
points = [ma * v for v in points]
#print ('cir vn=', vn)
#print ('faces=',len(faces))
return( (points, edges, faces, vn) )
#
# class CDimension(CEntity):
# 1 : 'text', 2 : 'name', 3 : 'style',
# 10 : 'def_point.x', 20 : 'def_point.y', 30 : 'def_point.z',
# 11 : 'mid_point.x', 21 : 'mid_point.y', 31 : 'mid_point.z',
# 12 : 'vector.x', 22 : 'vector.y', 32 : 'vector.z',
# 13 : 'def_point2.x', 23 : 'def_point2.y', 33 : 'def_point2.z',
# 14 : 'vector2.x', 24 : 'vector2.y', 34 : 'vector2.z',
# 15 : 'vector3.x', 25 : 'vector3.y', 35 : 'vector3.z',
# 16 : 'vector4.x', 26 : 'vector4.y', 36 : 'vector4.z',
# 70 : 'dimtype',
#
class CDimension(CEntity):
def __init__(self):
CEntity.__init__(self, 'DIMENSION', None)
self.text = ""
self.name = ""
self.style = ""
self.def_point = Vector()
self.mid_point = Vector()
self.vector = Vector()
self.def_point2 = Vector()
self.vector2 = Vector()
self.vector3 = Vector()
self.vector4 = Vector()
self.dimtype = 0
self.normal = Vector((0,0,1))
def draw(self):
return
#
# class CEllipse(CEntity):
# 10 : 'center.x', 20 : 'center.y', 30 : 'center.z',
# 11 : 'end_point.x', 21 : 'end_point.y', 31 : 'end_point.z',
# 40 : 'ratio', 41 : 'start', 42 : 'end',
#
class CEllipse(CEntity):
def __init__(self):
CEntity.__init__(self, 'ELLIPSE', 'Mesh')
self.center = Vector()
self.end_point = Vector()
self.ratio = 1.0
self.start = 0.0
self.end = 2*math.pi
self.thickness = 0.0
self.normal = Vector((0,0,1))
def display(self):
CEntity.display(self)
print(self.center)
print("%.4f" % self.ratio)
def build(self, vn=0):
dphi = (self.end - self.start)
phi0 = self.start
w = dphi/theCircleRes
r = self.end_point.length
f = self.ratio
a = self.end_point.x/r
b = self.end_point.y/r
center = self.center
v0 = vn
points = []
edges, faces = [], []
for n in range(theCircleRes):
x = r*math.sin(n*w + phi0)
y = f*r*math.cos(n*w + phi0)
v = (center.x - a*x + b*y, center.y - a*y - b*x, center.z)
points.append(v)
pn = len(points)
thic = self.thickness
t_vector = Vector((0, 0, thic))
if thic != 0 and (toggle & T_ThicON):
thic_points = [v + t_vector for v in points]
if thic < 0.0:
thic_points.extend(points)
points = thic_points
else:
points.extend(thic_points)
faces = [(v0+nr,v0+nr+1,pn+v0+nr+1,pn+v0+nr) for nr in range(pn)]
nr = pn -1
faces[-1] = (v0+nr,v0,pn+v0,pn+v0+nr)
#self.drawtype = 'Mesh'
vn += 2*pn
else:
edges = [(v0+nr,v0+nr+1) for nr in range(pn)]
nr = pn -1
edges[-1] = (v0+nr,v0)
vn += pn
if thic != 0 and (toggle & T_ThicON):
pass
if self.normal!=Vector((0,0,1)):
ma = getOCS(self.normal)
if ma:
#ma.invert()
points = [ma * v for v in points]
return ((points, edges, faces, vn))
#
# class CHatch(CEntity):
# 2 : 'pattern',
# 10 : 'point.x', 20 : 'point.y', 30 : 'point.z',
# 41 : 'scale', 47 : 'pixelsize', 52 : 'angle',
# 70 : 'fill', 71 : 'associativity', 75: 'style', 77 : 'double',
# 78 : 'numlines', 91 : 'numpaths', 98 : 'numseeds',
#
class CHatch(CEntity):
def __init__(self):
CEntity.__init__(self, 'HATCH', None)
self.pattern = 0
self.point = Vector()
self.scale = 1.0
self.pixelsize = 1.0
self.angle = 0.0
self.fill = 0
self.associativity = 0
self.style = 0
self.double = 0
self.numlines = 0
self.numpaths = 0
self.numseeds = 0
self.normal = Vector((0,0,1))
# class CImage(CEntity):
# 10 : 'insertion_point.x', 20 : 'insertion_point.y', 30 : 'insertion_point.z',
# 11 : 'u_vector.x', 21 : 'u_vector.y', 31 : 'u_vector.z',
# 12 : 'v_vector.x', 22 : 'v_vector.y', 32 : 'v_vector.z',
# 13 : 'size.x', 23 : 'size.y', 33 : 'size.z',
# 14 : 'clip.x', 24 : 'clip.y', 34 : 'clip.z',
# 70 : 'display', 71 : 'cliptype',
# 90 : 'version',
# 280 : 'clipstate', 281 : 'brightness', 282 : 'contrast', 283 : 'fade',
# 340 : 'image', 360 : 'reactor'
#
class CImage(CEntity):
def __init__(self):
CEntity.__init__(self, 'IMAGE', None)
self.insertion_point = Vector()
self.u_vector = Vector()
self.v_vector = Vector()
self.size = Vector()
self.clip = Vector()
self.display = 0
self.cliptype = 0
self.version = 1
self.clipstate = 0
self.brightness = 0
self.constrast = 0
self.fade = 0
self.image = None
self.reactor = None
self.normal = Vector((0,0,1))
#
# class CInsert(CEntity):
# 1 : 'attributes_follow', 2 : 'name',
# 10 : 'insertion_point.x', 20 : 'insertion_point.y', 30 : 'insertion_point.z',
# 41 : 'x_scale', 42 : 'y_scale', 43 : 'z_scale',
# 44 : 'column_spacing', 45 : 'row_spacing',
# 50 : 'rotation_angle', 66 : 'attributes_follow',
# 70 : 'column_count', 71 : 'row_count',
#
class CInsert(CEntity):
def __init__(self):
CEntity.__init__(self, 'INSERT', None)
self.attributes_follow = 1
self.name = ""
self.insertion_point = Vector()
self.x_scale = 1.0
self.y_scale = 1.0
self.z_scale = 1.0
self.column_spacing = 1.0
self.row_spacing = 1.0
self.rotation_angle = 0.0
self.column_count = 1
self.row_count = 1
self.attributes_follow = 0
self.normal = Vector((0,0,1))
def display(self):
CEntity.display(self)
print(self.insertion_point)
def draw(self):
# Todo
return
#
# class CLeader(CEntity):
# 3 : 'style',
# 10 : ['new_vertex(data)'], 20 : 'vertex.y', 30 : 'vertex.z',
# 40 : 'height', 41 : 'width',
# 71 : 'arrowhead', 72 : 'pathtype', 73 : 'creation',
# 74 : 'hookdir', 75 : 'hookline', 76 : 'numverts', 77 : 'color',
# 210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
# 211 : 'horizon.x', 221 : 'horizon.y', 231 : 'horizon.z',
# 212 : 'offset_ins.x', 222 : 'offset_ins.y', 232 : 'offset_ins.z',
# 213 : 'offset_ann.x', 223 : 'offset_ann.y', 233 : 'offset_ann.z',
#
class CLeader(CEntity):
def __init__(self):
CEntity.__init__(self, 'LEADER', 'Mesh')
