-
Brendon Murphy authored
new features see https://projects.blender.org/tracker/?func=detail&atid=469&aid=22015&group_id=153 for updates.
Brendon Murphy authorednew features see https://projects.blender.org/tracker/?func=detail&atid=469&aid=22015&group_id=153 for updates.
object_cloud_gen.py 26.15 KiB
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
bl_addon_info = {
"name": "Cloud Generator",
"author": "Nick Keeline(nrk)",
"version": (1,0),
"blender": (2, 5, 5),
"api": 31965,
"location": "Tool Shelf ",
"description": "Creates Volumetric Clouds",
"warning": "",
"wiki_url": "http://wiki.blender.org/index.php/Extensions:2.5/Py/"\
"Scripts/Object/Cloud_Gen",
"tracker_url": "https://projects.blender.org/tracker/index.php?"\
"func=detail&aid=22015&group_id=153&atid=469",
"category": "Object"}
"""
Place this file in the .blender/scripts/addons dir
You have to activated the script in the "Add-Ons" tab (user preferences).
The functionality can then be accessed via the Tool shelf when objects
are selected
Rev 0 initial release
Rev 0.1 added scene to create_mesh per python api change.
Rev 0.2 Added Point Density turbulence and fixed degenerate
Rev 0.3 Fixed bug in degenerate
Rev 0.4 updated for api change/changed to new apply modifier technique
Rev 0.5 made particle count equation with radius so radius increases with cloud volume
Rev 0.6 added poll function to operator, fixing crash with no selected objects
Rev 0.7 added particles option and Type of Cloud wanted selector
Rev 0.8 fixed particles by commenting out add cloud texture force field
Rev 0.9 Added smoothing and explosion material
Rev 1.0 Added ability to convert object with particle system to cloud and auto resizing of bound box
"""
import bpy
import mathutils
from math import *
from bpy.props import *
# This routine takes an object and deletes all of the geometry in it
# and adds a bounding box to it.
# It will add or subtract the bound box size by the variable sizeDifference.
def getMeshandPutinEditMode(scene, object):
# Go into Object Mode
bpy.ops.object.mode_set(mode='OBJECT')
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the object
object.select = True
scene.objects.active = object
# Go into Edit Mode
bpy.ops.object.mode_set(mode='EDIT')
return object.data
def maxAndMinVerts(scene, object):
mesh = getMeshandPutinEditMode(scene, object)
verts = mesh.vertices
#Set the max and min verts to the first vertex on the list
maxVert = [verts[0].co[0], verts[0].co[1], verts[0].co[2]]
minVert = [verts[0].co[0], verts[0].co[1], verts[0].co[2]]
#Create Max and Min Vertex array for the outer corners of the box
for vert in verts:
#Max vertex
if vert.co[0] > maxVert[0]:
maxVert[0] = vert.co[0]
if vert.co[1] > maxVert[1]:
maxVert[1] = vert.co[1]
if vert.co[2] > maxVert[2]:
maxVert[2] = vert.co[2]
#Min Vertex
if vert.co[0] < minVert[0]:
minVert[0] = vert.co[0]
if vert.co[1] < minVert[1]:
minVert[1] = vert.co[1]
if vert.co[2] < minVert[2]:
minVert[2] = vert.co[2]
return [maxVert, minVert]
def makeObjectIntoBoundBox(scene, object, sizeDifference, takeFromObject):
#Let's find the max and min of the reference object, it can be the same as the destination object
[maxVert, minVert] = maxAndMinVerts(scene, takeFromObject)
#get objects mesh
mesh = getMeshandPutinEditMode(scene, object)
#Add the size difference to the max size of the box
maxVert[0] = maxVert[0] + sizeDifference
maxVert[1] = maxVert[1] + sizeDifference
maxVert[2] = maxVert[2] + sizeDifference
#subtract the size difference to the min size of the box
minVert[0] = minVert[0] - sizeDifference
minVert[1] = minVert[1] - sizeDifference
minVert[2] = minVert[2] - sizeDifference
#Create arrays of verts and faces to be added to the mesh
addVerts = []
#X high loop
addVerts.append([maxVert[0], maxVert[1], maxVert[2]])
addVerts.append([maxVert[0], maxVert[1], minVert[2]])
addVerts.append([maxVert[0], minVert[1], minVert[2]])
addVerts.append([maxVert[0], minVert[1], maxVert[2]])
#x low loop
addVerts.append([minVert[0], maxVert[1], maxVert[2]])
addVerts.append([minVert[0], maxVert[1], minVert[2]])
addVerts.append([minVert[0], minVert[1], minVert[2]])
addVerts.append([minVert[0], minVert[1], maxVert[2]])