self.style = ""
self.vertex = None
self.verts = []
self.height = 1.0
self.width = 1.0
self.arrowhead = 0
self.pathtype = 0
self.creation = 0
self.hookdir = 0
self.hookline = 0
self.numverts = 0
self.color = 0
self.normal = Vector((0,0,1))
self.horizon = Vector()
self.offset_ins = Vector()
self.offset_ann = Vector()
def new_vertex(self, data):
self.vertex = Vector()
self.vertex.x = data
self.verts.append(self.vertex)
def build(self, vn=0):
edges = []
for v in self.verts:
edges.append((vn, vn+1))
vn += 1
edges.pop()
return (self.verts, edges, [], vn)
# class CLwPolyLine(CEntity):
# 10 : ['new_vertex(data)'], 20 : 'vertex.y', 30 : 'vertex.z',
# 38 : 'elevation', 39 : 'thickness',
# 40 : 'start_width', 41 : 'end_width', 42 : 'bulge', 43 : 'constant_width',
# 70 : 'flags', 90 : 'numverts'
#
class CLWPolyLine(CEntity):
def __init__(self):
CEntity.__init__(self, 'LWPOLYLINE', None)
self.vertex = None
self.verts = []
self.elevation = 0
self.thickness = 0.0
self.start_width = 0.0
self.end_width = 0.0
self.bulge = 0.0
self.constant_width = 0.0
self.flags = 0
self.numverts = 0
self.normal = Vector((0,0,1))
def new_vertex(self, data):
self.vertex = Vector()
self.vertex.x = data
self.verts.append(self.vertex)
def build(self, vn=0):
edges = []
v_start = vn
for v in self.verts:
edges.append((vn, vn+1))
vn += 1
if self.flags & PL_CLOSED:
edges[-1] = (vn-1, v_start)
else:
edges.pop()
verts = self.verts
if self.normal!=Vector((0,0,1)):
ma = getOCS(self.normal)
if ma:
#ma.invert()
verts = [ma * v for v in verts]
return (verts, edges, [], vn-1)
#
# class CLine(CEntity):
# 10 : 'start_point.x', 20 : 'start_point.y', 30 : 'start_point.z',
# 11 : 'end_point.x', 21 : 'end_point.y', 31 : 'end_point.z',
# 39 : 'thickness',
#
class CLine(CEntity):
def __init__(self):
CEntity.__init__(self, 'LINE', 'Mesh')
self.start_point = Vector()
self.end_point = Vector()
self.thickness = 0.0
self.normal = Vector((0,0,1))
def display(self):
CEntity.display(self)
print(self.start_point)
print(self.end_point)
def build(self, vn=0):
points = [self.start_point, self.end_point]
faces, edges = [], []
n = vn
thic = self.thickness
if thic != 0 and (toggle & T_ThicON):
t_vector = thic * self.normal
#print 'deb:thic_vector: ', t_vector #---------------------
points.extend([v + t_vector for v in points])
faces = [[0+n, 1+n, 3+n, 2+n]]
self.drawtype = 'Mesh'
else:
edges = [[0+n, 1+n]]
vn +=2
return((points, edges, faces, vn))
# class CMLine(CEntity):
# 10 : 'start_point.x', 20 : 'start_point.y', 30 : 'start_point.z',
# 11 : ['new_vertex(data)'], 21 : 'vertex.y', 31 : 'vertex.z',
# 12 : ['new_seg_dir(data)'], 22 : 'seg_dir.y', 32 : 'seg_dir.z',
# 13 : ['new_miter_dir(data)'], 23 : 'miter_dir.y', 33 : 'miter_dir.z',
# 40 : 'scale', 41 : 'elem_param', 42 : 'fill_param',
# 70 : 'justification', 71 : 'flags'
# 72 : 'numverts', 73 : 'numelems', 74 : 'numparam', 75 : 'numfills',
# 340 : 'id'
#
class CMLine(CEntity):
def __init__(self):
CEntity.__init__(self, 'MLINE', None)
self.start_point = Vector()
self.vertex = None
self.seg_dir = None
self.miter_dir = None
self.verts = []
self.seg_dirs = []
self.miter_dirs = []
self.scale = 1.0
self.elem_param = 0
self.fill_param = 0
self.justification = 0
self.flags = 0
self.numverts = 0
self.numelems = 0
self.numparam = 0
self.numfills = 0
self.id = 0
self.normal = Vector((0,0,1))
def new_vertex(self, data):
self.vertex = Vector()
self.vertex.x = data
self.verts.append(self.vertex)
def new_seg_dir(self, data):
self.seg_dir = Vector()
self.seg_dir.x = data
self.seg_dirs.append(self.seg_dir)
def new_miter_dir(self, data):
self.miter_dir = Vector()
self.miter_dir.x = data
self.miter_dirs.append(self.miter_dir)
#
# class CMText(CText):
# 1 : 'text', 3: 'more_text', 7 : 'style',
# 10 : 'insertion_point.x', 20 : 'insertion_point.y', 30 : 'insertion_point.z',
# 11 : 'alignment_point.x', 21 : 'alignment_point.y', 31 : 'alignment_point.z',
# 40 : 'nominal_height', 41 : 'reference_width', 42: 'width', 43 : 'height', 44 : 'line_spacing',
# 50 : 'rotation_angle',
# 71 : 'attachment_point', 72 : 'drawing_direction', 73 : 'spacing_style',
#
class CMText(CEntity):
def __init__(self):
CEntity.__init__(self, 'MTEXT', 'Text')
self.text = ""
self.more_text = ""
self.style = ""
self.insertion_point = Vector()
self.alignment_point = Vector()
self.nominal_height = 1.0
self.reference_width = 1.0
self.width = 1.0
self.height = 1.0
self.rotation_angle = 0.0
self.attachment_point = 0
self.drawing_direction = 0
self.spacing_style = 0
self.normal = Vector((0,0,1))
def display(self):
CEntity.display(self)
print("%s %s" % (self.text, self.style))
print('MTEXTinsertion_point=',self.insertion_point)
print('MTEXTalignment_point=',self.alignment_point)
def draw(self):
drawText(self.text, self.insertion_point, self.height, self.width, self.rotation_angle, 0.0, self.normal)
return
#
# class CPoint(CEntity):
# 10 : 'point.x', 20 : 'point.y', 30 : 'point.z',
# 39 : 'thickness', 50 : 'orientation'
#
class CPoint(CEntity):
def __init__(self):
CEntity.__init__(self, 'POINT', 'Mesh')
self.point = Vector()
self.thickness = 0.0
self.orientation = 0.0
def display(self):
CEntity.display(self)
print(self.point)
print("%.4f" % self.orientation)
def build(self, vn=0):
# draw as mesh-vertex
verts = [self.point]
return((verts, [], [], vn+1))
def draw(self):
#todo
# draw as empty-object
# loc = self.point # UNUSED
#bpy.ops.object.new('DXFpoint')
pass
#
# class CPolyLine(CEntity):
# 1 : 'verts_follow', 2 : 'name',
# 10 : 'elevation.x', 20 : 'elevation.y', 30 : 'elevation.z',
# 40 : 'start_width', 41 : 'end_width',
# 66 : 'verts_follow_flag',
# 70 : 'flags', 71 : 'row_count', 72 : 'column_count',
# 73 : 'row_density', 74 : 'column_density', 75 : 'linetype',
#
class CPolyLine(CEntity):
def __init__(self):
CEntity.__init__(self, 'POLYLINE', 'Mesh')
self.verts = []
self.verts_follow = 1
self.name = ""
self.elevation = Vector()
self.thickness = 0.0
self.start_width = 0.0
self.end_width = 0.0
self.verts_follow_flags = 0
self.flags = 0
self.row_count = 1
self.column_count = 1
self.row_density = 1.0
self.column_density = 1.0
self.linetype = 1
self.normal = Vector((0,0,1))
def display(self):
CEntity.display(self)
print("VERTS")
for v in self.verts:
print(v.location)
print("END VERTS")
def build(self, vn=0):
verts = []
lines = []
v_start = vn
for vert in self.verts:
verts.append(vert.location)
lines.append((vn, vn+1))
vn += 1
if self.flags & PL_CLOSED:
lines[-1] = (vn-1, v_start)
else:
lines.pop()
if self.normal!=Vector((0,0,1)):
ma = getOCS(self.normal)
if ma:
verts = [ma * v for v in verts]
return((verts, lines, [], vn-1))
#
# class CShape(CEntity):
# 2 : 'name',
# 10 : 'insertion_point.x', 20 : 'insertion_point.y', 30 : 'insertion_point.z',
# 39 : 'thickness',
# 40 : 'size', 41 : 'x_scale',
# 50 : 'rotation_angle', 51 : 'oblique_angle',
#
class CShape(CEntity):
def __init__(self):
CEntity.__init__(self, 'SHAPE', None)
self.name = ""
self.insertion_point = Vector()
self.thickness = 0.0
self.size = 1.0
self.x_scale = 1.0
self.rotation_angle = 0.0
self.oblique_angle = 0.0
def display(self):
CEntity.display(self)
print("%s" % (self.name))
print(self.insertion_point)
#
# class CSpline(CEntity):
# 10 : ['new_control_point(data)'], 20 : 'control_point.y', 30 : 'control_point.z',
# 11 : ['new_fit_point(data)'], 21 : 'fit_point.y', 31 : 'fit_point.z',
# 40 : ['new_knot_value(data)'],
# 12 : 'start_tangent.x', 22 : 'start_tangent.y', 32 : 'start_tangent.z',
# 13 : 'end_tangent.x', 23 : 'end_tangent.y', 33 : 'end_tangent.z',
# 41 : 'weight', 42 : 'knot_tol', 43 : 'control_point_tol', 44 : 'fit_tol',
# 70 : 'flag', 71 : 'degree',
# 72 : 'num_knots', 73 : 'num_control_points', 74 : 'num_fit_points',
# 210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
#
class CSpline(CEntity):
def __init__(self):
CEntity.__init__(self, 'SPLINE', 'Mesh')
self.control_points = []
self.fit_points = []
self.knot_values = []
self.control_point = None
self.fit_point = None
self.knot_value = None
self.start_tangent = Vector()
self.end_tangent = Vector()
self.weight = 1.0
self.knot_tol = 1e-6
self.control_point_tol = 1e-6
self.fit_tol = 1e-6
self.flag = 0
self.degree = 3
self.num_knots = 0
self.num_control_points = 0
self.num_fit_points = 0
self.thickness = 0.0
self.normal = Vector((0,0,1))
def new_control_point(self, data):
self.control_point = Vector()
self.control_point.x = data
self.control_points.append(self.control_point)
def new_fit_point(self, data):
self.fit_point = Vector()
self.fit_point.x = data
self.fit_points.append(self.fit_point)
def new_knot_value(self, data):
self.knot_value = data
self.knot_values.append(self.knot_value)
def display(self):
#not testet yet (migius)
CEntity.display(self)
print("CONTROL")
for p in self.control_points:
print(p)
print("FIT")
for p in self.fit_points:
print(p)
print("KNOT")
for v in self.knot_values:
print(v)
def build(self, vn=0):
verts = []
lines = []
for vert in self.control_points:
verts.append(vert)
lines.append((vn, vn+1))
vn += 1
lines.pop()
return((verts, lines, [], vn))
#
# class CSolid(CEntity):
# 10 : 'point0.x', 20 : 'point0.y', 30 : 'point0.z',
# 11 : 'point1.x', 21 : 'point1.y', 31 : 'point1.z',
# 12 : 'point2.x', 22 : 'point2.y', 32 : 'point2.z',
# 13 : 'point3.x', 23 : 'point3.y', 33 : 'point3.z',
# 39 : 'thickness',
#
class CSolid(CEntity):
def __init__(self):
CEntity.__init__(self, 'SOLID', 'Mesh')
self.point0 = Vector()
self.point1 = Vector()
self.point2 = Vector()
self.point3 = Vector()
self.normal = Vector((0,0,1))
self.thickness = 0.0
def display(self):
CEntity.display(self)
print(self.point0)
print(self.point1)
print(self.point2)
print(self.point3)
def build(self, vn=0):
points, edges, faces = [],[],[]
if self.point2 == self.point3:
points = [self.point0, self.point1, self.point2]
else:
points = [self.point0, self.point1, self.point2, self.point3]
pn = len(points)
v0 = vn
thic = self.thickness
t_vector = Vector((0, 0, thic))
if thic != 0 and (toggle & T_ThicON):
thic_points = [v + t_vector for v in points]
if thic < 0.0:
thic_points.extend(points)
points = thic_points
else:
points.extend(thic_points)
if pn == 4:
faces = [[0,1,3,2], [4,6,7,5], [0,4,5,1],
[1,5,7,3], [3,7,6,2], [2,6,4,0]]
elif pn == 3:
faces = [[0,1,2], [3,5,4], [0,3,4,1], [1,4,5,2], [2,5,3,0]]
elif pn == 2: faces = [[0,1,3,2]]
vn += 2*pn
else:
if pn == 4: faces = [[0,2,3,1]]
elif pn == 3: faces = [[0,2,1]]
elif pn == 2:
edges = [[0,1]]
self.drawtype = 'Mesh'
vn += pn
if self.normal!=Vector((0,0,1)):
ma = getOCS(self.normal)
if ma:
points = [ma * v for v in points]
return((points, edges, faces, vn))
#
# class CText(CEntity):
# 1 : 'text', 7 : 'style',
# 10 : 'insertion_point.x', 20 : 'insertion_point.y', 30 : 'insertion_point.z',
# 11 : 'alignment_point.x', 21 : 'alignment_point.y', 31 : 'alignment_point.z',
# 40 : 'height', 41 : 'x_scale',
# 50 : 'rotation_angle', 51 : 'oblique_angle',
# 71 : 'flags', 72 : 'horizontal_justification', 73 : 'vertical_justification',
#
class CText(CEntity):
def __init__(self):
CEntity.__init__(self, 'TEXT', 'Text')