# Make the faces of the bounding box.
addFaces = []
# Draw a box on paper and number the vertices.
# Use right hand rule to come up with number orders for faces on
# the box (with normals pointing out).
addFaces.append([0, 3, 2, 1])
addFaces.append([4, 5, 6, 7])
addFaces.append([0, 1, 5, 4])
addFaces.append([1, 2, 6, 5])
addFaces.append([2, 3, 7, 6])
addFaces.append([0, 4, 7, 3])
# Delete all geometry from the object.
bpy.ops.mesh.select_all(action='SELECT')
bpy.ops.mesh.delete(type='ALL')
# Must be in object mode for from_pydata to work
bpy.ops.object.mode_set(mode='OBJECT')
# Add the mesh data.
mesh.from_pydata(addVerts, [], addFaces)
# Update the mesh
mesh.update()
def applyScaleRotLoc(scene, obj):
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the object
obj.select = True
scene.objects.active = obj
bpy.ops.object.rotation_apply()
bpy.ops.object.location_apply()
bpy.ops.object.scale_apply()
def totallyDeleteObject(scene, obj):
scene.objects.unlink(obj)
bpy.data.objects.remove(obj)
def makeParent(parentobj, childobj, scene):
applyScaleRotLoc(scene, parentobj)
applyScaleRotLoc(scene, childobj)
childobj.parent = parentobj
def addNewObject(scene, name, copyobj):
# Create new mesh
mesh = bpy.data.meshes.new(name)
# Create a new object.
ob_new = bpy.data.objects.new(name, mesh)
tempme = copyobj.data
ob_new.data = tempme.copy()
ob_new.scale = copyobj.scale
ob_new.location = copyobj.location
# Link new object to the given scene and select it.
scene.objects.link(ob_new)
ob_new.select = True
return ob_new
def getpdensitytexture(object):
for mslot in object.material_slots:
mat = mslot.material
for tslot in mat.texture_slots:
if tslot!= 'NoneType':
tex = tslot.texture
if tex.type == 'POINT_DENSITY':
if tex.point_density.point_source == 'PARTICLE_SYSTEM':
return tex
def removeParticleSystemFromObj(scene, object):
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the object.
object.select = True
scene.objects.active = object
bpy.ops.object.particle_system_remove()
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
def convertParticlesToMesh(scene, particlesobj, destobj, replacemesh):
# Select the Destination object.
destobj.select = True
scene.objects.active = destobj
#Go to Edit Mode
bpy.ops.object.mode_set(mode='EDIT',toggle=False)
#Delete everything in mesh if replace true
if replacemesh:
bpy.ops.mesh.select_all(action='SELECT')
bpy.ops.mesh.delete(type='ALL')
meshPnts = destobj.data
listCloudParticles = particlesobj.particles
listMeshPnts = []
for pTicle in listCloudParticles:
listMeshPnts.append(pTicle.location)
# Must be in object mode for from_pydata to work.
bpy.ops.object.mode_set(mode='OBJECT')
# Add in the mesh data.
meshPnts.from_pydata(listMeshPnts, [], [])
# Update the mesh.
meshPnts.update()
def combineObjects(scene, combined, listobjs):
# scene is the current scene
# combined is the object we want to combine everything into
# listobjs is the list of objects to stick into combined
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the new object.