self.text = ""
self.style = ""
self.insertion_point = Vector()
self.alignment_point = Vector()
self.height = 1.0
self.x_scale = 1.0
self.rotation_angle = 0.0
self.oblique_angle = 0.0
self.flags = 0
self.horizontal_justification = 0.0
self.vertical_justification = 0.0
self.thickness = 0.0
self.normal = Vector((0,0,1))
def display(self):
CEntity.display(self)
print("%s %s" % (self.text, self.style))
print(self.insertion_point)
print(self.alignment_point)
def draw(self):
drawText(self.text, self.insertion_point, self.height, self.x_scale, self.rotation_angle, self.oblique_angle, self.normal)
return
def drawText(text, loc, size, spacing, angle, shear, normal=Vector((0,0,1))):
#print('angle_deg=',angle)
bpy.ops.object.text_add(
view_align=False,
enter_editmode=False,
location= loc,
#rotation=(0, 0, angle), #need radians here
)
cu = bpy.context.object.data
cu.body = text
cu.size = size #up 2.56
cu.space_word = spacing #up 2.56
cu.shear = shear
if angle!=0.0 or normal!=Vector((0,0,1)):
obj = bpy.context.object
transform(normal, angle, obj)
return
#
# class CTolerance(CEntity):
# 3 : 'style',
# 10 : 'insertion_point.x', 20 : 'insertion_point.y', 30 : 'insertion_point.z',
# 11 : 'direction.x', 21 : 'direction.y', 31 : 'direction.z',
#
class CTolerance(CEntity):
def __init__(self):
CEntity.__init__(self, 'TOLERANCE', None)
self.stype = ""
self.insertion_point = Vector()
self.direction = Vector()
#
# class CTrace(CEntity):
# 10 : 'point0.x', 20 : 'point0.y', 30 : 'point0.z',
# 11 : 'point1.x', 21 : 'point1.y', 31 : 'point1.z',
# 12 : 'point2.x', 22 : 'point2.y', 32 : 'point2.z',
# 13 : 'point3.x', 23 : 'point3.y', 33 : 'point3.z',
# 39 : 'thickness',
#
class CTrace(CEntity):
def __init__(self):
CEntity.__init__(self, 'TRACE', 'Mesh')
self.point0 = Vector()
self.point1 = Vector()
self.point2 = Vector()
self.point3 = Vector()
self.normal = Vector((0,0,1))
self.thickness = 0.0
def display(self):
CEntity.display(self)
print(self.point0)
print(self.point1)
print(self.point2)
print(self.point3)
def build(self, vn=0):
points, edges, faces = [],[],[]
if self.point2 == self.point3:
points = [self.point0, self.point2, self.point1]
else:
points = [self.point0, self.point2, self.point1, self.point3]
pn = len(points)
v0 = vn
thic = self.thickness
t_vector = Vector((0, 0, thic))
if thic != 0 and (toggle & T_ThicON):
thic_points = [v + t_vector for v in points]
if thic < 0.0:
thic_points.extend(points)
points = thic_points
else:
points.extend(thic_points)
if pn == 4:
faces = [[0,1,3,2], [4,6,7,5], [0,4,5,1],
[1,5,7,3], [3,7,6,2], [2,6,4,0]]
elif pn == 3:
faces = [[0,1,2], [3,5,4], [0,3,4,1], [1,4,5,2], [2,5,3,0]]
elif pn == 2: faces = [[0,1,3,2]]
vn += 2*pn
else:
if pn == 4: faces = [[0,2,3,1]]
elif pn == 3: faces = [[0,2,1]]
elif pn == 2:
edges = [[0,1]]
self.drawtype = 'Mesh'
if self.normal!=Vector((0,0,1)):
ma = getOCS(self.normal)
if ma:
points = [ma * v for v in points]
return ((points, edges, faces, vn))
#
# class CVertex(CEntity):
# 10 : 'location.x', 20 : 'location.y', 30 : 'location.z',
# 40 : 'start_width', 41 : 'end_width', 42 : 'bulge',
# 50 : 'tangent',
# 70 : 'flags',
# 71 : 'index1', 72 : 'index2', 73 : 'index3', 74 : 'index4',
#
class CVertex(CEntity):
def __init__(self):
CEntity.__init__(self, 'VERTEX', None)
self.location = Vector()
self.start_width = 0.0
self.end_width = 0.0
self.bulge = 0.0
self.tangent = 0.0
self.flags = 0
def display(self):
return
def draw(self):
return
#
# class CViewPort(CEntity):
# 10 : 'center.x', 20 : 'center.y', 30 : 'center.z',
# 12 : 'view_center.x', 22 : 'view_center.y', 32 : 'view_center.z',
# 13 : 'snap_base.x', 23 : 'snap_base.y', 33 : 'snap_base.z',
# 14 : 'snap_spacing.x', 24 : 'snap_spacing.y', 34 : 'snap_spacing.z',
# 15 : 'grid_spacing.x', 25 : 'grid_spacing.y', 35 : 'grid_spacing.z',
# 16 : 'view_direction.x', 26 : 'view_direction.y', 36 : 'view_direction.z',
# 40 : 'width', 41 : 'height',
# 68 : 'status', 69 : 'id',
#
class CViewPort(CEntity):
def __init__(self):
CEntity.__init__(self, 'VIEWPORT', None)
self.center = Vector()
self.view_center = Vector()
self.snap_base = Vector()
self.snap_spacing = Vector()
self.grid_spacing = Vector()
self.view_direction = Vector()
self.width = 1.0
self.height = 1.0
self.status = 0
self.id = 0
def draw(self):
# Todo
return
#
# class CWipeOut(CEntity):
# 10 : 'point.x', 20 : 'point.y', 30 : 'point.z',
# 11 : 'direction.x', 21 : 'direction.y', 31 : 'direction.z',
#
class CWipeOut(CEntity):
def __init__(self):
CEntity.__init__(self, 'WIPEOUT', None)
self.point = Vector()
self.direction = Vector()
#
#
#
WORLDX = Vector((1.0,0.0,0.0))
WORLDY = Vector((0.0,1.0,0.0))
WORLDZ = Vector((0.0,0.0,1.0))
def getOCS(az): #-----------------------------------------------------------------
"""An implimentation of the Arbitrary Axis Algorithm.
"""
#decide if we need to transform our coords
#if az[0] == 0 and az[1] == 0:
if abs(az.x) < 0.00001 and abs(az.y) < 0.00001:
if az.z > 0.0:
return False
elif az.z < 0.0:
return Matrix((-WORLDX, WORLDY*1, -WORLDZ)).transposed()
cap = 0.015625 # square polar cap value (1/64.0)
if abs(az.x) < cap and abs(az.y) < cap:
ax = WORLDY.cross(az)
else:
ax = WORLDZ.cross(az)
ax.normalize()
ay = az.cross(ax)
ay.normalize()
# Matrices are now constructed from rows, transpose to make the rows into cols
return Matrix((ax, ay, az)).transposed()
def transform(normal, rotation, obj): #--------------------------------------------
"""Use the calculated ocs to determine the objects location/orientation in space.