combined.select = True
scene.objects.active = combined
# Add data
if (len(listobjs) > 0):
for i in listobjs:
# Add a modifier
bpy.ops.object.modifier_add(type='BOOLEAN')
union = combined.modifiers
union[0].name = "AddEmUp"
union[0].object = i
union[0].operation = 'UNION'
# Apply modifier
bpy.ops.object.modifier_apply(apply_as='DATA', modifier=union[0].name)
# Returns the action we want to take
def getActionToDo(obj):
if not obj or obj.type != 'MESH':
return 'NOT_OBJ_DO_NOTHING'
elif obj is None:
return 'NO_SELECTION_DO_NOTHING'
elif "CloudMember" in obj:
if obj["CloudMember"] != None:
if obj["CloudMember"] == "MainObj":
return 'DEGENERATE'
elif obj["CloudMember"] == "CreatedObj" and len(obj.particle_systems) > 0:
return 'CLOUD_CONVERT_TO_MESH'
else:
return 'CLOUD_DO_NOTHING'
elif obj.type == 'MESH':
return 'GENERATE'
else:
return 'DO_NOTHING'
class VIEW3D_PT_tools_cloud(bpy.types.Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'TOOLS'
bl_label = "Cloud Generator"
bl_context = "objectmode"
def draw(self, context):
active_obj = context.active_object
layout = self.layout
col = layout.column(align=True)
WhatToDo = getActionToDo(active_obj)
if WhatToDo == 'DEGENERATE':
col.operator("cloud.generate_cloud", text="DeGenerate")
elif WhatToDo == 'CLOUD_CONVERT_TO_MESH':
col.operator("cloud.generate_cloud", text="Convert to Mesh")
elif WhatToDo == 'NO_SELECTION_DO_NOTHING':
col.label(text="Select one or more")
col.label(text="objects to generate")
col.label(text="a cloud.")
elif WhatToDo == 'CLOUD_DO_NOTHING':
col.label(text="Must select")
col.label(text="bound box")
elif WhatToDo == 'GENERATE':
col.operator("cloud.generate_cloud", text="Generate Cloud")
col.prop(context.scene, "cloud_type")
col.prop(context.scene, "cloudparticles")
col.prop(context.scene, "cloudsmoothing")
else:
col.label(text="Select one or more")
col.label(text="objects to generate")
col.label(text="a cloud.")
class GenerateCloud(bpy.types.Operator):
bl_idname = "cloud.generate_cloud"
bl_label = "Generate Cloud"
bl_description = "Create a Cloud,Undo Cloud, or convert to Mesh Cloud depending on selection"
bl_register = True
bl_undo = True
@classmethod
def poll(cls, context):
if not context.active_object:
return False
else:
return (context.active_object.type=='MESH')
def execute(self, context):