"""
ma = Matrix()
o = Vector(obj.location)
ma_new = getOCS(normal)
if ma_new:
ma_new.resize_4x4()
ma = ma_new
o = ma * o
if rotation != 0:
rmat = Matrix.Rotation(radians(rotation), 4, 'Z')
ma = ma * rmat
obj.matrix_world = ma
obj.location = o
DxfEntityAttributes = {
'3DFACE' : {
10 : 'point0.x', 20 : 'point0.y', 30 : 'point0.z',
11 : 'point1.x', 21 : 'point1.y', 31 : 'point1.z',
12 : 'point2.x', 22 : 'point2.y', 32 : 'point2.z',
13 : 'point3.x', 23 : 'point3.y', 33 : 'point3.z',
70 : 'flags',
},
'3DSOLID' : {
1 : 'data', 3 : 'more', 70 : 'version',
},
'ACAD_PROXY_ENTITY' : {
70 : 'format',
90 : 'id', 91 : 'class', 92 : 'graphics_size', 93 : 'entity_size', 95: 'format',
310 : 'data', 330 : 'id1', 340 : 'id2', 350 : 'id3', 360 : 'id4',
},
'ARC' : {
10 : 'center.x', 20 : 'center.y', 30 : 'center.z',
40 : 'radius',
50 : 'start_angle', 51 : 'end_angle',
39 : 'thickness',
210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
},
'ARCALIGNEDTEXT' : {
1 : 'text', 2 : 'font', 3 : 'bigfont', 7 : 'style',
10 : 'center.x', 20 : 'center.y', 30 : 'center.z',
40 : 'radius', 41 : 'width', 42 : 'height', 43 : 'spacing',
44 : 'offset', 45 : 'right_offset', 46 : 'left_offset',
50 : 'start_angle', 51 : 'end_angle',
70 : 'order', 71 : 'direction', 72 : 'alignment', 73 : 'side',
74 : 'bold', 75 : 'italic', 76 : 'underline',
77 : 'character_set', 78 : 'pitch', 79 : 'fonttype',
90 : 'color',
280 : 'wizard', 330 : 'id'
},
'ATTDEF' : {
1 : 'text', 2 : 'tag', 3 : 'prompt', 7 : 'style',
10 : 'insertion_point.x', 20 : 'insertion_point.y', 30 : 'insertion_point.z',
11 : 'alignment_point.x', 21 : 'alignment_point.y', 31 : 'alignment_point.z',
40 : 'height', 41 : 'x_scale',
50 : 'rotation_angle', 51 : 'oblique_angle',
70 : 'flags', 71 : 'text_generation_flags',
72 : 'horizontal_justification', 74 : 'vertical_justification',
},
'ATTRIB' : {
1 : 'text', 2 : 'tag', 3 : 'prompt', 7 : 'style',
10 : 'insertion_point.x', 20 : 'insertion_point.y', 30 : 'insertion_point.z',
11 : 'alignment_point.x', 21 : 'alignment_point.y', 31 : 'alignment_point.z',
40 : 'height', 41 : 'x_scale',
50 : 'rotation_angle', 51 : 'oblique_angle',
70 : 'flags', 73 : 'length',
71 : 'text_generation_flags', 72 : 'horizontal_justification', 74 : 'vertical_justification',
},
'BLOCK' : {
1 : 'xref', 2 : 'name', 3 : 'also_name',
10 : 'base_point.x', 20 : 'base_point.y', 30 : 'base_point.z',
40 : 'size', 41 : 'x_scale',
50 : 'rotation_angle', 51 : 'oblique_angle',
70 : 'flags',
},
'CIRCLE' : {
10 : 'center.x', 20 : 'center.y', 30 : 'center.z',
40 : 'radius',
39 : 'thickness',
210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
},
'DIMENSION' : {
1 : 'text', 2 : 'name', 3 : 'style',
10 : 'def_point.x', 20 : 'def_point.y', 30 : 'def_point.z',
11 : 'mid_point.x', 21 : 'mid_point.y', 31 : 'mid_point.z',
12 : 'vector.x', 22 : 'vector.y', 32 : 'vector.z',
13 : 'def_point2.x', 23 : 'def_point2.y', 33 : 'def_point2.z',
14 : 'vector2.x', 24 : 'vector2.y', 34 : 'vector2.z',
15 : 'vector3.x', 25 : 'vector3.y', 35 : 'vector3.z',
16 : 'vector4.x', 26 : 'vector4.y', 36 : 'vector4.z',
70 : 'dimtype',
},
'ELLIPSE' : {
10 : 'center.x', 20 : 'center.y', 30 : 'center.z',
11 : 'end_point.x', 21 : 'end_point.y', 31 : 'end_point.z',
40 : 'ratio', 41 : 'start', 42 : 'end',
39 : 'thickness',
210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
},
'HATCH' : {
2 : 'pattern',
10 : 'point.x', 20 : 'point.y', 30 : 'point.z',
41 : 'scale', 47 : 'pixelsize', 52 : 'angle',
70 : 'fill', 71 : 'associativity', 75: 'style', 77 : 'double',
78 : 'numlines', 91 : 'numpaths', 98 : 'numseeds',
210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
},
'IMAGE' : {
10 : 'insertion_point.x', 20 : 'insertion_point.y', 30 : 'insertion_point.z',
11 : 'u_vector.x', 21 : 'u_vector.y', 31 : 'u_vector.z',
12 : 'v_vector.x', 22 : 'v_vector.y', 32 : 'v_vector.z',
13 : 'size.x', 23 : 'size.y', 33 : 'size.z',
14 : 'clip.x', 24 : 'clip.y', 34 : 'clip.z',
70 : 'display', 71 : 'cliptype',
90 : 'version',
280 : 'clipstate', 281 : 'brightness', 282 : 'contrast', 283 : 'fade',
340 : 'image', 360 : 'reactor',
},
'INSERT' : {
1 : 'attributes_follow', 2 : 'name',
10 : 'insertion_point.x', 20 : 'insertion_point.y', 30 : 'insertion_point.z',
41 : 'x_scale', 42 : 'y_scale', 43 : 'z_scale',
44 : 'column_spacing', 45 : 'row_spacing',
50 : 'rotation_angle', 66 : 'attributes_follow',
70 : 'column_count', 71 : 'row_count',
210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
},
'LEADER' : {
3 : 'style',
10 : ['new_vertex(data)'], 20 : 'vertex.y', 30 : 'vertex.z',
40 : 'height', 41 : 'width',
71 : 'arrowhead', 72 : 'pathtype', 73 : 'creation',
74 : 'hookdir', 75 : 'hookline', 76 : 'numverts', 77 : 'color',
210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
211 : 'horizon.x', 221 : 'horizon.y', 231 : 'horizon.z',
212 : 'offset_ins.x', 222 : 'offset_ins.y', 232 : 'offset_ins.z',
213 : 'offset_ann.x', 223 : 'offset_ann.y', 233 : 'offset_ann.z',
},
'LINE' : {
10 : 'start_point.x', 20 : 'start_point.y', 30 : 'start_point.z',
11 : 'end_point.x', 21 : 'end_point.y', 31 : 'end_point.z',
39 : 'thickness',
210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
},
'LWPOLYLINE' : {
10 : ['new_vertex(data)'], 20 : 'vertex.y', 30 : 'vertex.z',
38 : 'elevation', 39 : 'thickness',
40 : 'start_width', 41 : 'end_width', 42 : 'bulge', 43 : 'constant_width',
70 : 'flags', 90 : 'numverts',
210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
},
'MLINE' : {
10 : 'start_point.x', 20 : 'start_point.y', 30 : 'start_point.z',
11 : ['new_vertex(data)'], 21 : 'vertex.y', 31 : 'vertex.z',
12 : ['new_seg_dir(data)'], 22 : 'seg_dir.y', 32 : 'seg_dir.z',
13 : ['new_miter_dir(data)'], 23 : 'miter_dir.y', 33 : 'miter_dir.z',
39 : 'thickness',
40 : 'scale', 41 : 'elem_param', 42 : 'fill_param',
70 : 'justification', 71 : 'flags',
72 : 'numverts', 73 : 'numelems', 74 : 'numparam', 75 : 'numfills',
340 : 'id',
210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
},
'MTEXT' : {
1 : 'text', 3: 'more_text', 7 : 'style',
10 : 'insertion_point.x', 20 : 'insertion_point.y', 30 : 'insertion_point.z',
11 : 'alignment_point.x', 21 : 'alignment_point.y', 31 : 'alignment_point.z',
40 : 'nominal_height', 41 : 'reference_width', 42: 'width', 43 : 'height', 44 : 'line_spacing',
50 : 'rotation_angle',
71 : 'attachment_point', 72 : 'drawing_direction', 73 : 'spacing_style',
210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
},
'POINT' : {
10 : 'point.x', 20 : 'point.y', 30 : 'point.z',
39 : 'thickness', 50 : 'orientation',
},
'POLYLINE' : {
1 : 'verts_follow', 2 : 'name',
10 : 'elevation.x', 20 : 'elevation.y', 30 : 'elevation.z',
39 : 'thickness',
40 : 'start_width', 41 : 'end_width',
66 : 'verts_follow_flag',
70 : 'flags', 71 : 'row_count', 72 : 'column_count',
73 : 'row_density', 74 : 'column_density', 75 : 'linetype',
210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
},
'RAY' : {
10 : 'point.x', 20 : 'point.y', 30 : 'point.z',
11 : 'direction.x', 21 : 'direction.y', 31 : 'direction.z',
},
'RTEXT' : {
1 : 'text', 7 : 'style',
10 : 'insertion_point.x', 20 : 'insertion_point.y', 30 : 'insertion_point.z',
39 : 'thickness',
40 : 'height',
50 : 'rotation_angle',
70 : 'flags',
210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
},
'SHAPE' : {
2 : 'name',
10 : 'insertion_point.x', 20 : 'insertion_point.y', 30 : 'insertion_point.z',
39 : 'thickness',
40 : 'size', 41 : 'x_scale',
50 : 'rotation_angle', 51 : 'oblique_angle',
39 : 'thickness',
},
'SOLID' : {
10 : 'point0.x', 20 : 'point0.y', 30 : 'point0.z',
11 : 'point1.x', 21 : 'point1.y', 31 : 'point1.z',
12 : 'point2.x', 22 : 'point2.y', 32 : 'point2.z',
13 : 'point3.x', 23 : 'point3.y', 33 : 'point3.z',
39 : 'thickness',
210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
},
'SPLINE' : {
10 : ['new_control_point(data)'], 20 : 'control_point.y', 30 : 'control_point.z',
11 : ['new_fit_point(data)'], 21 : 'fit_point.y', 31 : 'fit_point.z',
40 : ['new_knot_value(data)'],
12 : 'start_tangent.x', 22 : 'start_tangent.y', 32 : 'start_tangent.z',
13 : 'end_tangent.x', 23 : 'end_tangent.y', 33 : 'end_tangent.z',
39 : 'thickness',
41 : 'weight', 42 : 'knot_tol', 43 : 'control_point_tol', 44 : 'fit_tol',
70 : 'flag', 71 : 'degree',
72 : 'num_knots', 73 : 'num_control_points', 74 : 'num_fit_points',
210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
},
'TEXT' : {
1 : 'text', 7 : 'style',
10 : 'insertion_point.x', 20 : 'insertion_point.y', 30 : 'insertion_point.z',
11 : 'alignment_point.x', 21 : 'alignment_point.y', 31 : 'alignment_point.z',
40 : 'height', 41 : 'x_scale',
50 : 'rotation_angle', 51 : 'oblique_angle',
71 : 'flags', 72 : 'horizontal_justification', 73 : 'vertical_justification',
210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
},
'TOLERANCE' : {
3 : 'style',
10 : 'insertion_point.x', 20 : 'insertion_point.y', 30 : 'insertion_point.z',
11 : 'direction.x', 21 : 'direction.y', 31 : 'direction.z',
},
'TRACE' : {
10 : 'point0.x', 20 : 'point0.y', 30 : 'point0.z',
11 : 'point1.x', 21 : 'point1.y', 31 : 'point1.z',
12 : 'point2.x', 22 : 'point2.y', 32 : 'point2.z',
13 : 'point3.x', 23 : 'point3.y', 33 : 'point3.z',
39 : 'thickness',
210 : 'normal.x', 220 : 'normal.y', 230 : 'normal.z',
},
'VERTEX' : {
10 : 'location.x', 20 : 'location.y', 30 : 'location.z',
40 : 'start_width', 41 : 'end_width', 42 : 'bulge',
50 : 'tangent',
70 : 'flags',
71 : 'index1', 72 : 'index2', 73 : 'index3', 74 : 'index4',
},
'VIEWPORT' : {
10 : 'center.x', 20 : 'center.y', 30 : 'center.z',
12 : 'view_center.x', 22 : 'view_center.y', 32 : 'view_center.z',
13 : 'snap_base.x', 23 : 'snap_base.y', 33 : 'snap_base.z',
14 : 'snap_spacing.x', 24 : 'snap_spacing.y', 34 : 'snap_spacing.z',
15 : 'grid_spacing.x', 25 : 'grid_spacing.y', 35 : 'grid_spacing.z',
16 : 'view_direction.x', 26 : 'view_direction.y', 36 : 'view_direction.z',
40 : 'width', 41 : 'height',
68 : 'status', 69 : 'id',
},
'WIPEOUT' : {
10 : 'point.x', 20 : 'point.y', 30 : 'point.z',
11 : 'direction.x', 21 : 'direction.y', 31 : 'direction.z',
},
}
#
# Flags
#
# Polyline flags
PL_CLOSED = 0x01
PL_CURVE_FIT_VERTS = 0x02
PL_SPLINE_FIT_VERTS = 0x04
PL_3D_POLYLINE = 0x08
PL_3D_POLYGON_MESH = 0x10
PL_CLOSED_IN_N_DIR = 0x20
PL_POLYFACE_MESH = 0x40
PL_CONTINUOUS = 0x80
# Vertex flags
VX_EXTRA_FLAG_CREATED = 0x01
VX_CURVE_FIT_TANGENT_DEFINED = 0x02
VX_SPLINE_VERTEX_CREATED = 0x08
VX_SPLINE_FRAME_CONTROL_POINT = 0x10
VX_3D_POLYLINE_VERTEX = 0x20
VX_3D_POLYGON_MESH_VERTEX = 0x40
VX_POLYFACE_MESH_VERTEX = 0x80
# 3DFACE flags
F3D_EDGE0_INVISIBLE = 0x01
F3D_EDGE1_INVISIBLE = 0x02
F3D_EDGE2_INVISIBLE = 0x04
F3D_EDGE3_INVISIBLE = 0x08
#
# readDxfFile(filePath):
#
def readDxfFile(fileName):
global toggle, theCodec
print( "Opening DXF file "+ fileName )
# fp= open(fileName, "rU")
fp = codecs.open(fileName, "r", encoding=theCodec)
first = True
statements = []
no = 0
for line in fp:
word = line.strip()
no += 1
if first:
if word:
code = int(word)
first = False
else:
if toggle & T_Verbose:
print("%4d: %4d %s" % (no, code, word))
if code < 10:
data = word
elif code < 60:
data = float(word)
elif code < 100:
data = int(word)
elif code < 140:
data = word
elif code < 150:
data = float(word)
elif code < 200:
data = int(word)
elif code < 300:
data = float(word)
elif code < 370:
data = word
elif code < 390:
data = int(word)
elif code < 400:
data = word
elif code < 410:
data = int(word)
elif code < 1010:
data = word
elif code < 1060:
data = float(word)
elif code < 1080:
data = int(word)
statements.append((code,data))
first = True
fp.close()
statements.reverse()
sections = {}
handles = {}
while statements:
(code,data) = statements.pop()
if code == 0:
if data == 'SECTION':
section = CSection()
elif code == 2:
section.type = data
if data == 'HEADER':
parseHeader(section, statements, handles)
known = False
elif data == 'CLASSES':
parseClasses(section, statements, handles)
known = False
elif data == 'TABLES':
parseTables(section, statements, handles)
known = False
elif data == 'BLOCKS':
parseBlocks(section, statements, handles)
known = False
elif data == 'ENTITIES':
parseEntities(section, statements, handles)
known = False
elif data == 'OBJECTS':
parseObjects(section, statements, handles)
elif data == 'THUMBNAILIMAGE':
parseThumbnail(section, statements, handles)
sections[data] = section
elif code == 999:
pass
else:
raise NameError("Unexpected code in SECTION context: %d %s" % (code,data))
if toggle & T_Verbose:
for (typ,section) in sections.items():
section.display()
return sections
#
# 0
# SECTION
# 2
# HEADER
#
# 9
# $<variable>
# <group code>
# <value>
#
# 0
# ENDSEC
def parseHeader(section, statements, handles):
while statements:
(code,data) = statements.pop()
if code == 0:
if data == 'ENDSEC':
return
return
# 0
# SECTION
# 2
# CLASSES
#
# 0
# CLASS
# 1
# <class dxf record>
# 2
# <class name>
# 3
# <app name>
# 90
# <flag>
# 280
# <flag>
# 281
# <flag>
#
# 0
# ENDSEC
def parseClasses(section, statements, handles):
while statements:
(code,data) = statements.pop()
if code == 0:
if data == 'ENDSEC':