# Make variable that is the current .blend file main data blocks
blend_data = context.blend_data
# Make variable that is the active object selected by user
active_object = context.active_object
# Make variable scene that is current scene
scene = context.scene
# Parameters the user may want to change:
# Number of points this number is multiplied by the volume to get
# the number of points the scripts will put in the volume.
numOfPoints = 1.0
maxNumOfPoints = 100000
maxPointDensityRadius = 1.5
scattering = 2.5
pointDensityRadiusFactor = 1.0
densityScale = 1.5
# What should we do?
WhatToDo = getActionToDo(active_object)
if WhatToDo == 'DEGENERATE':
# Degenerate Cloud
mainObj = active_object
cloudMembers = active_object.children
createdObjects = []
definitionObjects = []
for member in cloudMembers:
applyScaleRotLoc(scene, member)
if (member["CloudMember"] == "CreatedObj"):
createdObjects.append(member)
else:
definitionObjects.append(member)
for defObj in definitionObjects:
#Delete cloudmember data from objects
if "CloudMember" in defObj:
del(defObj["CloudMember"])
for createdObj in createdObjects:
totallyDeleteObject(scene, createdObj)
# Delete the blend_data object
totallyDeleteObject(scene, mainObj)
# Select all of the left over boxes so people can immediately
# press generate again if they want.
for eachMember in definitionObjects:
eachMember.draw_type = 'SOLID'
eachMember.select = True
eachMember.hide_render = False
elif WhatToDo == 'CLOUD_CONVERT_TO_MESH':
cloudParticles = active_object.particle_systems.active
bounds = active_object.parent
###############Create CloudPnts for putting points in#########
# Create a new object cloudPnts
cloudPnts = addNewObject(scene, "CloudPoints", bounds)
cloudPnts["CloudMember"] = "CreatedObj"
cloudPnts.draw_type = 'WIRE'
cloudPnts.hide_render = True
makeParent(bounds, cloudPnts, scene)
convertParticlesToMesh(scene, cloudParticles, cloudPnts, True)
removeParticleSystemFromObj(scene, active_object)
pDensity = getpdensitytexture(bounds)
pDensity.point_density.point_source = 'OBJECT'
pDensity.point_density.object = cloudPnts
#Let's resize the bound box to be more accurate.
how_much_bigger = pDensity.point_density.radius
makeObjectIntoBoundBox(scene, bounds, how_much_bigger, cloudPnts)
else:
# Generate Cloud
###############Create Combined Object bounds##################
# Make a list of all Selected objects.
selectedObjects = bpy.context.selected_objects
if not selectedObjects:
selectedObjects = [bpy.context.active_object]
# Create a new object bounds
bounds = addNewObject(scene,
"CloudBounds",
selectedObjects[0])
bounds.draw_type = 'BOUNDS'
bounds.hide_render = False
# Just add a Definition Property designating this
# as the blend_data object.
bounds["CloudMember"] = "MainObj"
# Since we used iteration 0 to copy with object we
# delete it off the list.
firstObject = selectedObjects[0]
del selectedObjects[0]
# Apply location Rotation and Scale to all objects involved.
applyScaleRotLoc(scene, bounds)
for each in selectedObjects:
applyScaleRotLoc(scene, each)
# Let's combine all of them together.
combineObjects(scene, bounds, selectedObjects)
# Let's add some property info to the objects.
for selObj in selectedObjects:
selObj["CloudMember"] = "DefinitioinObj"
selObj.name = "DefinitioinObj"
selObj.draw_type = 'WIRE'
selObj.hide_render = True
makeParent(bounds, selObj, scene)
# Do the same to the 1. object since it is no longer in list.
firstObject["CloudMember"] = "DefinitioinObj"
firstObject.name = "DefinitioinObj"
firstObject.draw_type = 'WIRE'
firstObject.hide_render = True
makeParent(bounds, firstObject, scene)
###############Create Cloud for putting Cloud Mesh############
# Create a new object cloud.
cloud = addNewObject(scene, "CloudMesh", bounds)
cloud["CloudMember"] = "CreatedObj"
cloud.draw_type = 'WIRE'
cloud.hide_render = True
makeParent(bounds, cloud, scene)
bpy.ops.object.editmode_toggle()
bpy.ops.mesh.select_all(action='SELECT')
#Don't subdivide object or smooth if smoothing box not checked.
if scene.cloudsmoothing:
bpy.ops.mesh.subdivide(number_cuts=2, fractal=0, smoothness=1)
bpy.ops.object.location_apply()
bpy.ops.mesh.vertices_smooth(repeat=20)
bpy.ops.mesh.tris_convert_to_quads()
bpy.ops.mesh.faces_shade_smooth()
bpy.ops.object.editmode_toggle()
###############Create Particles in cloud obj##################
# Set time to 0.
scene.frame_current = 0
# Add a new particle system.
bpy.ops.object.particle_system_add()
#Particle settings setting it up!