return
return
# 0
# SECTION
# 2
# TABLES
#
# 0
# TABLE
# 2
# <table type>
# 5
# <handle>
# 100
# AcDbSymbolTable
# 70
# <max. entries>
#
# 0
# <table type>
# 5
# <handle>
# 100
# AcDbSymbolTableRecord
# .
# . <data>
# .
#
# 0
# ENDTAB
#
# 0
# ENDSEC
#
# APPID (application identification table)
#
# BLOCK_RECORD (block reference table)
#
# DIMSTYLE (dimension style table)
#
# LAYER (layer table)
#
# LTYPE (linetype table)
#
# STYLE (text style table)
#
# UCS (User Coordinate System table)
#
# VIEW (view table)
#
# VPORT (viewport configuration table)
def parseTables(section, statements, handles):
tables = []
section.data = tables
while statements:
(code,data) = statements.pop()
if code == 0:
if data == 'ENDSEC':
return
'''
known = False
elif data == 'TABLE':
table = CTable()
tables.append(table)
known = False
elif data == 'ENDTAB':
pass
known = False
elif data == table.type:
parseTableType
table = CTable()
tables.append(table)
table.type = word
elif code == 2:
table.type = word
elif code == 5:
table.handle = word
handles[word] = table
elif code == 330:
table.owner = word
elif code == 100:
table.subclass = word
elif code == 70:
table.nEntries = int(word)
'''
return
# 0
# SECTION
# 2
# BLOCKS
#
# 0
# BLOCK
# 5
# <handle>
# 100
# AcDbEntity
# 8
# <layer>
# 100
# AcDbBlockBegin
# 2
# <block name>
# 70
# <flag>
# 10
# <X value>
# 20
# <Y value>
# 30
# <Z value>
# 3
# <block name>
# 1
# <xref path>
#
# 0
# <entity type>
# .
# . <data>
# .
#
# 0
# ENDBLK
# 5
# <handle>
# 100
# AcDbBlockEnd
#
# 0
# ENDSEC
def parseBlocks(section, statements, handles):
while statements:
(code,data) = statements.pop()
if code == 0:
if data == 'ENDSEC':
return
return
# 0
# SECTION
# 2
# ENTITIES
#
# 0
# <entity type>
# 5
# <handle>
# 330
# <pointer to owner>
# 100
# AcDbEntity
# 8
# <layer>
# 100
# AcDb<classname>
# .
# . <data>
# .
#
# 0
# ENDSEC
Ignorables = ['DIMENSION', 'TEXT', 'VIEWPORT']
ClassCreators = {
'3DFACE': 'C3dFace()',
'3DSOLID': 'C3dSolid()',
'ACAD_PROXY_ENTITY': 'CAcadProxyEntity()',
'ACAD_ZOMBIE_ENTITY': 0,
'ARC': 'CArc()',
'ARCALIGNEDTEXT': 'CArcAlignedText()',
'ATTDEF': 'CAttdef()',
'ATTRIB': 'CAttrib()',
'BODY': 0,
'CIRCLE': 'CCircle()',
'DIMENSION': 'CDimension()',
'ELLIPSE': 'CEllipse()',
'HATCH': 'CHatch()',
'IMAGE': 'CImage()',
'INSERT': 'CInsert()',
'LEADER': 'CLeader()',
'LINE': 'CLine()',
'LWPOLYLINE': 'CLWPolyLine()',
'MLINE': 'CMLine()',
'MTEXT': 'CMText()',
'OLEFRAME': 0,
'OLE2FRAME': 0,
'POINT': 'CPoint()',
'POLYLINE': 'CPolyLine()',
'RAY': 'CRay()',
'REGION': 0,
'RTEXT': 'CRText',
'SEQEND': 0,
'SHAPE': 'CShape()',
'SOLID': 'CSolid()',
'SPLINE': 'CSpline()',
'TEXT': 'CText()',
'TOLERANCE': 'CTolerance()',
'TRACE': 'CTrace()',
'VERTEX': 'CVertex()',
'VIEWPORT': 'CViewPort()',
'WIPEOUT': 'CWipeOut()',
'XLINE': 'CXLine()',
}
def parseEntities(section, statements, handles):
entities = []
section.data = entities
while statements:
(code,data) = statements.pop()
if toggle & T_Verbose:
print("ent", code,data)
if code == 0:
known = True
if data in Ignorables:
ignore = True
else:
ignore = False
try:
creator = ClassCreators[data]
except:
creator = None
if creator:
entity = eval(creator)
elif data == 'ENDSEC':
return
else:
known = False
if data == 'POLYLINE':
verts = entity.verts
elif data == 'VERTEX':
verts.append(entity)
if data == 'SEQEND':
attributes = []
known = False
elif creator == 0:
ignore = True
elif known:
entities.append(entity)
attributes = DxfEntityAttributes[data]
else:
raise NameError("Unknown data %s" % data)
elif not known:
pass
else:
expr = getAttribute(attributes, code)
if expr:
exec(expr)
else:
expr = getAttribute(DxfCommonAttributes, code)
if expr:
exec(expr)
elif code >= 1000 or ignore:
pass
elif toggle & T_Debug:
raise NameError("Unknown code %d for %s" % (code, entity.type))
return
def getAttribute(attributes, code):
try:
ext = attributes[code]
if type(ext) == str:
expr = "entity.%s = data" % ext
else:
name = ext[0]
expr = "entity.%s" % name
except:
expr = None
return expr
# 0
# SECTION
# 2
# OBJECTS
#
# 0
# DICTIONARY
# 5
# <handle>
# 100
# AcDbDictionary
#
# 3
# <dictionary name>
# 350
# <handle of child>
#
# 0
# <object type>
# .
# . <data>
# .
#
# 0
# ENDSEC
def parseObjects(data, statements, handles):
while statements:
(code,data) = statements.pop()
if code == 0:
if data == 'ENDSEC':
return
return
#
# THUMBNAILIMAGE
# 90
# 45940
# 310
# 28000000B40000005500000001001800000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
# 310
# FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
# 310
# .......
# 0
# ENDSEC
def parseThumbnail(section, statements, handles):
""" Just skip these """
while statements:
(code,data) = statements.pop()
if code == 0:
if data == 'ENDSEC':
return
return
#
# buildGeometry(entities):
# addMesh(name, verts, edges, faces):
#
def buildGeometry(entities):
try: bpy.ops.object.mode_set(mode='OBJECT')
except: pass
v_verts = []
v_vn = 0
e_verts = []
e_edges = []
e_vn = 0
f_verts = []
f_edges = []
f_faces = []
f_vn = 0
for ent in entities:
if ent.drawtype in {'Mesh', 'Curve'}:
(verts, edges, faces, vn) = ent.build()
if not toggle & T_DrawOne:
drawGeometry(verts, edges, faces)
else:
if verts:
if faces:
for i,f in enumerate(faces):
#print ('face=', f)
faces[i] = tuple(it+f_vn for it in f)
for i,e in enumerate(edges):
edges[i] = tuple(it+f_vn for it in e)
f_verts.extend(verts)
f_edges.extend(edges)
f_faces.extend(faces)
f_vn += len(verts)
elif edges:
for i,e in enumerate(edges):
edges[i] = tuple(it+e_vn for it in e)
e_verts.extend(verts)
e_edges.extend(edges)
e_vn += len(verts)
else:
v_verts.extend(verts)
v_vn += len(verts)
else:
ent.draw()
if toggle & T_DrawOne:
drawGeometry(f_verts, f_edges, f_faces)
drawGeometry(e_verts, e_edges)
drawGeometry(v_verts)
def drawGeometry(verts, edges=[], faces=[]):
if verts:
if edges and (toggle & T_Curves):
print ('draw Curve')
cu = bpy.data.curves.new('DXFlines', 'CURVE')
cu.dimensions = '3D'
buildSplines(cu, verts, edges)
ob = addObject('DXFlines', cu)
else:
#for v in verts: print(v)
#print ('draw Mesh with %s vertices' %(len(verts)))
#for e in edges: print(e)
#print ('draw Mesh with %s edges' %(len(edges)))
#for f in faces: print(f)
#print ('draw Mesh with %s faces' %(len(faces)))
me = bpy.data.meshes.new('DXFmesh')
me.from_pydata(verts, edges, faces)
ob = addObject('DXFmesh', me)
removeDoubles(ob)
return
def buildSplines(cu, verts, edges):
if edges:
point_list = []
(v0,v1) = edges.pop()
v1_old = v1
newPoints = [tuple(verts[v0]),tuple(verts[v1])]
for (v0,v1) in edges:
if v0==v1_old:
newPoints.append(tuple(verts[v1]))
else:
#print ('newPoints=', newPoints)
point_list.append(newPoints)
newPoints = [tuple(verts[v0]),tuple(verts[v1])]
v1_old = v1
point_list.append(newPoints)
for points in point_list:
spline = cu.splines.new('POLY')
#spline = cu.splines.new('BEZIER')
#spline.use_endpoint_u = True
#spline.order_u = 2
#spline.resolution_u = 1
#spline.bezier_points.add(2)
spline.points.add(len(points)-1)
#spline.points.foreach_set('co', points)
for i,p in enumerate(points):
spline.points[i].co = (p[0],p[1],p[2],0)
#print ('spline.type=', spline.type)
#print ('spline number=', len(cu.splines))
def addObject(name, data):
ob = bpy.data.objects.new(name, data)
scn = bpy.context.scene
scn.objects.link(ob)
return ob
def removeDoubles(ob):
global theMergeLimit
if toggle & T_Merge:
scn = bpy.context.scene
scn.objects.active = ob
bpy.ops.object.mode_set(mode='EDIT')
bpy.ops.mesh.remove_doubles(threshold=theMergeLimit)
bpy.ops.object.mode_set(mode='OBJECT')
#
# clearScene(context):
#
def clearScene():
global toggle
scn = bpy.context.scene
print("clearScene %s %s" % (toggle & T_NewScene, scn))
if not toggle & T_NewScene:
return scn
for ob in scn.objects:
if ob.type in ["MESH", "CURVE", "TEXT"]:
scn.objects.active = ob
bpy.ops.object.mode_set(mode='OBJECT')
scn.objects.unlink(ob)
del ob
return scn
#
# readAndBuildDxfFile(filepath):
#
def readAndBuildDxfFile(filepath):
fileName = os.path.expanduser(filepath)
if fileName:
(shortName, ext) = os.path.splitext(fileName)
#print("filepath: ", filepath)
#print("fileName: ", fileName)
#print("shortName: ", shortName)
if ext.lower() != ".dxf":
print("Error: Not a dxf file: " + fileName)
return
if toggle & T_NewScene:
clearScene()
if 0: # how to switch to the new scene?? (migius)
new_scn = bpy.data.scenes.new(shortName[-20:])
#new_scn.layers = (1<<20) -1
#new_scn_name = new_scn.name # UNUSED
bpy.data.screens.scene = new_scn
#print("newScene: %s" % (new_scn))
sections = readDxfFile(fileName)
print("Building geometry")
buildGeometry(sections['ENTITIES'].data)
print("Done")
return
print("Error: Not a dxf file: " + filepath)
return
#
# User interface
#
DEBUG= False
from bpy.props import *
def tripleList(list1):
list3 = []
for elt in list1:
list3.append((elt,elt,elt))
return list3
class IMPORT_OT_autocad_dxf(bpy.types.Operator):
"""Import from DXF file format (.dxf)"""
bl_idname = "import_scene.autocad_dxf"
bl_description = 'Import from DXF file format (.dxf)'
bl_label = "Import DXF" +' v.'+ __version__
bl_space_type = "PROPERTIES"
bl_region_type = "WINDOW"
bl_options = {'UNDO'}
filepath = StringProperty(
subtype='FILE_PATH',
)
new_scene = BoolProperty(
name="Replace scene",
description="Replace scene",
default=toggle & T_NewScene,
)
#~ new_scene = BoolProperty(
#~ name="New scene",
#~ description="Create new scene",
#~ default=toggle & T_NewScene,
#~ )
curves = BoolProperty(
name="Draw curves",
description="Draw entities as curves",
default=toggle & T_Curves,
)
thic_on = BoolProperty(
name="Thick ON",
description="Support THICKNESS",
default=toggle & T_ThicON,
)
merge = BoolProperty(
name="Remove doubles",
description="Merge coincident vertices",
default=toggle & T_Merge,
)
mergeLimit = FloatProperty(
name="Limit",
description="Merge limit * 0.0001",
default=theMergeLimit * 1e4,
min=1.0,
soft_min=1.0,
max=1000.0,
soft_max=1000.0,
)
draw_one = BoolProperty(
name="Merge all",
description="Draw all into one mesh object",
default=toggle & T_DrawOne,
)
circleResolution = IntProperty(
name="Circle resolution",
description="Circle/Arc are approximated with this factor",
default=theCircleRes,
min=4,
soft_min=4,
max=360,
soft_max=360,
)
codecs = tripleList(['iso-8859-15', 'utf-8', 'ascii'])
codec = EnumProperty(name="Codec",
description="Codec",
items=codecs,
default='ascii',
)
debug = BoolProperty(
name="Debug",
description="Unknown DXF-codes generate errors",
default=toggle & T_Debug,
)
verbose = BoolProperty(
name="Verbose",
description="Print debug info",
default=toggle & T_Verbose,
)
##### DRAW #####
def draw(self, context):
layout0 = self.layout
#layout0.enabled = False
#col = layout0.column_flow(2,align=True)
layout = layout0.box()
col = layout.column()
#col.prop(self, 'KnotType') waits for more knottypes
#col.label(text="import Parameters")
#col.prop(self, 'replace')
col.prop(self, 'new_scene')
row = layout.row(align=True)
row.prop(self, 'curves')
row.prop(self, 'circleResolution')
row = layout.row(align=True)
row.prop(self, 'merge')
if self.merge:
row.prop(self, 'mergeLimit')
row = layout.row(align=True)
#row.label('na')
row.prop(self, 'draw_one')
row.prop(self, 'thic_on')
col = layout.column()
col.prop(self, 'codec')
row = layout.row(align=True)
row.prop(self, 'debug')
if self.debug:
row.prop(self, 'verbose')
def execute(self, context):
global toggle, theMergeLimit, theCodec, theCircleRes
O_Merge = T_Merge if self.merge else 0
#O_Replace = T_Replace if self.replace else 0
O_NewScene = T_NewScene if self.new_scene else 0
O_Curves = T_Curves if self.curves else 0
O_ThicON = T_ThicON if self.thic_on else 0
O_DrawOne = T_DrawOne if self.draw_one else 0
O_Debug = T_Debug if self.debug else 0
O_Verbose = T_Verbose if self.verbose else 0
toggle = O_Merge | O_DrawOne | O_NewScene | O_Curves | O_ThicON | O_Debug | O_Verbose
theMergeLimit = self.mergeLimit*1e-4
theCircleRes = self.circleResolution
theCodec = self.codec
readAndBuildDxfFile(self.filepath)
return {'FINISHED'}
def invoke(self, context, event):
wm = context.window_manager
wm.fileselect_add(self)
return {'RUNNING_MODAL'}
def menu_func(self, context):
self.layout.operator(IMPORT_OT_autocad_dxf.bl_idname, text="Autocad (.dxf)")
def register():
bpy.utils.register_module(__name__)
bpy.types.INFO_MT_file_import.append(menu_func)
def unregister():
bpy.utils.unregister_module(__name__)
bpy.types.INFO_MT_file_import.remove(menu_func)
if __name__ == "__main__":
register()