cloudParticles = cloud.particle_systems.active
cloudParticles.name = "CloudParticles"
cloudParticles.settings.frame_start = 0
cloudParticles.settings.frame_end = 0
cloudParticles.settings.emit_from = 'VOLUME'
cloudParticles.settings.lifetime = scene.frame_end
cloudParticles.settings.draw_method = 'DOT'
cloudParticles.settings.render_type = 'NONE'
cloudParticles.settings.distribution = 'RAND'
cloudParticles.settings.physics_type = 'NEWTON'
cloudParticles.settings.normal_factor = 0
#Gravity does not effect the particle system
eWeights = cloudParticles.settings.effector_weights
eWeights.gravity = 0
####################Create Volume Material####################
# Deselect All
bpy.ops.object.select_all(action='DESELECT')
# Select the object.
bounds.select = True
scene.objects.active = bounds
# Turn bounds object into a box. Use itself as a reference.
makeObjectIntoBoundBox(scene, bounds, 1.0, bounds)
# Delete all material slots in bounds object.
for i in range(len(bounds.material_slots)):
bounds.active_material_index = i - 1
bpy.ops.object.material_slot_remove()
# Add a new material.
cloudMaterial = blend_data.materials.new("CloudMaterial")
bpy.ops.object.material_slot_add()
bounds.material_slots[0].material = cloudMaterial
# Set Up the Cloud Material
cloudMaterial.name = "CloudMaterial"
cloudMaterial.type = 'VOLUME'
mVolume = cloudMaterial.volume
mVolume.scattering = scattering
mVolume.density = 0
mVolume.density_scale = densityScale
mVolume.transmission_color = [3, 3, 3]
mVolume.step_size = 0.1
mVolume.use_light_cache = True
mVolume.cache_resolution = 45
# Add a texture
vMaterialTextureSlots = cloudMaterial.texture_slots
cloudtex = blend_data.textures.new("CloudTex", type='CLOUDS')
cloudtex.noise_type = 'HARD_NOISE'
cloudtex.noise_scale = 2
mtex = cloudMaterial.texture_slots.add()
mtex.texture = cloudtex
mtex.texture_coords = 'ORCO'
mtex.use_map_color_diffuse = True
# Set time
scene.frame_current = 1
# Add a Point Density texture
pDensity = blend_data.textures.new("CloudPointDensity", 'POINT_DENSITY')
mtex = cloudMaterial.texture_slots.add()
mtex.texture = pDensity
mtex.texture_coords = 'GLOBAL'
mtex.use_map_density = True
mtex.use_rgb_to_intensity = True
mtex.texture_coords = 'GLOBAL'
pDensity.point_density.vertex_cache_space = 'WORLD_SPACE'
pDensity.point_density.use_turbulence = True
pDensity.point_density.noise_basis = 'VORONOI_F2'
pDensity.point_density.turbulence_depth = 3
pDensity.use_color_ramp = True
pRamp = pDensity.color_ramp
#pRamp.use_interpolation = 'LINEAR'
pRampElements = pRamp.elements
#pRampElements[1].position = .9
#pRampElements[1].color = [.18,.18,.18,.8]
bpy.ops.texture.slot_move(type='UP')
# Estimate the number of particles for the size of bounds.
volumeBoundBox = (bounds.dimensions[0] * bounds.dimensions[1]* bounds.dimensions[2])
numParticles = int((2.4462 * volumeBoundBox + 430.4) * numOfPoints)
if numParticles > maxNumOfPoints:
numParticles = maxNumOfPoints
if numParticles < 10000:
numParticles = int(numParticles + 15 * volumeBoundBox)
print(numParticles)
# Set the number of particles according to the volume
# of bounds.
cloudParticles.settings.count = numParticles
pDensity.point_density.radius = (.00013764 * volumeBoundBox + .3989) * pointDensityRadiusFactor
if pDensity.point_density.radius > maxPointDensityRadius:
pDensity.point_density.radius = maxPointDensityRadius
# Set time to 1.
scene.frame_current = 1
if not scene.cloudparticles:
###############Create CloudPnts for putting points in#########
# Create a new object cloudPnts
cloudPnts = addNewObject(scene, "CloudPoints", bounds)
cloudPnts["CloudMember"] = "CreatedObj"
cloudPnts.draw_type = 'WIRE'
cloudPnts.hide_render = True
makeParent(bounds, cloudPnts, scene)
convertParticlesToMesh(scene, cloudParticles, cloudPnts, True)
# Add a modifier.
bpy.ops.object.modifier_add(type='DISPLACE')
cldPntsModifiers = cloudPnts.modifiers
cldPntsModifiers[0].name = "CloudPnts"
cldPntsModifiers[0].texture = cloudtex
cldPntsModifiers[0].texture_coords = 'OBJECT'
cldPntsModifiers[0].texture_coordinate_object = cloud
cldPntsModifiers[0].strength = -1.4
# Apply modifier
bpy.ops.object.modifier_apply(apply_as='DATA', modifier=cldPntsModifiers[0].name)
pDensity.point_density.point_source = 'OBJECT'
pDensity.point_density.object = cloudPnts
removeParticleSystemFromObj(scene, cloud)
else:
pDensity.point_density.point_source = 'PARTICLE_SYSTEM'
pDensity.point_density.object = cloud
pDensity.point_density.particle_system = cloudParticles
if scene.cloud_type == '1': # Cumulous
print("Cumulous")
mVolume.density_scale = 2.22
pDensity.point_density.turbulence_depth = 10
pDensity.point_density.turbulence_strength = 6.3
pDensity.point_density.turbulence_scale = 2.9
pRampElements[1].position = .606
pDensity.point_density.radius = pDensity.point_density.radius + .1
elif scene.cloud_type == '2': # Cirrus
print("Cirrus")
pDensity.point_density.turbulence_strength = 22
mVolume.transmission_color = [3.5, 3.5, 3.5]
mVolume.scattering = .13
elif scene.cloud_type == '3': # Explosion
mVolume.emission = 1.42
mtex.use_rgb_to_intensity = False
pRampElements[0].position = .825
pRampElements[0].color = [.119,.119,.119,1]
pRampElements[1].position = .049
pRampElements[1].color = [1.0,1.0,1.0,0]
pDensity.point_density.turbulence_strength = 1.5
pRampElement1 = pRampElements.new(.452)
pRampElement1.color = [.814,.112,0,1]
pRampElement2 = pRampElements.new(.234)
pRampElement2.color = [.814,.310,.002,1]
pRampElement3 = pRampElements.new(.669)
pRampElement3.color = [0,.0,.040,1]
# Select the object.
bounds.select = True
scene.objects.active = bounds
#Let's resize the bound box to be more accurate.
how_much_bigger = pDensity.point_density.radius + .1
#If it's a particle cloud use cloud mesh if otherwise use point mesh
if not scene.cloudparticles:
makeObjectIntoBoundBox(scene, bounds, how_much_bigger, cloudPnts)
else:
makeObjectIntoBoundBox(scene, bounds, how_much_bigger, cloud)
return {'FINISHED'}
def register():
bpy.types.Scene.cloudparticles = BoolProperty(
name="Particles",
description="Generate Cloud as Particle System",
default=False)
bpy.types.Scene.cloudsmoothing = BoolProperty(
name="Smoothing",
description="Smooth Resultant Geometry From Gen Cloud Operation",
default=True)
bpy.types.Scene.cloud_type = EnumProperty(
name="Type",
description="Select the type of cloud to create with material settings",
items=[("0","Stratus","Generate Stratus_foggy Cloud"),
("1","Cumulous","Generate Cumulous_puffy Cloud"),
("2","Cirrus","Generate Cirrus_wispy Cloud"),
("3","Explosion","Generate Explosion"),
],
default='0')
def unregister():
del bpy.types.Scene.cloudparticles
del bpy.types.Scene.cloud_type
if __name__ == "__main__":
register()